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Abstract

Using a computational approach, we have identified 49 cytochrome c (cyc) pseudogenes in the human genome. Analysis of these provides
a detailed description of the molecular evolution of the cyc gene. Almost all of the pseudogenes are full-length, and we have concluded that
they mostly originated from independent retrotransposition events (i.e. they are processed). Based on phylogenetic analysis and detailed
sequence comparison, we have further divided these pseudogenes into two groups. The first, consisting of four young pseudogenes that were
dated to be between 27 and 34 Myr old, originated from a gene almost identical to the modern human cyc gene. The second group of
pseudogenes is much older and appears to have descended from ancient genes similar to modern rodent cyc genes. Thus, our results support
the observation that accelerated evolution in cyc sequence had occurred in the primate lineage. The oldest pseudogene in the second group,
dated to be over 80 Myr old, resembles the testis-specific cyc gene in modern rodents. It is likely that the mammalian ancestor had both the
somatic and the testis-specific cyc genes. While the testis-specific gene is still functional in modern rodents, the human has lost it, retaining
only a pseudogene in its place. Thus, our study may have identified a pseudogene that is a dead relic of a gene that has completely died off in

the human lineage.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Cytochrome ¢ (cyc) is a central component of the
electron transfer chain in the cell, and is involved in both
aerobic and anaerobic respiration. It is also involved in other
cellular processes such as apoptosis (Kluck et al., 1997) and
heme biosynthesis (Biel and Biel, 1990). It is a ubiquitous
protein, found in all eukaryotes and prokaryotes. Because of
its importance, relatively small size (104 amino acids in
mammals) and ease of isolation, cyc has been very
intensively studied. Cyc has also been used as a paradigm
in the study of the evolution of protein sequence and
structure (Chothia and Lesk, 1985; Wu et al., 1986; Mills,
1991). The amino acid sequences of cyc from many species
are now available (Banci et al., 1999); the sequences among

Abbreviations: cyc, cytochrome ¢; HCS, human somatic cytochrome ¢
gene; HCP, human cytochrome ¢ pseudogene; UTR, un-translated region;
CDS, protein coding sequence; Myr, million years.

* Corresponding author. Tel.: +1-203-432-6105; fax: + 1-360-838-7861.

E-mail address: mark.gerstein@yale.edu (M. Gerstein).

vertebrates are especially conserved except among pri-
mates, where acceleration in non-synonymous mutation has
been observed (Evans and Scarpulla, 1988; Grossman et al.,
2001).

By screening genomic DNA libraries, multiple copies of
cytochrome ¢ processed pseudogenes were discovered in
mammalian genomes (Scarpulla et al., 1982; Scarpulla,
1984), including 11 copies in human (Evans and Scarpulla,
1988). Processed pseudogenes are disabled copies of
functional genes that do not produce a functional, full-
length protein (Vanin, 1985; Mighell et al., 2000; Harrison
et al., 2002a). It is believed that they arose from LINEI-
mediated retrotransposition, i.e. reverse-transcription of
mRNA transcripts followed by integration into genomic
DNA, presumably in the germ line (Kazazian and Moran,
1998; Esnault et al., 2000). They are characterized by a
complete lack of introns, the presence of small flanking
direct repeats and a polyadenine tract near the 3’ end
(provided that they have not decayed). Existence of
pseudogenes in the genome can obscure the identification

0378-1119/03/$ - see front matter © 2003 Elsevier Science B.V. All rights reserved.
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and cloning of functional genes; however, pseudogenes can
also provide a fossil record of gene sequences existing at
various times during evolution.

Previously, we identified over 2000 ribosomal protein
(RP) pseudogenes in the human genome (Harrison et al.,
2002b; Zhang et al., 2002), most of which were previously
overlooked by DNA hybridization experiments. Motivated
by this discovery of an unexpectedly large number of addi-
tional pseudogenes, we carried out a similar comprehensive
survey on human cytochrome ¢ pseudogenes. Our study
provides a complete molecular record of the recent evolu-
tion of this gene and demonstrates the importance of
examining pseudogenic sequences. It also demonstrates a
specific instance of a gene disappearing and leaving only a
fossil pseudogene in its place.

2. Materials and methods

The basic procedures of our pseudogene discovery
pipeline have been previously described (Zhang et al.,
2002). A brief overview is given below.

2.1. Six-frame BLAST search for raw fragment homologies

We used the human genome draft freeze of Aug 06,
2001, downloaded from Ensembl website (http://www.
ensembl.org). Subsequently, all the chromosomal coordi-
nates were based on these sequences. The amino acid
sequences of the cytochrome c proteins were extracted from
SWISS-PROT (Bairoch and Apweiler, 2000). Each
un-masked human chromosome was split into smaller
overlapping chunks of 5.1 MB, and the tblastn program of
the BLAST package 2.0 (Altschul et al., 1997) was run on
these sequences. The default SEG (Wootton and Federhen,
1993) low-complexity filter parameters were used in the
homology search. We then picked the significant homology
matches (e-value <10~ %), and reduced them for mutual
overlap by selecting the matches in order of decreasing
significance and removing any matches that overlapped
substantially with a previously-picked match (i.e. more than
ten amino acids or 30 bp).

2.2. Alignment optimization by FASTA dynamic
programming

After the BLAST matches were sorted according to their
starting positions on the chromosomes, they were examined,
and the neighboring matches were merged if they were
deemed to be part of the same pseudogene sequence. The
merged matches were then extended on both sides to equal
the length of the cyc gene plus 30 bp buffers. For each
extended match, the human cytochrome ¢ (HCS) amino acid
sequence was re-aligned to the genomic DNA sequence
using the program FASTA (Pearson, 1997). FASTA utilizes
global dynamic programming that allows gaps between

neighboring but not immediately adjacent matches; it also
recognizes frame shifts. At this point, we had a total of 50
cyc pseudogene candidates.

2.3. Checking for exon structures

We then examined each candidate pseudogene for the
existence of exon structures. One sequence on chromosome
7 was identified as the functional HCS gene, as its sequence,
including the exons, introns and the flanking regions,
matched perfectly with the previously known functional
HCS gene. Forty-six (46) pseudogene candidates had
continuous, intron-less coding regions, which suggested
that they were processed pseudogenes; these sequences
were labeled as ‘intact’ processed pseudogenes. The three
remaining pseudogene candidates contained retrotrans-
poson sequences inserted in their otherwise continuous
coding regions; they were labeled as ‘disrupted’ processed
pseudogenes. We further extended the pseudogene
sequences on both sides to obtain the 5’ and 3’ un-translated
(UTR) sequences.

