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Abstract

Microarrays have been used to identify genes involved in
cancer progression. We have now developed an algorithm that
identifies dysregulated pathways from multiple expression
array data sets without a priori definition of gene expression
thresholds. Integrative microarray analysis of pathways
(IMAP) was done using existing expression array data from
localized and metastatic prostate cancer. Comparison of
metastatic cancer and localized disease in multiple expression
array profiling studies using the IMAP approach yielded a list
of about 100 pathways that were significantly dysregulated
(P < 0.05) in prostate cancer metastasis. The pathway that
showed the most significant dysregulation, HIV-I NEF, was
validated at both the transcript level and the protein level by
quantitative PCR and immunohistochemical analysis, respec-
tively. Validation by unsupervised analysis on an independent
data set using the gene expression signature from the HIV-I NEF
pathway verified the accuracy of our method. Our results indi-
cate that this pathway is especially dysregulated in hormone-
refractory prostate cancer. [Cancer Res 2007;67(21):10296–303]

Introduction

Prostate cancer is the second leading cause of cancer-related
deaths in men after lung cancer (1). The mechanism of progression
from a clinically localized disease to metastatic cancer is not well
understood. Moreover, metastatic cancers inevitably become
unresponsive to androgen withdrawal therapies. A clearer under-
standing of the underlying mechanisms would benefit the design
of more effective clinical intervention strategies.

A popular approach in understanding the development of
various types of cancers has been through the employment of
genome-wide expression array analysis that has yielded a vast
amount of information about marker genes involved in disease
progression. The conventional method of analyzing microarray
data has been to systematically examine the pattern of regulation
of individual genes (up-regulation/down-regulation) and then to
study the most highly dysregulated genes in greater detail. This
approach has been useful both in dissecting the functionality of

various genes in cancer progression and in correlating gene
expression with clinical outcome (2–5).

However, focusing on individual genes in a microarray data set is
not the most efficient method for making use of the vast amount of
genome-wide information because only a few highly up-/down-
regulated candidate genes can be validated and studied in detail at
any given time. For instance, an expression array comparison
between benign and prostate cancer tissue yielded >1,000 genes
that were significantly up-regulated (corrected P value, Q value
<0.05; refs. 2, 6). Moreover, because proteins are known to function
in regulated networks or pathways, a bioinformatics approach that
would help identify the dynamics of these protein interactions
would substantially improve the analysis of microarray data.
Additionally, genes that are unaltered or minimally altered may
become significant in the context of a biological pathway. Hence,
such an approach would be useful in understanding the cross-talk
between pathways that confer upon cells and the transformed
phenotype and would maximize the information that can be
gleaned from genome-wide expression array data.

Recently, methods have been developed toward analysis of sets of
genes or pathways (7–13) from expression array data. Gene set
enrichment analysis (GSEA; ref. 9) ranks gene sets by assigning
scores according to their enrichment in a particular microarray data
set. Additional methods have been developed on the principles of
GSEA (7, 14, 15). Other ‘‘module’’-based approaches (sets of genes
that are biologically related; refs. 8, 10) require the definition of a
threshold in terms of fold change, or statistical significance, in
expression and, therefore, do not incorporate all the genes in the
identification of dysregulated gene sets or pathways. All the
methods described are focused on analyzing individual expression
array data sets. Even when multiple data sets are used, the results of
the pathways are computed separately for each study. We present
an alternate method, integrative microarray analysis of pathways
(IMAP), that allows for meta-analysis of multiple sets of microarray
data and can query multiple pathways simultaneously determining
the significance of each pathway. We used IMAP to study pathways
dysregulated in metastatic prostate cancer using the data from the
profiling studies available on the Oncomine database. We validated
our results using quantitative PCR (qPCR) and in situ protein
expression analysis in a prostate cancer tissue microarray.

