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ABSTRACT
Motivation:  Increases   in   microarray   feature   density   allow   the 
construction of so–called tiling microarrays. These arrays, or sets of 
arrays, contain probes targeting regions of sequenced genomes at 
regular   genomic   intervals.  The  unbiased  nature  of   this  approach 
allows   for   the   identification   of   novel   transcribed   sequences,   the 
localization of transcription factor binding sites (ChIP–chip), and high 
resolution  comparative  genomic  hybridization,  among other  uses. 
These   applications   are   quickly   growing   in   popularity   as   tiling 
microarrays become more affordable. To reach maximum utility, the 
tiling microarray platform needs be developed to the point that 1nt 
resolutions are achieved and that we have confidence in individual 
measurements taken at this fine of resolution. Any biases in tiling 
array signals must be systematically removed to achieve this goal.
Results: Towards this end, we investigated the importance of probe 
sequence   composition   on   the   efficacy   of   tiling   microarrays   for 
identifying novel transcription and transcription factor binding sites. 
We found that intensities are highly sequence dependent and can 
greatly influence results. We developed three metrics for assessing 
this   sequence   dependence   and   use   them   in   evaluating   existing 
sequence–based normalizations from the tiling microarray literature. 
In  addition,  we applied  three new  techniques   for  addressing   this 
problem;   one   method,   adapted   from   similar   work   on   GeneChip 
brand microarrays,  is based on modeling array signal as a  linear 
function   of   probe   sequence,   the   second   method   extends   this 
approach by iterative weighting and re–fitting of the model, and the 
third   technique   extrapolates   the   popular   quantile   normalization 
algorithm for between­array normalization to probe sequence space. 
These three methods perform favorably to existing strategies, based 
on the metrics defined here.
Availability: http://tiling.gersteinlab.org/sequence_effects/

1 INTRODUCTION
1.1 Motivation
Following  any  genome  sequencing  project  comes  the  desire  for 
identifying the functional elements therein (ENCODE Consortium, 
2004). These elements include, but are not limited to, protein coding 
regions,  regulatory  regions  and  methylation  sites.  In  addition  to 
defining functional elements, it is also of great interest to understand 
variability within the genome sequence itself. This variability may 
be present in mutation hot spots or in single nucleotide and copy 
number polymorphisms, for example. Luckily, the DNA microarray 
technology (Chee et al., 1996; Schena et al., 1995) has evolved be-

yond the targeting of known mRNA transcripts to the unbiased tar-
geting  of  any  genomic  target  with  the  advent  of  high  density 
genome tiling microarrays (Selinger  et al.,  2000). All of the post–
genome investigations listed here are enabled in a high–throughput 
fashion by the hybridization of labeled nucleic acids to this emerg-
ing microarray technology.

As reviewed in (Mockler et al., 2005) and (Johnson et al., 2005), 
tiling microarrays contain hundreds of thousands to millions of fea-
tures, each containing probes that target some short (~25–1,000nt) 
genomic region, or tile. Their construction involves either printing 
PCR products (Rinn et al., 2003), oligonucleotide inkjet deposition 

(Shoemaker et al., 2001), or photolithographic in situ synthesis on a 

solid substrate (Kapranov et al., 2002). This last construction yields 
the greatest feature densities and is therefore best suited to tiling 
even the very large human genome  (Bertone  et al.,  2004) and is 
therefore the focus of our study. A perfect tiling of a target genome 
contains  one  feature  representing  every  kmer  therein  but  current 
large–scale tiling designs typically leave short gaps (~5–50nt) be-
tween tile start positions to achieve greater coverage. Nevertheless, 
feature densities are ever–increasing (not unlike integrated circuits’ 
transistor densities) and we may soon witness the manufacture of a 
comprehensive  1nt  resolution  human  genome  tiling  microarray. 
Clearly, understanding the tiling microarray technology will become 
fundamental to our understanding of genome biology.