2.4. Phylogenetic analysis and dating

Multiple sequence alignment of the pseudogenes
and genes was performed using the program ClustalW
(Thompson et al., 1994). MEGA2 (Kumar et al., 2001) was
used for all the phylogenetic analysis. A phylogenetic tree
was constructed by applying the neighbor-joining (NJ)
method (Saitou and Nei, 1987; Nei and Kumar, 2000) to the
protein coding regions. For each cyc pseudogene, we also
calculated the nucleotide sequence divergence from the
modern HCS gene, using Kimura’s two-parameter model
(Kimura, 1980), which corrected for multiple hits and also
took into account different substitution rates between sites
and for transitions vs. transversions. We calculated the ages
of some young pseudogenes from the sequence divergence,
using formula 7' = D/(k), where D is the divergence and k
is the mutation rate per year per site. A mutation rate of
1.5 x 10~ for pseudogenes was used (Li, 1997).

3. Results
3.1. The human cyc pseudogene population

A total of 50 cyc homology loci were identified in the
human genome, including 49 pseudogenes (denoted as
HCP) and one intron-containing functional gene (denoted as
HCS). The HCS gene was located on chromosome 7
(cytogenic band 7pl15.3, see Fig. 1), the annotation was
confirmed by the perfect alignment of the exons, intron, and
the 5’ and 3’ regions with the previously reported nucleotide
sequence ((Evans and Scarpulla, 1988), GenBank ID:
181241). It is known that the HCS gene contains two
introns. The first one is 1,073 bp long and 9 bp upstream of
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1 2 3 4 5
HCP10
HeP11 X
/
HeP12'
HCP13
HCP6T
HCPT7 T
HCP8T
HCP14F
HCP1 +
HeP2T
HCP3 T
HCP9T
HCP4 T
HCP5 +
13 14 15 16 17
HCP31 L l L
HCP32 \Q
HCP33 /T HCP39 =+
HCP34 + HCP37T
HCP38F
HCP36 T HCP40 4+
HCP35 +

HCP15

HCP16 4
HCP17T

7 8 9 10 11 12
HCSm
HCP214 HCP25T
HCP22=
HCP26 &
HCP27
HCP28
HCP24=
HCP30 =+
HCP18 =
HCP29 +
HCP194  HCP23+
HCP20 +
19 20 21 22 X Y
HCP41 HCP46
HCP42 HCP47-
HCP48'/
HCP49
HCP43 +
HCP44 +
HCP45 =+

—pseudogenes ® HSC gene O centromeres

Fig. 1. A map of the cyc gene and pseudogenes in the human genome. The 24 chromosomes are shown as vertical lines. The functional HCS gene is marked as
filled black square; pseudogenes marked as horizontal bars and centromeres marked as open circles.

the ATG translation initiation codon; the second intron is
101 bp long and precedes the second nucleotide of the 56th
codon. The 49cyc pseudogene assignments were established
by their lack of both introns and were, in some cases, further
confirmed by the existence of a poly-A tail at the 3’ end.
Most of the pseudogenes (40 of 49) were also found to
contain obvious disablements in their coding regions. We
further searched the GenBank human EST database to
confirm that none of these pseudogenes was expressed.
We named our cyc pseudogenes sequentially from HCPI
to HCP49 according to their locations on the chromosomes.

These pseudogenes are spread out on 18 of the 23
chromosomes, except 5, 10, 18, 19, 20 and 22 (see Fig. 1).
Fig. 2 shows the alignment of the predicted amino acid
sequences of these pseudogenes with the HCS protein. The
disablements are highlighted in gray. More detailed
information on these pseudogenes is provided in Table 1.
Except for HCP9, HCP15 and HCP30, which are disrupted
into two or three fragments by insertions of retrotrans-
posons, most of the pseudogenes have continuous
sequences.

The sequences of 40 of the 49 pseudogenes can be
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Fig. 2. Alignment of the translated amino acid sequences of the human cyc pseudogenes, together with the functional HCS protein sequence. In the pseudogene

sequences, missing amino acids caused by truncation are left as blank, dashes ‘— indicate a gap caused by DNA deletion, frame shifts and stop codons are
indicated by ‘/’, \’ and ‘X’. Repeat insertions are marked as vertical bars. Apparent disablements in the pseudogenes (frame shifts and premature stop codons)

are highlighted. The numbering system above the sequences is based on the HCS sequence.
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Table 1
Detail information on the 49 human cytochrome ¢ pseudogenes®
Pseudogene ID NCBI Band Chromosome Amino nt Divergence’ Comments

accession (strand) location” acid

number identity®

(%)