Materials and Methods

IMAP. The data from multiple expression array studies was obtained

from the Oncomine database.8 We included expression array data from
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three different studies that were found to provide consistent information

when analyzed for similarity. To assess for consistency between the three

studies, Pearson correlation was computed pair-wise between the mean

values of common genes. The three studies showed significant positive pair-
wise correlation. The characteristics of the samples included in the three

data sets are presented in Supplementary Table S1. The pathways on

Biocarta9 (n = 315) and KEGG10 (n = 137) databases were used as pathway

references for the analysis.
Meta-analysis. P values were calculated for all genes within each data set

using the Mann-Whitney U test by comparing localized prostate cancer and

metastatic samples. The P values were then converted to Z scores by
mapping onto a standard normal curve. The sign of a gene’s Z score is then

defined to be positive if the median expression level within metastatic

samples is greater than that in the localized samples and negative otherwise.

For each gene, Z scores from across studies were combined using the
Liptak-Stouffer method (16) to obtain a single Z score (Fig. 1A). This

method for combining different studies requires computing a weighted

Z score for each gene:

Zcomb;g ¼
Pm
i¼1

wiZg;iffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

w2
i

s

where m is the number of studies, Zg,i is the Z score of the gene g in the i-th

study, and wi is the weight of the i-th study. The weights can be assigned

according to different criteria like the sample size, recent studies, etc. In the

analysis conducted, the criterion of sample size was selected to assign
weights.

Pathway analysis. The basic idea of our approach is to assign a score to

each pathway and to compute its significance. To begin with, a score sg is

assigned to every gene in the pathway P.

sg ¼ � logðpgÞ

where pg is the P value computed from the corresponding Zcomb,g . In this

case, a gene with a low P value will have a high score. The gene scores are

then summed up for all the genes constituting the pathway P, obtaining

therefore a pathway score S :

S ¼
X
g2P

sg

The significance of S was then computed by iteratively computing a

score S* on randomly sampled genes, following the above equation, and
counting the number of times S* is >S . One thousand random permutations

were done, and a P value for the pathway is therefore defined as this count

divided by 1,000.

Pathway validation on an independent data set. The Glinsky et al.
data set (5) was used for the validation of the HIV-I NEF pathway. This data

set includes 79 localized prostate cancer samples and 8 metastatic samples.

The cases are well annotated by Gleason grade and biochemical recurrence

(PSA recurrence following prostatectomy). Hierarchical clustering was done
using the dChip software.11 We used centroid linkage and correlation as

distance metric. The P value of the sample cluster is computed via the

hypergeometric distribution.
Tissue samples and tissue microarray. Four unmatched localized and

hormone-naı̈ve lymph node metastatic samples obtained from the radical

prostatectomy program (University of Ulm) were used for the validation

9 http://www.biocarta.com
10 http://www.genome.jp/kegg/pathway.html

Figure 1. Identification of dysregulated pathways by IMAP. A, meta-analysis of gene expression. P values are obtained via the Mann-Whitney U test. The P values
are then converted into corresponding Z scores, and these Z scores are combined using the Liptak-Stouffer method for each gene. A combined Z score is
used to assign a score for each pathway, and the significance of this score is computed by iterative random permutations. B, quantile-quantile plot of the genes
constituting the HIV-I NEF pathway and heat map depiction of gene expression. Red, overexpression; green, underexpression; white, missing data.

11 http://biosun1.harvard.edu/complab/dchip/
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studies by qPCR. A progression tissue microarray (TMA) was constructed

from benign prostatic tissues (n = 10), localized (n = 36), and metastatic

prostate cancer samples (18 hormone-naı̈ve metastases, 18 hormone-
refractory metastases). Each sample was represented by four TMA cores.