One challenge in developing the microarray platform to this level 
is that while genome tiling enables massively parallel experimenta-
tion, each individual experiment is not an optimized one. To clarify 
this  point,  each  of  these  experiments  relies  on  nucleic  acid  hy-
bridization  and  both  the  sensitivity  and  specificity  of  these  hy-
bridizations are highly sequence dependent. For a given microarray 
probe, there exists an ideal set of experimental conditions (deter-
mined largely by its nucleotide sequence) that maximizes its ability 
to form a duplex with its intended target relative to that of its non–
targets. Every microarray feature contains probes with a different 
nucleic acid sequence, so the hybridization conditions for a microar-
ray experiment are necessarily a compromise. The degree to which 
this compromise is detrimental can be lessened a great deal in gene–
centric microarrays by selecting each genes’ representative probe(s) 
such that its optimum target hybridization condition lies somewhere 
near the pre–selected conditions for the microarray experiment. This 
luxury disappears when we move to tiling microarrays since probe 
selection is more limited and goes to zero as tiling resolution ap-
proaches 1nt with greater feature densities. Therefore, other solu-
tions are needed. In the current work, we investigated the degree to 
which probe sequence-based normalization can alleviate this prob-
lem.
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1.2 Previous work
Affymetrix GeneChip brand microarrays are a popular platform for 
studying  genes’  mRNA  expression  levels  and  are  manufactured 
analogously to the tiling microarrays studied in this work (Lipshutz 
et al.,  1999). In the GeneChip platform, each assayed transcript is 
targeted by a probeset which consists of ~16-20 unique features. 
Each of these features contains probes that target the same transcript 
but the probes in any feature are not the same as those in any other 
feature. It was noted early on that features targeting the same tran-
script  can yield  signals  that  vary  by orders  of  magnitude  (Li  & 
Wong,  2001). When the arrays’ sequences became publicly avail-
able, it became clear that these differences were chiefly due to dif-
ferences  in  probe  nucleotide  composition  (Naef   &   Magnasco, 
2003). It is reasonable to expect that similar sequence effects are 
present within the results of tiling microarray hybridizations but the 
effect’s presence and prevalence has not yet been measured and doc-
umented. It is furthermore expected that the effects in tiling microar-
ray experiments will be similar, but not necessarily identical to those 
observed in GeneChips. Two reasons for this are that (1) the majori-
ty of tiling microarray features should not exhibit signal whereas the 
majority of gene-centric arrays’ features do, and (2) tiling microar-
ray experiments usually involve hybridization of labeled cDNA to 
the microarrays as opposed to labeled cRNA used in GeneChip ex-
periments.

The methodology initially adopted by Affymetrix for coping with 
sequence biases in their GeneChip platform involves the so–called 
mismatch probe control.  For  every feature  with  probes perfectly 
matching (PM) the target,  a mismatch (MM) feature is provided. 
Each MM feature has probes identical to its corresponding PM fea-
tures, save the middle nucleotide. The idea is that non–targets will 
bind to the MM features’ probes with affinities similar to those that 
they have for the paired PM features’ probes but that the affinity for 
the PM’s target  is  greatly reduced. Thus,  subtracting MM signal 
from PM signal theoretically yields the amount of observed PM sig-
nal due to target–specific binding.

The details of this solution have proven unsatisfactory  (Irizarry 
et al., 2003). Therefore, considerable effort has been put into devel-
oping Affymetrix GeneChip analysis methodologies that do not uti-
lize the MM features (this has the added benefit of requiring half the 
number of features to quantify transcript abundances). One general 
approach is to model a feature’s signal as the product of its target’s 
expression  level  and  a  feature-specific  ‘affinity’  (Irizarry  et   al., 
2003; Li & Wong, 2001). Given a number of independent array hy-
bridizations and multiple features in a probe set, the probe affinities 
and the transcript levels corresponding to each hybridization can be 
reliably obtained.

The discovery that features’ affinities for a transcript can be pre-
dicted by their probes’ sequences (Naef & Magnasco,  2003) moti-
vates models in which neither MM features nor multiple arrays are 
necessary to estimate target concentrations. In one model (Zhang et  
al.,  2003), a feature’s signal is decomposed into specific and non-
specific parts, each of which contains concentration and probe se-
quence–related parameters. The transcript concentration is specific 
to a probeset but the sequence parameters are universal to the whole 
array. Another model (Hekstra et al., 2003) of this type fits microar-
ray signals to a Langmuir adsorption model that has parameters es-
timable from probe sequence.

Practicalities  of  tiling  microarray  experiments  make  applying 
many of the aforementioned GeneChip methods difficult, if not im-
possible.  Using mismatch probes is straightforward to implement 
and has  been applied to tiling microarrays (eg  (Kapranov et  al., 

2002)). The downside to this approach is that tiling density and/or 
coverage must be sacrificed.  Methods which require hybridizations 
under multiple cellular conditions (Irizarry et al., 2003; Li & Wong, 
2001;  Wu & Irizarry,  2005) are not always practical either. Given 
the current expense of conducting whole genome tiling microarray 
experiments, typically just a singular condition is analyzed. In addi-
tion, to apply these methods or the method of  (Zhang et al., 2003) 
would  require analyzing multiple neighboring probes in a sliding 
window.  Sliding  windows are  currently  part  of  the  standard  ap-
proach for analyzing tiling arrays, but we would ideally like to move 
away from this resolution-decreasing technique and be able to ob-
tain reliable measurements at the resolution of a single tile. To this 
end, analysis techniques which estimate affinities based solely on 
sequence composition (Hekstra et al.,  2003)hold promise for tiling 
microarrays, but parameters of these models need to be estimated 
from spike-in datasets such as the Affymetrix latin square studies 
(www.affymetrix.com).  Parameters cannot  be taken directly from 
these GeneChip studies either, since the experiments (1) focus on 
hybridization  within  known  transcripts  primarily,  and  (2)  utilize 
cRNA spike-ins whereas most tiling array experiments make use of 
cDNA  targets.  The  differences  between  cRNA  and  cDNA  hy-
bridization are significant (Eklund et al., 2006). 