HCS Tpl15.3 (—) 25.65M Functional human cyc gene
HCPI AF533162 1921.3 (+) 151.49M 88 0.090 = 0.020
HCP2 (HC6) AF533163 1923.1 (+) 156.78M 82 0.114 + 0.023
HCP3 AF533164 1q24.3 (—) 172.70M 59 0.235 = 0.042
HCP4 AF533165 1932.1 (—) 206.92M 73 0.138 = 0.027 Truncated before residue 13
HCP5 AF533166 1g44 (—) 251.92M 64 0.345 + 0.054
HCP6 AF533167 2pl2 (—) 79.59M 77 0.113 = 0.022
HCP7 AF533168 2q11.2 (+) 96.95M 74 0.182 = 0.033
HCP8 AF533169 2q14.3 (—) 127.35M 69 0.220 = 0.037
HCP9 AF533170 2q31.2 (&) 177.54M 79 0.473 = 0.071 Disrupted into three fragments by Alus
HCPI0 AF533171 3p25.3 (—) 11.81M 81 0.107 = 0.022 HCP10-13 are duplicated copies
HCPI11 AF533172 3p25.3 (—) 11.87M 83 0.095 = 0.020 See HCP10
HCPI2 AF533173 3p25.3 (—) 14.05M 76 0.091 = 0.020 See HCP10
HCPI13 AF533174 3p25.1 (—) 19.78M 77 0.091 = 0.020 See HCPI10
HCPI4 AF533175 4q28.3 (—) 131.99M 46 1.257 = 0.253
*HCPI15 (HS11) AF533176 6p21.1 (+) 44.06M 92 0.041 = 0.013 Disrupted into two fragments by Alus
HCPI6° AF533177 6q15 (—) 96.18M 48 N/A Truncated after residue 58
HCP17 AF533178 6q16.1 (+) 101.62M 74 0.147 = 0.028
HCPI8 AF533179 7921.3 (—) 97.54M 52 0.610 = 0.117 Truncated after residue 81
HCPI19 AF533180 7q31.32 (+) 121.29M 83 0.117 = 0.023
HCP20 AF533181 7q32.1 (—) 132.78M 76 0.142 = 0.026
*HCP21 (HS7) AF533182 8pl2 (—) 34.34M 95 0.034 = 0.011
HCP22 AF533183 8ql11.22 (—) 51.04M 83 0.108 = 0.022
HCP23 AF533184 8q24.12 (—) 120.57M 76 0.164 + 0.029
HCP24 (HC3) AF533185 9q22.32 (+) 86.92M 83 0.103 = 0.021 HCP24 and 31 are duplicated copies
HCP25 (HCI10) AF533186 11p13 (—) 31.51M 83 0.094 = 0.020
HCP26 AF533187 11q13.2 (—) 66.72M 75 0.148 = 0.027
HCP27 AF533188 11q13.4 (+) 75.78M 68 0.173 = 0.031
HCP28 AF533189 11q14.1 (+) 78.18M 71 0.173 = 0.031
HCP29 AF533190 11922.3 (—) 113.54M 72 0.140 = 0.026
HCP30 AF533191 12q21.32 (+) 91.41M 72 0.177 = 0.032 Disrupted into two fragments
HCP31 (HC3) AF533192 13q12.11 (—) 17.40M 83 0.103 = 0.021 See HCP24
HCP32 AF533193 13q12.11 (=) 18.53M 79 0.123 = 0.024 HCP32, 41 and 49 are duplicated copies
HCP33 (HC4) AF533194 13q12.12 (—) 23.63M 77 0.129 = 0.025
HCP34 AF533195 13q14.11 (+) 36.85M 86 0.088 = 0.019
HCP35 (HCS) AF533196 13932.3 (—) 99.53M 64 0.256 = 0.042
HCP36 (HCS) AF533197 14924.3 (+) 75.65M 82 0.108 = 0.022
HCP37 AF533198 15q15.1 (+) 35.24M 70 0.226 = 0.039
HCP38 (HC2) AF533199 15q22.2 (+) 57.39M 61 0.287 = 0.049
HCP39 (HCI1) AF533200 16p12.1 (—) 26.36M 84 0.093 = 0.020
HCP40 (HC7) AF533201 17925.3 (+) 78.64M 68 0.174 = 0.036 Truncated after residue 84
HCP41 AF533202 21ql1.2 (—) 7.715M 71 0.198 = 0.044 Truncated after residue 63, see also HCP32
HCP42 AF533203 21q21.1 (=) 13.53M 58 0.458 = 0.084 Truncated after residue 88
HCP43 AF533204 Xql3.1(-) 63.83M 75 0.170 = 0.031
HCP44 AF533205 Xq27.3 (+) 140.82M 77 0.124 = 0.024
*HCP45 AF533206 Xq28 (+) 149.47M 91 0.052 = 0.014
*HCP46" AF533207 Yqll1.221 (—) 16.31M 92 0.047 = 0.014 Truncated before residue 39
HCP47* AF533208 Yqll1.221 (+) 16.31M 96 - Residues 14-40 only.
HCP48 AF533209 Yql2 (+) 27.718M 71 0.165 £ 0.031 Truncated before residue 13
HCP49 AF533210 Yql2 (+) 27.93M 71 0.176 = 0.031 See HCP32

a

b

analytically.

¢ HCPIG6 is too incomplete to compute the sequence divergence.

T HCP46 and HCP47 were merged together in calculating the divergence.

The class 1 pseudogenes are indicated by *; the rest of the pseudogenes are class 2.

Chromosomal coordinates of the pseudogene in Mb (million base pair).

¢ Amino acid sequence identity between translated cyc pseudogene and HCS sequence.

4 Nucleotide sequence divergence and its standard error, d = SE, between pseudogenes and modern HCS gene. The standard errors were computed
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which is common for LINEI1-mediated retrotransposition
(Ostertag and Kazazian, 2001). In some of the following
discussions, the HCP47 sequence was merged into HCP46
to form a complete cyc pseudogene sequence.

Fig. 3 shows the sequence alignment of the 5 UTR
regions of 45 human cyc pseudogenes and the HCS mRNA;
the 5 flanking regions were also included for the pseudo-
genes. The four pseudogenes that are truncated near the 5’
end are not included in the alignment. The two downward
arrows mark the start of the HCS mRNA sequence and the
ATG translation initiation codon. As can be seen, most of
these pseudogenes have retained the nearly intact 5 UTR
sequence. This high degree of sequence preservation is a
little surprising, as it has been known that LINE1-mediated
reverse-transcription has a low efficiency and often leads to
5" truncation and thus incomplete insertion of mRNA
transcripts into the genome.

As outlined in bold in Fig. 3, three groups of the pseudo-
genes share almost identical 5’ flanking sequences. This
indicated that the pseudogene sequences within each group
arose from genomic duplications of an original pseudogene,
rather than from independent reverse-transcription events,
and that the sequences had, therefore, retained the flanking
sequence of the original pseudogene. The pseudogenes in
the first group (HSP10, HSP11, HSP12 and HSP13) were
located very close to each other on chromosome 3 (see
Table 1 and Fig. 1). This suggested an intra-chromosome
sequential duplication event. The two other groups (the first
consisting of HCP31 and HCP24 and the other consisting of
HCP32, HCP41 and HCP49) appeared to have resulted
from inter-chromosomal duplications. Such extensive seg-
mental duplications in the human genome have been
described recently (Bailey et al., 2002).