RNA extraction and cDNA synthesis. Frozen tissue blocks with at least

90% tumor were selected. The tissues were sectioned and grossly dissected to
enrich for tumor glands before RNA isolation. Six 10-Am sections were used

for RNA extraction. Total RNA was isolated using the Ribopure RNA isolation

kit (Ambion Inc.) according to the manufacturer’s instructions. The RNA was

reverse transcribed to generate first-strand cDNA using the TaqMan reverse
transcription kit (Applied Biosystems) with random hexamer priming.

Real-time qPCR. Prevalidated TaqMan gene expression assay probes
and primers (Applied Biosystems) were used for the validation of a set of

genes [nuclear factor of j light polypeptide gene enhancer in B cells 1

(NFKB1), nuclear factor of j light polypeptide gene enhancer in B cells

inhibitor a (NFKBIA/IKBa), BCL2-associated athanogene 4 (BAG4)/Silencer of
death domains (SODD), baculoviral IAP repeat-containing 2 (BIRC2/cIAP1),

caspase-7 (CASP7), TNF receptor-associated factor 1 (TRAF1), TNF receptor-

associated factor 2 (TRAF2)] from the pathway showing the highest

dysregulation (HIV-I NEF). Real-time PCR was done using Opticon monitor
2 (Bio-Rad Laboratories). Quantitation was carried out using the DDCT

method. Average expression of the localized prostate cancer cases was

considered for the calculation of fold changes. GraphPad Prism software

was used for plotting the data.
Immunohistochemistry. The antibodies used for immunohistochemis-

try were NFKB1 (Biolegend), NFKBIA/InBa (Cell Signaling), SODD/BAG4

(Oncogene Research products), TRAF1 (Santa Cruz Biotechnology), and
TRAF2 (Cell Signaling). Immunohistochemistry was done as described

earlier (17). Briefly, 6-Am sections were deparaffinized and treated with 10

mmol/L citrate buffer (pH, 6.0). Antigen retrieval was done by pressure

cooking. The following dilutions of the different antibodies were used:
SODD (1:100); InBa (1:50, overnight PC); TRAF1 (1:50, overnight PC); NFKB1

(1:50); and TRAF2 (1:50). The TMAs were evaluated using a semiautomated

quantitative image analysis system ACIS II (Chromavision Medical Systems

Inc.) that has been previously validated (18, 19). The areas for analysis were
selected by the study pathologist (J.-M.M). Cores/cases that were deemed

non-assessable by the pathologist were excluded from the analysis. The

results were exported and analyzed using the SPSS software.

Results

Pathway analysis. We used three data sets for this study (2, 20,
21). These studies used either the Affymetrix or the spotted cDNA

Table 1. Top 10 maximally dysregulated pathways
in prostate cancer metastasis as identified by IMAP
(P < 0.001)

Pathway Database Number of

genes

P

HIV-I NEF pathway Biocarta 51 <0.001

Cell cycle pathway Biocarta 23 <0.001

NFKB pathway Biocarta 20 <0.001
Rho pathway Biocarta 19 <0.001

MAPK signaling pathway Kegg 237 <0.001

Cell cycle Kegg 94 <0.001

TGF-h signaling pathway Kegg 78 <0.001
Integrin-mediated cell adhesion Kegg 79 <0.001