Currently, two methods for estimating sequence effects have been 
employed  in  the  tiling  array  literature,  besides  the  PM-MM ap-
proach. The first divides each feature’s signal by the median signal 
of  all  features  having  identical  GC  content  on  the  same  array 
(Samanta  et al.,  2006). The second uses control hybridizations of 
genomic DNA to estimate relative binding strengths. The latter ap-
proach is used extensively in ChIP-chip and aCGH applications and 
has been recently applied to transcript identification as well (David 
et al., 2006; Huber et al., 2006).

In addition to these two methods, we developed three sequence 
normalization techniques for tiling microarrays: one based on the 
GeneChip  analysis  of  (Naef  & Magnasco,  2003),  another  which 
extends their approach by iterative re–weighting and re–fitting of 
their model, and a third technique based on quantile normalization, 
which we extended to multivariate probe sequence space. Overall, 
we find that these corrections perform well at removing sequence 
biases based on metrics that we have defined. These corrections and 
metrics  are  useful  tools  for  studying  and  improving  the  tiling 
microarray platform.

2 METHODS
2.1 Definitions
Before proceeding, we explicitly define a few commonly used microarray 
terms as they are sometimes used differently elsewhere. We define a  mi-
croarray, or an array for brevity, as a substrate on which there are present 
numerous serially addressable features. Each feature contains many oligonu-
cleotide probes. Within a feature, these probes all have identical sequence. 
Hybridization occurs when a labeled nucleic acid population is introduced to 
a  microarray  and  allowed  to  seek  and  anneal  their  reverse–complement 
probes. Those labeled nucleic acids are called targets herein.

2.2 Microarray data
We utilized four microarray data sets, each briefly described below. Within 
each data set we first applied between–array quantile normalization (Bolstad 
et al.,  2003), removing any possible array–specific effects. Following nor-
malization, we selected a single array representative of each data set.  To 
achieve this, we first calculated pairwise correlation coefficients between all 
arrays in an experiment and then selected the array having the highest mini-
mum correlation with all other arrays.
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The  first  data  set  (Emanuelsson  et   al.,  2006) we  used  employs 
Affymetrix  tiling  microarrays  hybridized  with  cDNA reverse  transcribed 
from total RNA derived from human NB4 cells. This data set comprises four 
biological replicates, each replicated once, yielding eight arrays worth of da-
ta. The experiment’s microarray design calls for features having twenty–five 
nucleotide  probes  representing  genomic  sequences  that  are,  on  average, 
twenty–one genomic base pairs apart. For each PM feature, there is a paired 
MM control feature. The array design has 737,680 such feature pairs and in-
corporates one strand of non–repetitive sequence from the entire ENCODE 
region (ENCODE Consortium, 2004).

Second, we utilized microarray data (Emanuelsson et al., 2006) generat-
ed by hybridizing cDNA obtained via reverse transcribing NB4 total RNA to 
Nimblegen ENCODE tiling microarrays. These arrays contain 372,078 per-
fect–match  features,  each  containing  probes  thirty–six  nucleotides  long. 
Their design targets both strands of non–repetitive sequence from ENCODE 
regions ENm001 through ENm011 at an average density of one feature per 
thirty–six genomic bases. Within this data set are three biological replicates, 
each technically replicated once.

The third dataset  (David  et al.,  2006) we investigated uses Affymetrix 
tiling microarrays targeting the whole of the S. cerevisiae genome. These ar-
rays contain 3,276,800 feature pairs and were also used for transcript map-
ping. We focused here on polyadenylated transcripts. This is also the first 
transcript mapping experiment to include a control genomic hybridization.

To investigate our algorithms’ utility in another experimental system, we 
applied them to an Affymetrix ChIP–chip dataset which investigates Sp1 
binding across human chromosomes 21 and 22  (Cawley et al.,  2004). We 
used ‘chip C’ which examines binding within chromosome 22 and of which 
there are six replicates. Importantly, ChIP–chip data usually comes with a 
genomic control hybridization  (Horak et al.,  2002). This control is present 
here as well.