By screening human cDNA and genomic libraries, Evans
and Scarpulla (Evans and Scarpulla, 1988) previously
reported 11 human cyc pseudogenes, which were named
HCI-HC6, HS7, HCS, HC9, HCI0, and HS11. We were
able to unambiguously assign ten of these eleven sequences
to a single pseudogene in our pseudogene set as indicated in
the leftmost column on Table 1. The remaining one, HC3,
has identical to a pair of duplicated pseudogenes: HCP24
and HCP31. Therefore, in addition to the previously
reported 11, we discovered 37 new cyc pseudogenes in
the human genome.

3.2. Phylogenetic analysis

We were interested in tracing the origin of these cyc
pseudogenes and placing them into the context of evolution.
Fig. 4 shows the phylogenetic tree constructed by applying
the neighbor-joining (NJ) method (Saitou and Nei, 1987;
Nei and Kumar, 2000) to the protein-coding regions of
human cyc pseudogenes and the functional cyc genes from
human, rat, mouse, chicken and fruitfly. Rodents have two
cyc genes in their genomes: the somatically expressed genes
(CYCS_RAT, CYCS_MOUSE) and the testis-specific genes

(CYCT_RAT, CYCT_MOUSE). These testis-specific cyc
genes are only expressed during spermatogenesis (Virbasius
and Scarpulla, 1988). Compared with their somatic
counterparts, they have different exon structures and differ
at 14—15 amino acid positions. Fruitfly also has two cyc
genes, FLY DC4 and FLY_DC3, which differ at 32 amino
acid positions (Limbach and Wu, 1985); it was believed that
they diverged about 520 Myr (million years) ago (Wu et al.,
1986). FLY_DC4 has a much higher expression level in the
cell than FLY DC3, and was used to root the phylogenetic
tree.

As expected, the two fruitfly genes were clearly sepa-
rated from the vertebrate sequences. Also, the chicken gene
and the rodent testis-specific genes were placed close to
each other and distant from the mammalian somatic genes
and the majority of the human pseudogenes (except HCP9).
It was postulated that these tissue-specific cyc genes arose
from duplication of an ancestral cyc gene (Limbach and
Wu, 1985) and the estimated divergence time of these genes
from somatic genes was close to the divergence time of
birds and mammals (Mills, 1991).

Table 1 lists the nucleotide sequence divergences
between each cyc pseudogene and the modern HCS gene
calculated according to Kimura’s two-parameter model
(Kimura, 1980). Sequence divergence, or the number of
nucleotide substitutions between sequences, is a measure of
evolutionary distance between two sequences. In this case,
the divergence values were correlated with the ages of the
pseudogenes, i.e. the approximate time when each pseudo-
gene was inserted into the genome. It might be expected
that, on average, the older pseudogenes should have greater
divergence than the younger ones. However, special care
has to be taken in comparing divergence of pseudogenes, as
they contain not only the accumulated mutations in the
pseudogene sequences after they were inserted into the
genome, but also the sequence differences in the functional
genes from which they originated. It is rather tempting to
estimate the age of a pseudogene by simply dividing the
divergence by a constant nucleotide substitution rate.
However, we believe such a simplified calculation should
not be applied here for the cyc pseudogenes, as it assumes
that the pseudogenes all originated from the same ancestral
cyc gene and same mRNA transcript. As will be discussed
in Section 3.3, this is certainly not true for the cyc
pseudogenes.

