Responses to Referees

Spectral biclustering of microarray cancer data: co-clustering genes and conditions 

Yuval Kluger, Ronen Basri*, Mark Gerstein

Enclosed is the revised manuscript Spectral biclustering of microarray cancer data: co-clustering genes and conditions which has submitted to Genome Research. We would like to thank the referees for their detailed comments. We have addressed each point and modified the text to accommodate the reviewers’ comments. We would like to note that during the revision process we were assisted by Joseph Chang, and we felt that it would be appropriate to include him as a coauthor. 

We apologize for the delay in returning the manuscript.

We attach a detailed response letter to the reviewers’ comments.

Sincerely,

Yuval Kluger
1.  General Comments

	Comments:

Your manuscript entitled, "Spectral biclustering of microarray cancer data: 

co-clustering genes and conditions," has been reviewed.  Please visit 

http://submit.genome.org to view the referees' comments. (If this is your 

first time accessing the site, please see the instructions at the end of this 

letter.)

As you will see, the referees found the work of interest to our readership, 

but they did raise some points that need to be addressed before the work 

would be suitable for publication. Given that you can make these changes 

to the manuscript, we will be happy to accept your manuscript in principle 

for publication in Genome Research.  Please read carefully through all the 

referees' comments and address each point.



	Authors’ Response

We would like to thank the referees for their detailed comments. We have addressed each point and modified the text to accommodate the reviewers comments. 


Reviewer I

	Reviewers Comments:

1.  In the introduction, the Bayesian approaches to microarray data analysis deserve mention, especially in the context of genetic network models. 


	Authors’ Response 

We have added a short description of the commonly used approaches for modeling genetic networks.

	Changes in Text:

Figure 1 Caption:

A partial list of methods include: (i) data preprocessing (background elimination, identification of differentially expressed genes, and careful normalization); (ii) unsupervised clustering and visualization methods (hierarchical, SOM (Tamayo et al. 1999), k-means, and SVD); (iii) supervised machine learning methods for classification based on prior knowledge (discriminant analysis, support-vector machines (Brown et al. 2000), decision trees, neural networks, and k-nearest neighbors); and (iv) more ambitious genetic network models (requiring vast amounts of data) that are designed to discover biological pathways using, e.g., pairwise interactions, continuous or Boolean networks based on a system of coupled differential equations and probabilistic graph modeling  using Bayesian networks, e.g. [Friedman].



	Reviewers Comments:

2.    In Figure 1, it would be helpful if the numeric matrix A corresponded to the colored matrix on the left, and that the actual numeric singular vectors were used instead of x and y. Otherwise the example results a little confusing. 



	Authors’ Response 
We have modified the figure to clarify the example. In particular, we changed the order of the sub-figures, we omitted the reference to ‘A’ in the bottom figure, and added pointers to the caption. The numeric example is made to show the role of eigenvectors in partitioning the data without obscuring it by rescaling or noise, whereas the colored raw data matrix illustrates the more realistic case which involves rescaling and noise.


	Reviewers Comments:

3. The bi-clustering and bi-stochastic methods necessitate that the matrix A has positive entries. (By the way, it would be useful to emphasize this early on, not just in the conclusions.) Some of the data used in the ms (e.g. Klein et al., Pomeroy et al., etc) was processed using the MAS 4.0 Affymetrix software, which yields a considerable number of negative entries for A. What did the authors do with the negative entries? Were they clipped-off? At what value? This could be clarified in the data processing section. 
 

	Authors’ Response 
We have added a sentence that clarifies the assumption that the data is non-negative to the introduction.

	Change in Text:

The methodology we will construct will apply equally well in both contexts. However, for clarity in what follows, we will assume that the values Aij in the matrix represent absolute levels and that all entries are non-negative (in our numerical experiments we removed genes that did not satisfy this criterion)


	Reviewers Comments:

4. In the data normalization section in Technical Background, a line or two on the current normalization methods may be added for the sake of completeness. 



	Authors’ Response 
We have added a sentence describing the current normalization methods to the technical background section

	Change in Text

For instance, Eisen et al.(1998) prescribes the following series of operations; apply log to the expression data, then perform 5-10 cycles of subtracting either the mean or the median of the rows (genes) and columns (conditions) followed by 5-10 cycles of row-column normalization. Getz et al.(2000) first rescale the columns by their means and then standardize the rows of the rescaled matrix.