2.3 Quantification of position–specific sequence effects
Of practical use is a scalar metric that can quantify any sequence effects ob-
served in the previously described tiling datasets. Let  m be the size, in nu-
cleotides, of an array’s probes. For each nucleotide position k = 1 ... m, cal-
culate the Kruskal–Wallis statistic,

(1)

where N is the total number of features on the array, Cj,k is the number of fea-
tures having nucleotide  j at position k in their probes, and denotes the 

average rank of intensities from features having nucleotide j at probe posi-
tion  k.  The  scalar  metric  quantifying  position–specific  sequence  effects, 
which we denote here by γ, is then the average over Kk,

(2)

2.4 Assessment of tiling array performance
The scalar γ, by itself, does not suffice to quantify the quality of a data set 
with respect to sequence effects caused by ubiquitous background hybridiza-
tion. This is because both data with low ubiquitous hybridization and ran-
domized data would yield low γ values. Therefore, in addition to γ and in 
transcript detection experiments, we investigated the enrichment of features 
targeting known genes relative to features having identical GC content.

Specifically, each data set’s probe sequences were compared against the 
latest version of Refseq (using BLAT (Kent, 2002)) to identify those features 
perfectly  targeting  a  known transcript.  These  features’  GC content  were 
computed and used to select a set of non–Refseq ‘control’ features having 
probe–wise GC content identical to the Refseq features. The enrichment of 
both the Refseq and control features’ signals in the top of the entire signal 
distributions was investigated by simply computing the percentage of fea-
tures  observed  above  the  entire  distribution’s  median  intensity.  Values 
greater than 50% indicated enrichment. In the yeast transcription dataset, we 
first  identified  those  features  outside  of  known ORFs  and  then  sampled 

ORF–specific features with identical GC content. This modification was nec-
essary due to the high percentage of coding DNA in the yeast genome.

To understand performance of ChIP–chip at the individual feature level, 
we followed an analogous strategy. We first identified those features whose 
probes target known promoter sequences (500bp upstream of Refseq anno-
tated transcription start site). We also identified those features having probes 
with identical GC content as the promoter–targeting features. Enrichment in 
the ChIP–chip signal was then computed similarly as enrichment of known 
genes in the transcription experiments. We note that that within-promoter 
binding is a weak indicator of performance. This is required due to the pauci-
ty of known binding sites for any given transcription factor.

Theoretically, different tiling microarray platforms targeting the same re-
gions should yield similar results. This is not always the case (Emanuelsson 
et al.,  2006;  Johnson et al.,  2005). So, we decided to use platform concor-
dance between the Affymetrix and Nimblegen NB4 datasets as an additional 
tiling microarray quality metric. To do this, we used BLAT (Kent, 2002) to 
identify those features from the Affymetrix design having probe sequences 
that lie completely within a features probe sequences from the Nimblegen 
design. (Supplemental Figure 1). We isolated 40,729 such feature pairs be-
tween the two designs. We used the Spearman correlation coefficient  of 
these feature pairs’ signals to assess platform concordance at the feature lev-
el. Note that correlation is not an absolute indicator of concordance for tiling 
microarrays because the majority of the features are merely generating noise. 
Therefore, correlations will always be fairly low. However, an increase in 
platform correlation following a normalization step would still represent an 
increase in concordance because, presumably, at least one source of error has 
been removed.

To assess agreement at the gene level, we first identified those Refseq 
genes represented by both platforms. Then, the features from the Affymetrix 
design were isolated along with their  signal  intensities.  The signals  were 
summarized for each gene with the pseudomedian, a commonly used sum-
mary statistic in the tiling array literature (Kampa et al., 2004). Each gene’s 
pseudomedian was computed from the Nimblegen data as well and the corre-
lation of these pseudomedians was assessed with the Spearman correlation 
coefficient.

We realized that high correlation coefficients could be a GC content–relat-
ed effect. If high GC content leads to high intensities in both experiments 
(sequence–specific  ubiquitous  hybridization  is  present  in  both),  then  we 
might expect significant correlations simply due to the fact that feature pairs 
have similar GC content. Therefore, we performed the above concordance 
studies with feature pairs having the same GC content as the previously iden-
tified feature pairs but that do not necessarily overlap with one another or 
with known genes.

3 RESULTS
3.1 Ubiquitous hybridization on tiling arrays
It is known that microarray features targeting the same transcript can 
yield significant intensity differences in GeneChip experiments (Li 
& Wong, 2001). This phenomenon has been identified in tiling mi-

croarrays as well  (Royce  et al.,  2005) and would prevent accurate 
estimation of nucleic acid abundance at the desired single feature 
resolution. One hypothesis is that the differences are at least partly 
due to differences in features affinities for their bound target. It is 
widely believed that these affinities are sequence dependent. To in-
vestigate the sequence dependence of feature intensities,  we con-
structed position-specific quantile plots (Figure 1).