3.3. Two classes of cyc pseudogenes

Based on a comparison of the pseudogene sequences
with the modern HCS gene and consensus mammalian cyc
sequence, Evans and Scarpulla (Evans and Scarpulla, 1988)
divided their 11 human cyc pseudogenes into two classes.
The predominant class of older pseudogenes (denoted as
‘class 2’, nine members) appeared to have originated from
an ancient progenitor of the cyc gene, and the remaining two
pseudogenes (class 1, HS7 and HSI1) were younger and
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HCS GGGGAGAGAGTGGGGACGTCCGGCTTCGGAGCGGGA---GTGTT-CGT-TGTGCCAGCGACTAAAAAGAGAATT-AAATATG
HCP21 TTACCAAAAAAAGTCAGTTAAAAGTTACAGAATTC. . C. . . . A.T. . c. . T... - .- . C. - A.-..C.. .. T. . . . . . PN
HCP15 GAAACCCCATCTCCACTAAAAATATAAAAACTA- - . . . . . . e AL e e e CL .= .. C. . -
HCP45 ATACACATTTGGATTTGGTTTAGAAAAATTTTT. T . . . . . AL --=-A.C. - .C-..C . G. -
HCP39 ATACCACCATTTCTCTAAAAAAAAGGGGAGATAC. . .. CL AL . . AL AL A ---ACC - A - . C A G [ Cc. -
HCP31 TGCAAATATATTTGACTATTAAATTATCTCTGTITTT. . . P . . . B .G. TA --=-ACC. - - . C A - -
HCP24 TGCAAATATATTTGACTATTAAATTATCTCTGTITTTv. L. . . . . .G. TA. ---ACC. - - . C A - - -
HCP22 GGTAGGAGGGGAAAACATTTAAAAATAGCTAA CA. T. ... =T . LT . A ---ACC. - A. - .CT. A A . T -
HCP1 TCCGTCTCAAAAAAAAAAAAAAATTGCCTTTAT. . - . . P LT A T T.---ACC. A- B - CA. T TG -
HCP6 TCTTCTTCCATCACTCCTTTAGAAAATGTTTGT. . C. G. . . L. A A . ---ACT - AL - CA. T TG . G-
HCP36 TTGTGATCTTAATATCTGATAAAAGATATGTATCT- . L. . . . B . AL AT. .. ---ACC - -..CC. TG c -
HCP16 GACAATGGAAAACAAAACATAAGAATCAGCAAT. CTT- - . . .- . AL AA. B T. TA.A.---ACC -T -G. CA. T AA T - c
HCP10 ACCAAAAGGACAAGCAACAACAACAAAAAAA-)-- . T. A. . . . P TT. B . T .T..C.--=-ACC - -G. CC G . - CA
HCP13 ACCAAAAGGACAAGCAACACAAGAAAACAAATIT. AT - T A. A . T .T..C.---ACC -T -G. C TG -
HCP12 ACCAAAAGGACAAGCAACACAAGAAAACAAATIT. AT - T DAL AL . T .T..C.--=-ACC - T -G. C TG . -
HCP11 ACCAAAAGGACAAGAAACACAAGAAAAAAAATIT. AT N T A. A LT .T..C.---ACC - . - G. . . TG c - T
HCP28 AAAGGTAGGTTAATGGATACAAAAAGTAGAGCT- A - T T A .CA. AT ---ACC - T -A.CA T A - A
HCP49 CAGTCGATGATAGATTGGATAAAGAAAATATGGTACIATA. .- - A G T. --=-ACC -T. - A. T.. TG G -
HCP41 CAGTCGATGATAGATTAGATAAAGAAAATATGGTACIATA ««==-C. - A T T ---ACC - T - A T TG G -
HCP32 CAGTCGATGATAGATTGGATAAAGAAAATATGGTACIATA. . . - - - =« - T. . L. .. T . --=-A.C -T. - A. L T TG G. . L - .
HCP33 TAAAGAAAATGTGGAACATAGAGCAGGACGTGT CTTCT C. A. A A.TT. TAG. GCC T.ACG--AAA. AG-A. . AA. T AG AT. T.G. G. T-=---G -G. GA. A
HCP34 AATGATAGATTGGATAATGAAAATGTGGTACATA A - A T Cc A.A. ---ACC - T - A TG G T. - C
HCP43 TAGATGATA---TGACTAAATGAATAGTATGTCA. A ) G. CA- T cc ---ACC - A.-A A.TA G . G
HCP29 TCCTTGAAGGAATTCATTTTTAGAAGTGTAATTTTCA. A Cc. - A A A A --=-ACC - -A.CA T TGG G - - -
HCP2 TC--TGCAGGACTTTTTTTTTTTTAAGCCACTGATTT. . B CA- T Cc A ---ACC - A.-AT T TG G - Cc
HCP17 CAATGAATTGTTAAGTGCTACCAATTACACAAA. -. . T. .. ACA- T LT . CA. T. ---ACC -T.C-A. A GA. TA G. C -
HCP20 ATATAGAATGTTCTTAACACAAAGAAATGAAAAAT. . . -4 CA- A. . T. T T. . TA ---ACC - AC- A. T A G - .
HCP40 TATACATACTGCATTTAAATAAAAAGTTAGAATAAA .. CA- AC. T T AT A.---ACC - - A A A G .- - C
HCP38 ATCAGAAATTTTATTTTAAAATTTATTAGAAATTT. - . .. CA- T..TT...C..T..AT. ---ACC. - A - AL B AT G G L -
HCP19 GCCCAACTTTTTTGTTGACTCGAAAAGAATATACA. AG=- = - . . e T AL AL T. .T.TC.---TCC. - A.-A.CA. A A A G .G -
HCP27 TTCCCAAAAAAAAAAAAAAAAAAAAAAAAAGTACACAG- - - . Cc. - T T ---ACC - c.-A.C A G -
HCP23 AAAGAGACCCCCTCTAAAAAAAAAAAAGGCATCCAA. GC- - . . Y- . A . T. ST AT . ---ACC. -TA. -A.CA A [ G o -
HCP26 ACACTTCAATGATCTAACTTCAGGAATACCTACT. AG c. - A T TA ---AGC. C- - AA A. TG G A -
HCP7 TTCCCATTTGAGATATTCTTTCAAGAATATCTCAA. A- - - - CA- A A T A ---ACC - A.-AA DAL LA G A - .
HCP44 TATTCTGTTATAGCAGCACAAAATTAAGTAAGACA T A. - A T Cc ---<ACCC. - A.-A.CC A G. - - - - [
HCPS CCGGGCATTCCAACACTAAGAGGTCAGGGAGATCTC cC- A T AA T ---ACC - T - A G A A G -
HCP25 TTCTATATGCTAGTGACAATTAGAAAGTGAAATTTAAG A - TA A ---ACC - B T G G -
HCP30 TATTGGGAGGTAAGTAAATTTAAGACATATTTA. ATT CA- T.C A.T T A. A. GAAACA - TA. CT T.TGC G - [}
HCP3 ATTTGTCACATTCCCCTCAAAATCCAGCTGGAGTCCTG - cT c C. T -=--AC - A.-A T.GTT TG. G. G- = = =« ~ - B B
HCP8 ACTATAAAGCTATGTAATCACAACAAGGTGCTATTAAGAGA CA---TTAG A CA ---A.C - AL -A TG T TA GG - T c. G
HCP37 CTCATTTATATCTAACAACACTATAAAGTAGACACT T CA- AT. C A A.C ---ACC B I A c T - A
HCP42 GGCAATGATACAGTGGCTGAAAACGTGTCT cT CA- A A. TGA .CACCA. . A.GCTTCTA. -T. CA CA-AT A.TG. C. G CA. - A A
HCP35 TACTCAGGAGGCTGAGGCAGGAGAATTGCTTGAACCTG. GAG. C A.GTTG. A. TGAA. C ATCAC---ACA G. ACTCTA T CGAC G C.C-C. TCTCA
HCP18 TGTTATAAAATAAACATAAAAAATCTATATCCA. TGAGC. GA. T T. . AT. GGGT. AGCA. . . === -« CTGAGT. GGAAC. TT. . TGAG. TGCTC. . GCAG-. GC. GA.
HCP14 ATTGTGAAATAATGTAAATTCAGCCTCTACTTCACAT. T. A GT. CAGA ACAGAA-AGCT. T-=-=---- CTAAATAC- - A TT.G.GTGGGTCTCT. . TACC T.G6.T
HCP9 TTCACTTCAGTCAAAATGATGGAATTCTTTTTTCTCCCCG. CTTT. . AAAT. TAA. AT-ATATATT- - - - - LT TG. T. . GTTTTA. TGTTCC. TT. C. GAGC Cc.

Fig. 3. Alignment of the 5 UTR and 5’ flanking regions of the 45 human cyc pseudogenes and the HCS mRNA. The two downward arrows mark the start of the HCS mRNA sequence and the ATG translation
initiation codon. The numbering system above the sequences is based on HCS mRNA transcript. For the 5’ UTR region (the region between the two arrows), a dot *” indicates a nucleotide identical to that in HCS
mRNA; dashes ‘—’ denote a gap in the alignment. The 5" flanking regions (to the left of the first arrow) of the duplicated pseudogenes are outlined in bold.
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originated from a gene similar to the present HCS gene. This
classification clearly accords with the phylogenetic tree
shown in Fig. 4, as the topology of the tree suggests that the
majority of human cyc pseudogenes were not direct
descendents of present-day HCS gene.