Regulation of actin cytoskeleton Kegg 178 <0.001

Cardiac EGF Pathway Biocarta 14 0.001

Figure 2. Real-time qPCR analysis of the HIV-I NEF pathway. Expression of all the selected genes (NFKB1/p50, IjBa/NFKBIA, SODD/BAG4, CASP7, TRAF1 ,
and TRAF2 ) was consistent with the microarray expression data. Green horizontal line, normalized expression equalized to 1. The results are representative of repeat
experiments.
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microarray platforms for the gene expression analysis. We used
the gene symbols to map the different genes across the platforms.
The data were downloaded from the Oncomine database. This
database provides preprocessed data sets, i.e., ‘‘all data are log-
transformed, median centered per array, and the SD is normalized
to 1.’’ The three data sets used contained benign samples,
localized prostate cancer, and a mixture of hormone-naı̈ve and
hormone-refractory metastatic samples. The Mann-Whitney U test
was used to score genes for being differentially expressed in
metastases compared with localized prostate cancers. The gene
lists obtained from each study were then merged as described in
Materials and Methods (Fig. 1A) to arrive at a meta-gene list. This
list was then used for pathway analysis. We found 104 pathways
significantly dysregulated in metastasis (P < 0.05). Table 1 shows
the top 10 dysregulated pathways, which include the cell cycle
pathway, the nuclear factor-nB (NF-nB) pathway, the mitogen-
activated protein kinase (MAPK) signaling, and the cell adhesion
pathways that have been implicated to play a role in the
development of prostate cancer (22). The pathway that was found
to be maximally altered was the HIV-I NEF pathway, which
comprises the tumor necrosis factor receptor (TNFR) and the fas

receptor signaling pathways (Fig. 1B). It was seen that the TNFR
arm was present in multiple pathways that were significant in the
analysis, indicative of its importance. The TNFR pathway involves
the activation of NF-nB heterodimer by TNFa and mediates cell
survival.
Validation of the HIV-I NEF pathway on the transcript level.

To validate the IMAP results, the expression of a few key genes in
the NF-nB pathway that were significantly dysregulated in all three
data sets was determined by real-time qPCR analysis using
unmatched localized (n = 4) and metastatic samples (n = 4). The
details of the regulation of the individual genes are shown in Fig. 2.
Agreement was seen in six of the seven validated genes. The
regulation of gene expression of the individual genes within the
pathway validated by qPCR is depicted in Fig. 3. The solid up and
down black arrows indicate the up- or down-regulation of gene
expression. The survival pathway mediated by NF-nB seems to be
up-regulated as seen by the increase in TRAF2 expression and
BIRC2 expression (data not shown).
Validation of the HIV-I NEF pathway at the protein level. We

further examined the in situ protein expression of the genes that
were consistently dysregulated by qPCR in a larger number of

Figure 3. HIV-I NEF pathway summary. Binding of TNFa to its receptor results in the activation of NF-nB following phosphorylation and dissociation of its inhibitor
NFKBIA . This process is mediated by adapters (TRADD, TRAF2, RIP ) that recruit the kinase signaling cascade, which is responsible for the phosphorylation of the InB
proteins. The microarray and the qPCR data revealed that although the expression of NFKB1 is low, the NF-nB dimer may be constitutively active because the
expression of NFKBIA is also down-regulated. This would thus lead to the overexpression of IAP like cIAP1 as seen from the expression array and qPCR data and an
increase in survival.
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samples using a progression TMA (Fig. 4). The TMA data showed
that NFKB1, NFKBIA/InBa, and TRAF1 were up-regulated in
localized prostate cancer and down-regulated in hormone-
refractory metastasis. The results with TRAF2 were not conclusive.
BAG4/SODD showed an increasing trend in expression from
benign tissues to hormone-naı̈ve metastasis, but was also down-
regulated in hormone-refractory metastasis (Supplementary
Fig. S1). Hence, it seems that this pathway is dysregulated
particularly in the hormone-refractory metastasis compared with
localized prostate cancer. In addition, increase in nuclear
localization of NFKB1 was seen in the metastatic samples,
indicating that although the levels of NFKB1 are decreased in

hormone-refractory metastasis, the protein present is transcrip-
tionally active, which could be mediated by low levels of InBa.