The  plots’  motivation  came from previous  work  where  linear 
models  are  fit  to  measured  intensities  with  position-specific  nu-
cleotide content as regressors (Naef & Magnasco, 2003). Instead of 
fitting a regression explicitly, we calculated the qth percentile of sig-
nal intensities for features having an A, C, G or a T at position k in 
their probes. This was done for each nucleotide position k = 1 ... m 
where m is the nucleotide length of each probe. These plots primari-
ly show that sequence effects are present in both of the tiling mi-
croarray platforms investigated. Such effects are known to occur in 
GeneChips where  cRNA constitutes  the  labeled target.  Here,  we 
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have demonstrated that such effects are also present when cDNA is 
used in place of cRNA. Interestingly, the effects are markedly dif-
ferent for the Affymetrix and Nimblegen experiments we studied. 
Specifically,  cytosines appear  to lend the largest  contributions to 
signal in the Nimblegen experiment whereas guanines have this role 
in the Affymetrix experiment. Most importantly, these plots demon-
strate  that the effects are present for the lowest–intensity features on 
these arrays. The implication of sequence effects being present at 
low intensities in H. sapiens transcriptional tiling array data is that 
non–specific, ubiquitous binding is present at every feature since we 
do not expect specific binding (due to transcription) to be present for 
the entirety of the human genome (Harrow et al., 2006). One strate-
gy that we investigated for removal of these biases is to perform a 
control hybridization of genomic DNA and use this data to normal-
ize the signal of interest. This is the common practice in ChIP-chip 
investigations and was recently applied in an S. cerevisiae transcript 
mapping experiment  (David  et  al.,  2006).  As we demonstrate in 
Figure 2 this approach may need some additional consideration, at 
least in ChIP-chip experiments.

3.2 Consequences of ubiquitous hybridization

Ubiquitous hybridization influences intensity distributions such that 
features with GC rich probes tend to have higher intensities than 
those with AT rich probes.  When we compared Refseq targeting 
features’ intensities to their array’s median intensity, we found that 
79% (Binomial test,  p < 10-15) and 68% (p < 10-15) are greater than 
the median intensity for the Affymetrix and Nimblegen experiments, 
respectively (Table 1). By themselves, these numbers are reassuring. 
However, when we did the same computation for control features, 
we still found significant enrichment, albeit a bit less. Sixty–eight 
percent of the Affymetrix GC control probes and sixty–four percent 
of the Nimblegen control probes exhibited intensities above their 
slide median. Clearly, GC content is a main determinant of signal 
intensity; much more so than the targeting of known genes. This 
point is illustrated in Figure 3.

3.3 Corrective algorithms
In this subsection, we present algorithms for removing the sequence 
effects identified above. Following the algorithms’ descriptions, we 
will  report  their  performance  with  respect  to  metrics  defined  in 
Methods.

One approach (Samanta et al., 2006) for dealing with these issues 
is to scale all of a microarray’s intensities by each feature’s GC con-
tent. To do this, all features must first be binned by their probes’ GC 
content.  Then, the median intensity is calculated within each GC 
bin. Finally, the features’ intensities can be divided by the median 
intensity of features having identical GC content.

While the GC scaling approach may remove some of the prob-
lematic sequence biases observed in tiling array data, it only uses a 
summary of sequence content (%GC) and does not incorporate posi-
tion–specific  effects.  To  incorporate  more  sequence  information, 
and to utilize knowledge of positional effects, we next adopted a 
model of background hybridization from the GeneChip literature in 
an attempt to more greatly reduce the observed sequence biases. 
This model is due to (Naef & Magnasco, 2003) and can be summa-
rized as

(3)

where indicates feature i’s predicted log intensity due to ubiqui-
tous hybridization,  denotes the mean logged intensity of fea-

tures having the same nucleotide as feature i’s probes at nucleotide 
index k, and is the overall average logged feature intensities. This 
model has been suggested for tiling array analysis independently in 
(Munch et al., 2006).

Another model for background hybridization on GeneChips 
(Zhang et al., 2003) could have been applied here. However, this 
model is much more difficult to fit, would require sliding window 
estimation, and has been shown to less accurately predict nonspecif-
ic hybridization in Affymetrix GeneChips (Wu & Irizarry, 2005).

We extended the algorithm for computing Naef’s affinities by fit-
ting the same multiple linear regression to probe sequence in a more 
robust way. Following the initial fit (Equation 3), we down–weight-
ed  those  features  disagreeing  with  the  model  (e.g.  exhibit  large 
residuals)  and  re–fit  the  regression.  This  process  of  fitting  and 
down–weighting was iterated until convergence as in the standard 
robust least squares regression model  (Beaton, A.E., Tukey. J.W., 
1974).

Formally, the procedure was to first predict logged signal intensi-
ty as a function of its m nucleotides following Equation 3. Once the 
predictions were computed, they were used to compute residuals,

(4)

where Si is the ith feature’s logged intensity. The residuals were 
used to compute feature–specific weights such that  features with 
high residuals receive low weight, 

(5)

where

(6)

C is a constant which controls the balance between iterations until 
convergence and overfitting. We set C to be six times the median of 
the residuals, following (Cleveland. W.S., 1979). Once weights were 
computed,  the  above  steps  were  iterated  until  the   converged. 
Residuals from the final fit were taken to be the procedure’s normal-
ized values, .