As we have obtained a comprehensive set of 49 cyc
pseudogenes (48 if HCP46 and HCP47 are considered as
one), which is considerably larger than the set of 11
pseudogenes previously analyzed. We wanted to test
whether the previous classification still held true. This
goal was best achieved by comparing sequences at the
informative codon positions where mutations had occurred
during recent evolution. Cyc is a highly conserved protein
among eukaryotes; the pair-wise amino acid sequence
identities range from 45% between mammals and yeast to
93.3% between chicken and mouse. An accelerated rate of
amino acid changes has occurred on the primate lineage
leading to the human ancestor, as there were amino acid
changes at nine positions since the split between Rattus
and Homo (Grossman et al., 2001). Among these positions
(11, 12, 15, 44, 46, 50, 58, 83, 89), none belongs to the
‘conservatively substituted’ category (Banci et al., 1999),
which suggests that they are probably not directly involved
in the electron-transfer process. Fig. 5 compares the human
pseudogenes and the functional genes from human, rodents
and chicken at these codon positions. For each position,
the sequences that have the same amino acid type as HCS
are shown in pink. Also, for eight of the nine positions, a
dominant amino acid type exists among the pseudogenes;
the positions that share this dominant amino acid type
are highlighted in light green. For position 44, both Val
and Ile are dominant amino acid types, so both are
highlighted.

It is obvious from the alignment that at all nine codon
positions, the majority of the human pseudogenes share an
amino acid type that is different with the HCS gene. Four
pseudogenes, HCP15, HCP21, HCP45 and HCP46, have
the highest sequence identity with HCS at these positions,
and they were selected and labeled as class 1 and the rest of
the pseudogenes were grouped into class 2. Note that we
used the same nomenclature as used by previous investi-
gators (Evans and Scarpulla, 1988; Grossman et al., 2001).

A more detailed look at these codon positions follows. At
position 11, 31 of the 48 human pseudogenes have residue
Val and codon GTT or GTC; in contrast, the HCS gene and
three class 1 pseudogenes (HCP15, HCP21 and HCP45)
have residue Ile and codon ATT. Interestingly, as in most of
the class 2 pseudogenes, the somatic rodent and chicken
genes also have Val and GTT/GTC at position 11. The same
pattern also occurs at positions 12, 15, 46, 50, 58 and 83,

where the majority of the class 2 pseudogenes share the
same amino acid type with rodent somatic genes, and the
class 1 pseudogenes share a different amino acid type with
the HCS gene. At position 44, there is no predominant
amino acid type among the pseudogenes, as Ile occurs 14
times and Val occurs 12 times; however, the HCS gene and
three class 1 pseudogenes (HCP15, HCP2 and HCP46) have
Pro at the position. This particular position has obviously
gone through very rapid changes in recent evolution, since
rodent somatic cyc genes have residue Ala at the position,
which occurred only six times among the pseudogenes. At
position 89, the predominant amino acid among the pseudo-
genes is Ala (occurring 24 times), which is different from
both human and rodent somatic genes: HCS and all class 1
pseudogenes have Glu and the rodent somatic genes have
Gly.

The sequence comparison shown in Fig. 5 strongly sup-
ports the notion that the human cyc pseudogenes originated
from a functional gene that had undergone significant
changes during the mammalian evolution. The four pseudo-
genes in class 1 appear to be from a gene that is identical to
the modern HCS gene, while the class 2 pseudogenes are
much older and have more resemblance to rodent somatic
genes. Although we divided the pseudogenes into two
classes, it is important to note that gene evolution was a
gradual process, and our classification in no way implies any
dramatic changes in the biochemical function and gene
structure. Our classification is in very good agreement with
the phylogenetic analysis, as the four class 1 pseudogenes
were found in a separate branch together with the HCS gene
at the top of the tree (Fig. 4). Furthermore, as shown in
Fig. 3, the 5 UTR sequences of HCP15, HCP21 and HCP45
also have the fewest number of substitutions compared with
HCS mRNA sequences. Given the conclusion that the four
class 1 pseudogenes and the modern HCS gene share the
same origin, it is possible to actually date these pseudogenes
based on their sequence divergence. Using the formula
T = D/(k), where D is the divergence and k is the mutation
rate per year per site, the ages for the pseudogenes were
estimated to be 27 £ 8 Myr for HCP15, 23 = 7 Myr for
HCP21, 34 = 9Myr for HCP45 and 31 £ 9 Myr for
HCP46. A mutation rate of 1.5 X 10”7 per site per year
for pseudogenes was used (Li, 1997). In comparison, the
divergence time of human from gibbons is believed to be
20 to 30 Myr ago (Lander et al., 2001). The much lower
number of pseudogenes in class 1 compared with the
number in class 2 is consistent with the observed decline of
retrotransposition activity during the last 40 Myr in the
human genome (Lander et al., 2001).

Fig. 4. Phylogenetic tree of the human cyc pseudogenes. The tree is constructed using the software MEGA?2 (Kumar et al., 2001) on the protein-coding regions,
and it is rooted by the fruitfly FLY DC4 gene sequence. (*HCP47 is merged into HCP46). Percentage bootstrap values (based on 1000 replications) supporting