	Reviewers Comments:

             5.   In the “Independent Rescaling and Conditions Section”, second paragraph, last sentence, it is suggested that the effect of averaging each gene over the conditions of the same type increases the correlation. While this may very well be the case, it should also be noticed that even for k-dimensional vectors of random entries, the distribution of correlations depends very much on the dimension k. For example, for k=40, the probability of finding genes expressing above correlation values of 0.75 is excruciatingly small, but for k=3, this probability is 0.25.

	Authors’ Response 

The referee is of course right that the probability of finding high correlation between random vectors of low dimension is higher than that of random vectors of high dimension. However, if those low dimensional vectors are averages obtained from block-structured matrices the overall distribution of correlations is sharply skewed toward the high correlation values. To demonstrate this we show below (see URL below) simulations in which we take a 30x40 noisy block structured matrix (with 3x4 blocks) and a random matrix of the same size. 

http://bioinfo.mbb.yale.edu/~kluger/figs_for_reviewers/Fig1_for_reviewers.pdf
Typical histograms of correlations of the original matrices and their averages are shown below. Both histograms of the noisy block-structured matrix (top left) and the random matrix (bottom left) are bell-shaped, whereas the histogram obtained for the block averages of the noisy block-structured matrix show a clear peak of correlations between 0.8-1 (top right), and the histogram obtained for similar averages of the random matrix is fairly uniform. In this example the ratio of entropies of the correlation histogram of the block data to that of the random data is about 1, while after averaging the ratio of entropies decreases to 0.9 implying more order in the averaged block data relative to the random data. 
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	Change in Text:

Following this comment we modified “correlations between the five-dimensional vectors of these genes become significantly higher” to “the partition of the genes based on correlation between the five-dimensional vectors is more apparent”.



	Reviewers Comments: 

6. A comment on the normalization of chips. Typical normalizations of chips in the preprocessing steps render the sum of all the genes in a chip almost identical for all chips in all the conditions. For example, in Klein et al. data, the sum of the chips for CLL, FL and DLCL (and even if we included the normal B-cells N, M, CC, and CB) is almost the same, with a coefficient of variation of around 0.05. In other words, typically the matrix C is “almost” scalar, i.e., proportional to the identity matrix. Thus the column normalizations done in the examples, while rigorous in general, may be ineffectual in reality.


	Authors’ Response 

 This is true in some of the available datasets, but in some of the datasets we examined the variation in the column sum exceeded 0.15. In addition, column normalization is required in the formation of a doubly-stochastic-like matrix since the normalization of the rows alters the column sums.


	Reviewers Comments: 

  7. In the “Independent Rescaling and Conditions” section, fourth paragraph, the text could be interpreted as to imply that in the relation v=R-1Au, v is a gene classification vector only if u is a condition classification vector. In truth, if A has the assumed block structure, v is an estimate of a gene classification vector regardless of the nature of u. The same is valid for the relation  u=R-1Av, in the fifth paragraph of the same section. 


	Authors’ Response 

Indeed if the data has a strict block structure then v will be a classification vector for any choice of u, although this may not work as well for realistic, noisy datasets. However, our purpose in this discussion is to show that the block structure leads to an eigenvalue problem, and this requires that u will be a classification vector as well. We modified the text of the paragraph to emphasize this point.

 

	Change in Text

 (We modified “This can be formulated as follows” to “This will lead to an eigenvalue problem, as is shown next”).


	Reviewers Comments: 

8. Also in the fifth paragraph, it is stated that the rank of M1 is at least min(r,c). I believe the right statement should be that the rank of M1 is at most min(r,c). Also, r and c should be defined in the same sentence. (Indeed c is defined in the following sentence, but r –which from the context can be inferred to be the number of gene classes- is not defined.).


	Authors’ Response 

 The rank is exactly min(r,c) if the blocks are linearly independent, and in general, due to noise, the rank would be higher. We added these notes to the paragraph. In addition, we now define r and c in the same sentence. 



	Change in Text

 Moreover, assuming E has linear independent blocks, its rank is at least min(r,c), where r denotes the number of gene classes and c denotes the number of experimental condition classes. (In general the rank would be higher due to noise.)


	Reviewers Comments: 

9.  In the “Post-processing the eigenvectors to find partitions” section, it is not completely clear how the k-means is applied to the data. Are the authors applying the k-means algorithm to the entries of the eigenvectors, or is the choosing of the piece-wise function done exploring the n choose j possibilities (for j+1 partitions)? If the latter is the case, for the 10,000 genes this seems computationally prohibitive. Also, how many partitions do the author choose? In principle, for unsupervised clustering, the number of partitions should be discovered. For example, if the k-means algorithm is used, how would the authors choose the k? Also in this context: Is the best eigenvector chosen to be the one with the best goodness of fit to the piece-wise constant vector? By the way, it seems reasonable that the largest (but smaller than one) eigenvalue corresponds to best partition, as this is the one that explains most of the variance, indicating that the spread of the data is maximal, giving in this sense a better chance to the classes to segregate along the largest possible range.