A  nonparametric  between–array  normalization  technique  for 
Affymetrix GeneChip data is the so–called quantile normalization 
(Bolstad et al., 2003). Briefly, this algorithm first computes a ‘meta–
array’ by calculating either the mean or median signal for each fea-
ture across all microarrays being normalized. The meta–array’s sig-
nal distribution is then used as the distribution for each array being 
normalized. This is achieved by replacing the signal of each feature 
having signal rank r with the signal having rank r within the meta–
array.  This nonparametric  approach performs between–array nor-
malization very well. In fact,  nonparametric methods,  in general, 
have been useful  for  microarray data analysis  due to  microarray 
data’s lack of reproducible distributional form and their abundant 
outliers. For these reasons, we sought to apply the concept of quan-
tile normalization to probe sequence space (Supplemental Figure 2).

However, to apply this technique to our task is non–trivial as our 
problem is a multivariate regression whereas the algorithm’s origi-
nal domain is inherently univariate. Our approach was to first force 
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the four distributions of signals coming from features having either 
an A, C, G or a T at nucleotide position 1 to be the same. Without 
loss of generality, we forced a uniform distribution between zero 
and one for each nucleotide group. The resulting normalized signals 
were stored as  where i indexes the ith array feature. The same 
computation was applied to each of the m positions, recording each 

, for  k = 1 ...  m. The element–wise mean over all  m vectors 

was then taken to be the normalized signal, . This procedure did 
not explicitly normalize for nucleotide composition over all posi-
tions simultaneously since the sequence bias is more or less severe 
for different positions (Figure 1) and we had simply taken the fea-
ture–wise mean of the m individual corrections. Therefore, we iter-
ated the previous procedure until convergence, setting the signals Si 

=   after each iteration. The effect is that at each iteration, the po-
sition with the strongest biases influenced the averaging more than 
the other positions. That is, the worst offending position will have 
the greatest influence on any iteration.

Formally stating the above procedure, we began by counting the 
number of probes Cj,k having nucleotide j = {A,C,G,T} at position k. 
This quantity was then used in computing the normalized rank inten-
sities relative to position k,

(7)

 
where j is the nucleotide at position k within feature is probes, and 
ri,j,k is the magnitude rank of Si relative to all other features having 
nucleotide  j at position  k.  The normalized intensity,  ,  was then 
computed as the average of over all positions k: 

(8)

This procedure was iterated until convergence.

3.4 Position specific effects
We quantified position–specific sequence effects following Equa-
tion 2. The results of these calculations are summarized in Table 1 
for  the  Affymetrix  and Nimblegen NB4 transcriptional  data.  For 
both  datasets,  multivariate  quantile  normalization  completely  re-
moved sequence biases as defined by Equation  2. Its performance 
was followed by corrections that used Naef’s affinities, robust least 
squares, and finally by GC scaling. Out of these corrections, and for 
the Affymetrix data, the quantile normalization was the only method 
that outperformed the standard PM-MM approach. We found similar 
results  in  the  ChIP–chip and yeast  transcriptional  data  (data  not 
shown).

3.5 Enrichment of Refseq Genes
As noted earlier, Equation 2 cannot be used as the sole determinant 
of tiling microarray performance with respect to their sequence bias-
es. It is also important to demonstrate biological significance. To do 
this for transcriptional data, we computed the percentage of Refseq–
targeting features’ signals appearing in the top half of their signal 
distributions. Since gene annotations can have their own sequence 
biases which can confound this analysis, we also computed enrich-
ment of features having identical GC content as the Refseq features. 
We provide these percentages in Table  2 for the Affymetrix and 
Nimblegen NB4 datasets. A generalization of this analysis is illus-
trated in Figure 4 where the percentages are plotted for one-hundred 
different evenly-spaced thresholds. In this figure, we have defined 

known positive features as those whose probes exactly match a Ref-
seq gene  and known negatives  as  features  whose  probes  do not 
match any of Refseq but have the same GC content as the known 
positives.

The GC–richness of Refseq is immediately apparent in the first 
line of Table 2. Seventy–eight and seventy–three percent of Refseq 
targeting  features  are  above  slide  median  intensities  in  the 
Affymetrix and Nimblegen experiments, respectively. However, the 
control features show very high enrichment as well. Clearly, correc-
tions  are  needed  and  the  ones  we  described  here  all  performed 
roughly equivalently at reducing the enrichment of control features 
while retaining enrichment of Refseq features. Interestingly, apply-
ing any of these corrections to yeast transcriptional data resulted in 
just minimal improvements over raw data and performed similarly 
to using a genomic DNA control hybridization as described in (Hu-
ber et al., 2006) (Supplemental Figure 3).