each node are also indicated.
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11 12 15 44 46 50 58 83 89
I M 5 P Y A I vV E
HCS ATT ATG TCC CCT TAC GCC ATC GTC GAA
| M S P H A | \ E
(HS11 HCP15 ATT ATG TCC CCT CAC GCC ATC GTC GAA
| M S P Y A | \ E
(HS7 HCP21 ATT ATG TCC CCT TAC GCC ATC GTC GAA
| M S8 A Y V T VvV E
Class | HCP45 ATT ATG TCC GCT TAC GTT ACC GTC GAA
- - 8§ P Y A I v E
HCP46 TCC CCT TAT GCC ATT GTC GAA
v Q@ A V F D 1 A A
Class2 1 cpy GTT CAG GCC GTT TTC GAT ATC GCC GCA
v @ A T F D T A -
(HC6 ) HCP2 GTT CAG GCC ACT TTC GAT ACC GCC
F R 8 / F D | T T
HCP3 TTC AGA TCA CT TTC GAC ATC ACA ACA
- - AT / D T VvV A
HCP4 GCC ACT AT GAC ACC GTC GCA
v X Vv A F D | T A
HCP5 GTT TAG GTC GCT TTC GAC ATC ACT GCA
v o Q A I F D T A A
HCP6 GTT CAG GCC ATT TIC GAT ACC GCT GCA
vV @ A V F D T A A
HCP7 GTT CAG GCC GTT TIC GAC ACT GCC GCA
F T T I s D T T V
HCP8 TTC ACA ACC ATT TCC GAC ACC ACT GTA
I Q@ A P F E V¥V s S
HCP9 ATT CAG GCT CCA TTT GAG GTA TCT AGT
vV @ A Vv F D T A A
HCP10 GTT CAG GCC GIT TTC GAC ACC GCC GCA
v @ A T F D T A A
HCP11 GTT CAG GCC ACT TTC GAC ACC GCC GCA
v a A I F D T A A
HCP12 GTT CAG GCC ATT TTC GAC ACC GCC GCA
v o Q A I F D T A A
HCP13 GTT CAG GCC ATT TTC GAC ACC GCC GCA
F L \" P F D | | -
HCP14 TTT CTT GTC CCT TTT GAT ATT ATT
vV @ A R P - X
HCP16 GTT CAG GCC CGT ccCC TAG
I Q Vv I F D T F A
HCP17 ATT CAG GTC ATT TTC GAT ACC TTT GCA
v /| A P F Vv S
HCP18 GTC AG GCC CCC TIC GTT TCT
I Q@ A V L D T A
HCP19 ATT CAG GCC GTT TTA GAT ACC GCC
v o Q A I F D T G G
HCP20 GTT CAG GCC ATT TTC GAC ACC GGC GGA
v @ Vv VvV F D T A V
HCP22 GTT CAG GTC GTT TTC GAT ACC GCC GTA
v o oQ A I F E S A A
HCP23 GTT CAG GCC ATT TTC GAG TCC GCA GCA
vV Q@ A VvV F D T A A
(HC3) HCP24 GTT CAG GCC GTT TTC GAC ACC GCT GCA
v ooa A I F D T A A
(HC10) HCP25 GTT CAA GCC ATT TTC GAT ACC GCC GCA
vV Q@ A VvV F D T A A
HCP26 GTT CAG GCC GTT TTC GAC ACC GCT GCA
T E A I F D T A -
HCP27 ACT GAG GCC ATT TTC GAT ACC GCC
vV E ¥ A F D T T A
HCP28 GTT GAG GTC GCT TTC GAT ACC ACC GCA
v @ A V Y D T A A
HCP29 GTT CAG GCC GTT TAC GAC ACC GCC GCA
v aQ A - - D T A T
HCP30 GTT CAG GCA GAT ACC GCT ACA
v @ A V F D T A A
(HC3) HCP31 GTT CAG GCC GTT TTC GAC ACC GCT GCA
v aQ A I L E T A A
HCP32 GTT CAG GCC ATT TTA GAG ACC GCC GCA
v Q A I L D T s A
(HC4) HCP33 GTT CAG GCC ATT TTA GAC ACC TCC GCA
v Q A I F D T A A
HCP34 GTT CAG GCC ATT TTC GAT ACC GCC GCA
K K T A S E T A S
(HC8) HCP35 AAA AAA ACC GCT TCC GAG ACC GCT TCA
vV @ A A F D T A T
(HC5) HCP36 GTT CAG GCC GCT TTIC GAT ACG GCC ACA
A @ A V¥V F D A A V
HCP37 GCT CAG GCC GTT TTIC GAC GCC GCC GTA
v X A F F D T Y .
(HC2) HCP38 GTC TAG GCC TTT TTC GAC ACC TAT
v Q A I F D T A A
(HCT HCP39 GTT CAG GCC ATT TTC GAC ACC GCC GCA
v P A A F D T T
(HCT HCP40 GTT CCA GCC GCT TTC GAT ACC ACT
vV o oQ A I L E T
HCP41 GTT CAG GCC ATT TTA GAG ACC
vV @ § P F D A A
HCP42 GTT CAG AGC CCT TIC GAT GCC GCT
A Q@ A V F D N T A
HCP43 GCT CAA GCC GTT TIC GAT AAC ACT GCA
vV @ A V F D T s T
HCP44 GTT CAG GCC GTT TTIC GAT ACC TCC ACA
- - AT / D T A A
HCP48 GCC ACT AT GAC ACC GCC GCA
L Q@ A ] L E T A A
HCP49 CTT CAG GCC ATT TTA GAG ACC GCC GCA
vV Q@ A A F D T A G
CYCS MOUSE GTT CAG GCC GCT TTC GAT ACC GCT GGA
v Q A A F D T A G
CYCS RAT GTT CAA GCC GCT TTC GAT ACC GCT GGA
v aQ A P F D I A S
CYCT MOUSE GTT CAG GCT CCA TTT GAT ATC GCT AGT
I a A P F D I A S
CYCT RAT ATT CAG GCG CCA TTT GAT ATC GCT AGT
v @ 8§ E F D T A 8§
CHICKEN GTC CAG TCC GAG TTC GAT ACT GCG TCT
v @ A A F D T A N
FLY DC4 GTG CAG GCC GCC TTC GAC ACC GCC AAC
vV Q A A Y D T A E
FLY DC3 GTG CAG GCC GCG TAC GAT ACC GCA GAG

3.4. HCP9 resembles rat testis-specific cyc gene

As shown in Fig. 4, pseudogene HCP9 appears to be very
old, as it was placed near the root of the tree. This pseudo-
gene also has one of the largest sequence divergences from
the modern HCS gene at 0.473 = 0.071 per site per Myr
(Table 1). Furthermore, it is disrupted into three fragments
by two DNA insertions, both containing many retrotrans-
posons. As discussed earlier, it is difficult to calculate the
age of the pseudogenes based on sequence divergence;
however, in this case we could actually deduce a lower
boundary for the age of HCP9 by estimating the age of
the retrotransposons contained in the inserted sequences.
Using the RepeatMasker program (Smit, AFA & Green, P,
URL:http://repeatmasker.genome.washington.edu/), several
LTR sequences of MalR and ERVL types and several Alu
sequences of AluJo and AluJb types were identified. It has
been estimated that in the human genome, LTR/MalR and
LTR/ERVL species had died out about 40 Myr ago (Smit,
1993; Cordonnier et al., 1995). The AluJo and Alulb
sequences were ancient Alu species that were last active at
around 81 Myr ago (Mighell et al., 1997; Smit, 1999). These
facts indicated that HCP9 was inserted into the genome at
least 80 Myr ago, which was before the divergence between
human and prosimians (55-80 Myr) and after the estimated
time for eutherian mammalian radiation (~ 100 Myr)
(Lander et al., 2001). This particular pseudogene must
have been inherited from a mammalian ancestor long before
primate lineage emerged.