We further investigated the reciprocal behavior of the proteins
by evaluating protein ratios of NFKB1 and its inhibitor or target
proteins (NFKB1:InBa, NFKB1:TRAF1, NFKB1:TRAF2, and TRAF1:
TRAF2; Supplementary Fig. S2). We considered intraclass and
interclass expression heterogeneity. We found heterogeneity in the
protein expression among the samples belonging to each class. In
general, a large percentage of samples expressed low ratios of
proteins in benign tissues. The majority of samples expressed high
ratios of the proteins in hormone-naı̈ve metastases and localized
cancers. The hormone-refractory metastasis, on the other hand,

Figure 4. In situ analysis of protein expression. The protein expression of (A) NFKB1, (B) NFKBIA, (C ) TRAF1, and (D ) TRAF2 was determined by
immunohistochemistry (magnification, 20�). The proteins were seen to be dysregulated particularly in hormone-refractory metastasis. An increase in the nuclear
localization was observed for NFKB1 in metastatic samples. Brown boxed inset , magnification, 40�. PCa, prostate cancer; HNM, hormone naive metastasis;
HRM, hormone refractory metastasis.
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resembled the benign tissues. In the case of TRAF1:TRAF2 ratios, it
was seen that about 40% of hormone-refractory metastasis had
high TRAF2 levels, which indicates that the NF-nB pathway is
activated in hormone-refractory metastasis.
Validation on an independent data set. The gene signature

constituting the HIV-I NEF pathway was further validated on an
independent prostate cancer microarray data set (ref. 5; Fig. 5). The
Glinsky et al. (23) data set is well characterized and has been used
for other validation studies. By reducing the expression array
signature to the gene space including the gene signature in the HIV-
I NEF pathway and performing hierarchical clustering, the localized
prostate cancer segregated from metastatic samples. By further
reducing the gene space, it was seen that 26 genes were sufficient to
distinguish the two groups (data not shown). Principal component
analysis showed that the metastatic samples were clustered closely
with the samples that had biochemical recurrence (Supplementary

Fig. S3). Furthermore, these genes were able to significantly
distinguish the samples that did not recur (Supplementary Fig. S4).
Validation of additional top ranking pathways (Supplementary
Fig. S5) showed that the pathways identified by IMAP could distin-
guish the metastatic samples from localized prostate cancer.

Discussion

We have developed a method to carry out meta-analysis of altered
pathways from multiple micorarray data sets. In the current study,
we show how this approach can be used to identify critical pathways
in prostate cancer progression. Several other approaches have been
developed toward determining the regulation of molecular inter-
actions from microarray data sets. Some of these like the GSEA
depend on defining sets of genes and querying them on a single data
set (7, 9, 12–14), whereas others have focused on finding sets of genes

Figure 5. Validation of the HIV-I NEF pathway gene signature: Unsupervised clustering analysis of the Glinsky data set using the gene signature from the HIV-I
NEF pathway showed a clear separation of metastatic samples from the localized tumor samples. Red, overexpression; blue, down-regulation. The cluster identified by
the blue-colored dendrogram branch is enriched for metastases (P value < 0.00005).
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that are biologically related, e.g., "modules" that are "over-
represented" in the up- or down-regulated gene lists after defining
a threshold for fold change in expression (8, 10). IMAP differs from
these methods by allowing the combination of data from multiple
data sets, leading to the identification of significantly dysregulated
biological pathways without a priori definition of thresholds.
Hence, it takes into account genes that show a marginal variation
but become significant in the context of the pathway as a whole.
It is therefore possible to identify genes that were not previously
described in literature because of their apparent lack of association
with prostate cancer when considered individually. However, those
genes can function together in a pathway and become relevant for
disease progression. Pathways are identified as being dysregulated
instead of being overexpressed or underexpressed.

Using this strategy, we found several pathways as being dys-
regulated in metastatic prostate cancer, like NFKB, transforming
growth factor-h (TGFh) signaling, integrin signaling, and cell cycle
pathways, that have been previously implicated in prostate cancer
metastasis (22, 24, 25). The most significantly dysregulated pathway,
the NF-nB arm of the HIV-I NEF pathway (Fig. 3), consists of
activation of NF-nB by TNFa. The binding of TNFa to TNFR results
in the dissociation of the inhibitory protein SODD and recruitment
of the adapter protein TRADD. TRADD in turn binds to additional
adapter proteins, RIP1 and TRAF2, which leads to the recruitment
and activation of the IKK complex (26). This activation results
in the phosphorylation and dissociation of InBa from the NF-nB
heterodimer and subsequent nuclear translocation of the active
NF-nB heterodimer. Nuclear translocation results in the transcrip-
tion of the target survival pathway genes that include the TRAF
proteins and the inhibitors of apoptosis (IAP).