We found that sequence normalizations do have an effect on se-
lective  enrichment  of  promoter–targeting  features  in  ChIP–chip 
data,  however. Table  3 indicates that Naef affinities,  robust least 
squares, and multivariate quantile normalizations perform roughly 
equivalently at  enriching for known promoters while diminishing 
enrichment of our computed control features. This table also demon-
strates that utilizing the genomic control is important for ChIP–chip 
data and that its importance is enhanced by sequence normaliza-
tions.

3.6 Platform concordance
In performing the described sequence normalizations, it is important 
to achieve biological relevance but it also important to achieve plat-
form concordance.  Without platform concordance,  it  can become 
very difficult to reproduce other labs’ results and skepticism about 
the technology can justifiably arise (Johnson et al., 2005). We there-
fore performed two platform concordance analyses and summarized 
the results in Table 4. Probe–wise correlation between the two plat-
forms’ raw data was very low relative to GC content controls. The 
agreement  appeared  even  worse  when  we  compared  Affymetrix 
PM-MM to Nimblegen’s raw data. The disagreement is at least in 
part due to the low number of features exhibiting biological signal in 
these experiments. The degree to which this is causative of the low 
correlations is as yet unclear. 

When using Naef’s affinities to correct for sequence biases, we 
achieved the best  results with respect to platform concordance at 
both the probe and gene levels. Robust least squares and multivari-
ate  quantile normalization  performed nearly as  well,  with  robust 
least  squares  apparently  leaving  more  residual  correlation  in  the 
gene–wise control. This residual correlation was also seen when we 
applied Naef’s affinities or multivariate quantile normalization. 

A final observation is that gene–wise correlations are always bet-
ter than their probe–wise counterparts. This implicates the practical 
benefit of utilizing robust statistics within moving windows when 
scoring tiling array data  (Kampa et al.,  2004), although this tech-
nique reduces our effective resolution.

4 DISCUSSION AND CONCLUSIONS
We have introduced here the problem of sequence biases caused by 
ubiquitous  nonspecific  hybridization  in  tiling  microarray  experi-
ments. The effects were found to be strong and were much larger 
than the differences in intensity observed between Refseq targeting 
features’ and non–Refseq targeting features’ signals in Homo sapi-
ens transcript mapping experiments (Figure 3). Furthermore, the ef-
fects are different for different platforms and can confound the study 
of platform concordance – a serious problem if results between ex-
periments are to be integrated in downstream analyses. If the tiling 
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microarray technology is to eventually reach its goal of 1nt resolu-
tion these are issues that need to be resolved.

To this end, we investigated a number of approaches for mitigat-
ing the observed sequence biases. We found that these biases can be 
lessened by any of the methods employed. One method in particular, 
the  multivariate  quantile  normalization,  completely  removed  se-
quence effects present in tiling microarray data. Most importantly, 
the removal of these sequence biases did not come at the cost of re-
moving  biological  realities  from  the  data.  In  particular,  in  the 
Affymetrix system, we found that using approaches such as those 
presented here can allow for the removal of mismatch probes from 
the experimental design. In tiling microarrays, improvements in effi-
ciency such as these allow for greater regions of DNA sequence to 
be interrogated.  Benefits  were  found when we applied the  algo-
rithms to both transcript mapping and ChIP–chip data. The one sur-
prise was that the algorithms provided little benefit to a recently 
published S. cerevisiae transcript mapping experiment. This is possi-
bly due to the lessened complexity of the system being studied. With 
a  much smaller transcriptome,  there  are  fewer  sequences able  to 
bind to every probe. Therefore, the fraction of bound specific targets 
to bound off–targets at each feature is expected to be much higher 
than in the human transcript mapping experiments.

One of goals here was to improve the platform concordance be-
tween the Affymetrix and Nimblegen tiling microarray platforms. 
We have achieved this to some degree. After applying sequence nor-
malizations described here, signal correlations within known genes 
can  achieve  Spearman’s  ρ of  0.64.  However,  correlations  at  the 
probe level  remain very low (Spearman’s  ρ =  0.22) albeit  much 
higher than the correlation observed without any corrections (ρ   = 
0.07). One possible source for this remaining disagreement, which 
has  not  been  resolved,  is  the  use  of  different  probe  lengths 
(Affymetrix’ 25nt vs. Nimblegen’s 36nt probes in this study). An 
experiment in which 25mers are synthesized with the Nimblegen 
technology might be able to address this question. One other possi-
bility is differences in hybridization protocols which again could be 
targeted  by  a  Nimblegen  experiment  which  exactly  mimics  an 
Affymetrix  study,  using  25mers  and  following  Affymetrix  hy-
bridization protocols. These studies require additional experimenta-
tion. However, we have addressed here the role that sequence effects 
can have on platform concordance – one of several factors that must 
be systematically studied. 