The phylogenetic tree also placed HCP9 on a separate
branch together with two testis-specific rodent genes. To
better understand the origin of this ancient cyc pseudogene,
we compared the nucleotide sequences between HCP9 and
the human and rodent cyc genes at the diagnostic codon
positions where the somatic and testis-specific rodent cyc
genes have different amino acids (Fig. 6). At ten of the
thirteen positions, HCP9 shares identical amino acid and
almost identical codons with the testis-specific rat cyc gene
(CYCT_RAT) rather than with the somatic rodent cyc genes.
Hence the result from sequence comparison was consistent
with what was inferred from the phylogenetic analysis: that
the human pseudogene HCP9 had a common origin with the
rodent testis-specific cyc genes.

The testis-specific cyc genes are found only in rat and

Fig. 5. Sequence alignment at nine codon positions of the human cyc
pseudogenes and the functional cyc genes from human, rodents and
chicken. For each codon position, the sequences that have the same amino
acid with the HCS gene are shown in pink; the sequences that share the
same amino acid with the majority of the human pseudogenes are shown in
green. The pseudogenes were divided into two classes based on their
sequence identity with the HCS gene. A blank at a codon position indicates
a missing sequence caused by truncation, and dashes ‘—’ indicate gaps
caused by DNA deletion. Frame shifts and stop codons are indicated by ‘/’,
‘\> and ‘X’. (*HCP47 sequence is merged into HCP46).
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Positions in HCS Sequence

[3]5]11]33]44]57[58]60]89]92]96]100[103]104]

HCP9
Decayed human cyc pseudogene

CYCS_RAT \Y;
Rat somatic cyc

CYCS_MOUSE vV K
Mouse somatic cyc

CYCT_MOUSE
Mouse testis cyc

CYCT_RAT
Rat testis cyc

K Vv . E G A A K N E
GTT AAA GTT CAT clag ATCRX GGA GCA GCT AAG AAT GAA

[( G A A K N E
C GCT ATC ACC (e} GGA GCA GCT AAG AAT GAG
HCS \%
Human somatic cyc gene GTT AAA AT CAT C T ATC ATC GGA GAA GCA GCT AAA AAT GAG
AJA | S S
GCTJGCA GTT G CC GTT ATC TCA AAG CAG TCC]TC
AlA [e] S S
GCT]GCA AT TGG| CC GTT ATC ACA AJCAA GAG TC

GTT AAA GTT CA

AlA I W] P 1 V]G Qywl]s|s
GCTIGCAJATT]TGGJCCAJATT|GTAJGGA AICAGJTGGITCTJTCA

A A K N E

Fig. 6. Sequence comparison between pseudogene HCP9 and the somatic and testis-specific cyc genes from rodents and human at selected codon positions. The
positions where HCP9 and the rodent testis-specific genes share an identical amino acid are highlighted.

mouse and possibly in bull and rabbit (Kim and Nolla,
1986), but not in human or other primates. It is likely that a
functional cyc gene similar to the modern rodent testis-
specific gene existed in the genome of an ancient mammal-
ian ancestor. While modern rodents have kept the functional
gene, humans only retained the pseudogene and lost the
functional copy. It has been reported that none of the rodent
cyc pseudogenes discovered so far originated from the
testis-specific genes (Wu et al., 1986), however, all of these
pseudogenes were discovered by genomic hybridization
experiments instead of by computationally scanning the
genome. As with the human genome, we expect many more
cyc pseudogenes, and possibly testis-specific cyc pseudo-
genes, to be discovered in the mouse after the complete
mouse genome sequence becomes available.

3.5. Online database

The pseudogene sequences described here have been
deposited to GenBank with accession numbers: AF533162—
AF533210. The data and results discussed in this report can
be accessed online at http://bioinfo.mbb.yale.edu/genome/
pseudogene/human-cyc/orhttp://pseudogene.org/.

4. Discussion

The 49 cyc pseudogenes we describe here present an
evolutionary record of the human cytochrome ¢ gene; our
findings strongly support the hypothesis that this gene has
evolved at a very rapid rate in the recent human lineage. The
sequence information we report here will not only aid
researchers to design better HCS-specific probes to avoid
pseudogene complications, but will also be very useful in
calibrating and estimating various evolutionary and phylo-
genetic models. The discovery of the common origin

between pseudogene HCP9 and the rodent testis-specific
cyc genes will also improve our understanding of the
relationship between gene expression and cell development.

Traditionally, most of the pseudogenes reported in
literature were discovered by screening a genomic library
using DNA hybridization techniques. As has been demon-
strated in this study and other reports, such experiments
often overlook the bulk of the pseudogene population. The
discovery of such a great number of cytochrome ¢ pseudo-
genes also raises the question as to the total number of
pseudogenes in the human genome; such an estimate is
important in the accurate prediction and annotation of
functional genes. Differentiation between functional genes
and disabled pseudogenes in genome annotation has proven
to be a challenging and difficult task. For instance, it was
suggested that in the Caenorhabditis elegans genome a fifth
of annotated genes could be pseudogenes (Mounsey et al.,
2002). With the advent of the complete human genome
sequence, a systematic and comprehensive survey of
pseudogenes is much needed, not only to provide better
functional gene annotation, but also to extend our under-
standing of the evolution of genes and genomes as a whole.
We also did a preliminary survey in the recently published
mouse draft genome sequence (Waterston et al., 2002) and
detected about 40 cytochrome c¢ processed pseudogenes.
However, the relative low quality of the mouse sequence did
not allow for detailed comparison between these two sets of
pseudogenes.
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