Validation by qPCR and immunohistochemistry showed this
pathway to be dysregulated especially in hormone-refractory
metastasis. The differences that we detected between localized
prostate cancer and hormone-naı̈ve metastasis on the transcript
(mRNA) level were not apparent at the protein level as detected by
immunohistochemistry. We have previously shown that transcript
and protein expression are discordant in 48% to 60% of cases (27).
These discrepancies may arise due to tissue heterogeneity. The
three microarray data sets used for IMAP included both hormone-
naı̈ve and hormone-refractory cases, and it has been reported that
the metastatic lesions are not homogeneous and differ between
individuals, sometimes within the same individual depending on
the site of occurrence (28). Our results showed that the percentage
of samples having a particular ratio of proteins varies within each
class (Supplementary Fig. S2). This further shows that the tissues
are heterogeneous with respect to protein expression. In situ
hybridization to probe for transcript expression in tissues could be
used on the TMAs to help confirm these results, but is not suitable
for high-throughput analysis as is immunohistochemistry. Because
the microarray pathway analysis identifies critical nodes in
prostate cancer progression, immunohistochemistry is the best
approach to translate the data into a clinically applicable test.

We found an increase in nuclear localization of NFKB1 in both
hormone-naı̈ve metastasis and hormone-refractory metastasis
consistent with other studies that have shown that NF-nB p65 is
localized in the nucleus and constitutively activated in cell lines
(29–33) and metastatic tissue samples (31, 33, 34). The down-
regulation of InBa may result in the constitutive activation of
NF-nB as reported by Tergaonkar et al. in the case of p65, where
depletion of the InB proteins led to constitutive activation, with a
fraction of NF-nB localized to the nucleus at the basal steady-state
level (35). The nuclear localization has also been reported to be
associated with increased invasion (36) and biochemical relapse
(37). Hormone-refractory metastasis are androgen-independent
tumors, and there have been some studies that have shown that
androgen receptor (AR) and NF-nB are inversely related (22), and
the loss of AR is accompanied by an increase in NF-nB activity.
Thus, the increase in the nuclear localization and activation of
NFKB1 in metastasis might allow for better survival. The analysis
also identified TRAF1, TRAF2, and SODD as being involved in
prostate cancer metastasis.

These results suggest that the NF-nB pathway is important for
the development and spread of prostate cancer, and that the low
levels of NFKB1 in hormone-refractory metastasis are active and
sufficient to sustain the survival of metastatic lesions. NFKB1 is
known to be autoregulated and is also regulated by members of the
ETS family (38), which have been recently shown to play a critical
role in prostate cancer (39). Further studies will be needed to
understand the mechanism underlying the down-regulation of
NFKB1 expression because this pathway seems to be important for
early development of prostate cancer and in advanced disease
(hormone-refractory metastasis).

In conclusion, we have developed a robust method for analyzing
pathways altered in prostate cancer metastasis using three
expression array data sets. The gene signature of the top
dysregulated pathway, HIV-I NEF, when validated on an indepen-
dent data set, was found to correctly classify all the metastatic
samples. The genes in the pathway were also able to distinguish
samples that had a good prognosis (i.e., no biochemical failure).
Although this method has been used on three microarray studies, it
can be extended to multiple expression array data sets. This study
sets the stage for further discovery of the basic mechanisms that
underlie a diseased state and would help in identifying critical
nodes in the pathway that can be targeted for diagnosis and
therapeutic intervention.
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