The tiling microarray promises a wide spectrum of genome–scale 
experiments. For these experiments to be as useful as the genome 
sequences that enabled them, a deeper understanding of the technol-
ogy itself is needed. One aspect of this understanding is the behavior 
of ubiquitous hybridization which we have begun to address here. 
Moving forward, the algorithms we provide should help researchers 
in recovering biologically useful information from tiling microar-
rays – both from transcript mapping experiments, and from ChIP–
chip experiments.
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Affymetrix NB4 Nimblegen NB4

No Correction 33465.07 14959.68

PM-MM 469.81 NA

GC Scaling 73230.20 9319.38

Robust Least Squares 880.08 301.82

Naef & Magnasco, Munch 595.10 44.63

Quantile Normalization < 0.00 < 0.00
Table 1: γ was calculated for array data following each of the normalization methods employed.  The PM-MM correction is not applicable for 
Nimblegen data as this platform provides no MM probes.
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Affymetrix Nimblegen
Refseq Control Refseq Control

No Correction 78.0% 68.4% 72.9% 64.8%
PM-MM 64.1% 51.0% NA NA

GC Scaling 61.7% 48.4% 59.9% 49.4%
Robust Least Squares 66.0% 53.2% 56.9% 50.9%

Naef & Magnasco, Munch 63.4% 49.7% 56.5% 50.6%
Quantile Normalization 63.2% 49.8% 56.4% 50.3%

Table 2: Percentage of features exhibiting signals greater than their distributions’ median signal. PM-MM is not applicable for Nimblegen data 
because no MM probes are present in the array design.
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Sp1 Channel Log(Sp1/Genomic)
Promoters Control Promoters Control

No Correction 73.0% 67.8% 73.4% 56.7%
PM-MM 61.5% 53.8% 67.8% 50.6%

GC Scaling 59.6% 54.2% 66.2% 47.5%
Robust Least Squares 53.7% 48.7% 72.9% 56.0%

Naef & Magnasco, Munch 54.4% 48.8% 71.9% 53.9%
Quantile Normalization 54.8% 49.4% 72.2% 53.0%

Table 3: Percentage of features exhibiting signals greater than their distributions’ median log ratio. The two left–hand columns refer to Sp1 
ChIP data. The right–hand columns are with respect to logged Sp1/genomic ratios. For the ratios, PM-MM includes only those features for 
which PM-MM is positive in both channels and is applied to the signals before taking the log ratio. All other normalizations are performed on  
the log ratio directly.
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Probe-Wise Gene-Wise
Matching Control Matching Control

No Correction 0.49 0.42 0.69 0.74
PM-MM 0.07 0.03 0.39 0.08

GC Scaling 0.11 -0.01 0.46 0.03
Robust Least Squares 0.22 0.01 0.64 0.19

Naef & Magnasco, Munch 0.22 0.01 0.64 0.11
Quantile Normalization 0.19 -0.01 0.64 0.10

Table 4: Correlation coefficients were computed between signals from features targeting identical sequences (first column) and between sig-
nals from feature pairs having identical GC content as the original pairs but otherwise having no significant sequence similarity (second col-
umn). The pseudomedian of signals from features targeting the same gene were computed for each platform and presented under the Gene-
Wise column header. Specifically, a correlation coefficient was calculated between genes’ pseudomedians for genes represented in both array 
designs (third column). Features with identical GC content to these were then substituted into the pseudomedian calculation and correlation 
coefficients were again computed (fourth column). All coefficients are Spearman’s ρ.
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Figure 1: Position-specific quantile plots for Affymetrix and Nimblegen NB4 transcription data.  On each x-axis are nucleotide 
indices.  The y-axes are signal intensities.  In a given plot, the qth percentile is computed for probes having an A, C, G or T at 
each nucleotide position.  These percentiles are plotted for q=0.5, q=0.25 and q=0.01.
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Figure 2: Position–specific quantile plots for Affymetrix ChIP–chip data.
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Figure 3: Probes targeting Refseq genes were binned by their GC content. The log of the median signal intensity was computed for each GC 
bin and plotted. Probes having identical GC content to the Refseq probes were isolated and plotted in the same fashion. The series labeled 
with Rs represents the Refseq probes while the series labeled with Cs represents control probes. Results for Affymetrix and Nimblegen NB4 
transcription experiments are plotted.
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Figure 4: Sensitivity versus specificity plots for Affymetrix and Nimblegen tiling array data at the probe level. Known positives are taken to 
be features whose probes exactly match a Refseq sequence.  Known negatives are features with the same GC content as the known positives 
but do not match a Refseq gene. For each normalization method, positives and negatives are obtained by simple thresholding. Sensitivity is 
the number of known positives with signals above a set threshold divided by the total number of known positives. Specificity is number of 
known negatives below the threshold divided by the total number of known negatives.
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