	Authors’ Response 

 Partitioning a single eigenvector to k clusters can be done optimally by an exhaustive search of n choose k possible thresholds. Applying an iterative, k means algorithm is indeed more efficient, but provides only an approximate solution. In practice, to reduce complexity we looked for a partition of the columns (patients), in which case n was less than 100, and so we could apply exhaustive search. Note that the existence of blocks imply that the patients can be partitioned, and so by checking first the patients we do not overlook a bi-clustering solution. The problem of selecting a proper value of k is in general difficult. In our experiments, since we expected to have only a few classes of patients, we examined a few values of k. We would like to add that projecting the data into the leading eigenvectors can also be considered a visualization tool that often allows one to manually determine k. Finally, as we mention in the manuscript, the leading eigenvectors (except the first) often yield the desired partition. However, in some cases other eigenvectors indicate the partition, and those eigenvectors can be discovered using goodness of fit.


	Reviewers Comments: 

10. It may be conceivable that the best class eigenvector is not the best gene eigenvector and vice versa. What prescription to choose the best eigenvectors should be followed in this case?



	Authors’ Response 

 In principle, one can discover such eigenvectors using the same methods outlined in our response to the previous question. However, this situation does not imply the existence of blocks in the data.


	Reviewers Comments: 

11. It is mentioned in the ms that the k-means algorithm is applied to the data projected on the same eigenvectors. How is k-chosen? Again, for an unsupervised method, k should not be take to be the number of known classes in the data, but a criterion to find k should be discussed.


	Authors’ Response 

 As we mentioned in our response to question #9, the problem of selecting a proper value of k is in general difficult. In our experiments we examined a few values for k. Rough estimates for k are: a) the number of step-like eigenvectors that have high mutual information b) the number of apparent steps in the best partitioning vectors among the leading eigenvectors.




	Reviewers Comments: 

12. Even though the idea of finding the best piece-wise constant eigenvector, the Figures 3 and 5 suggest that the eigenvectors are not really piece-wise constant always. Or are they?



	Authors’ Response 

 Indeed the eigenvectors are not always piecewise constant. Nevertheless, in figures 3 and 5 the two dominant eigenvectors provide a useful (although imperfect) partition of the data.




	Reviewers Comments: 

13.  It is clear that at least for Figures 4 and 6, the condition eigenvectors are very much step-like. There are also plots of bi-clustering obtained using the sorted second gene and condition eigenvectors corresponding to the second eigenvalue (Figs. 2 and 8). But there is no figure showing that the two most-step-like gene vectors result in a biologically meaningful partitioning of the genes. It would be useful to include that in or making a note if no meaningful partitioning of genes can be achieved. 

  

	Authors’ Response 

 We are collaborating with cancer researchers to better understand the meaning of these gene clusters. One problem that arises is that, since there are many genes whose expression level is recorded in the microarray and not all of them are involved in the pathways relevant to the tested conditions, the level of noise in the blocks is relatively high. We have therefore applied an ANOVA test to separate the most relevant genes in figure 6. Projecting the expression levels of these genes to the second eigenvector reveals a clear division to blocks, as can be seen in the following figure

http://bioinfo.mbb.yale.edu/~kluger/figs_for_reviewers/Fig2_for_reviewers.pdf
The figure clearly indicates the relevance of these genes to the respective conditions.

Regarding the meaningfulness of the partitioning of the genes: the microarray used was a mouse array, that  included numerous expressed sequence tags. The function of these expressed sequence tags is yet unknown. Nonetheless, there are genes with expression patterns consistent with findings of other researchers. For example: Tissue Inhibitor of Metalloproteinase 2 (TIMP2) and Mitogen Activated Protein Kinase Phosphatase (MKP-1) clearly cluster together in the figure below. Levels of both of these genes are expected to be lower with tumor invasion. Conversely, tumor associated calcium signal transducer 2 is known to be up-regulated in invasive cancers, and does not cluster together with these genes, as can be seen in the figure.

We also augmented figure 8 with clear demonstration of the partitioning information encoded in the eigen-arrays and eign-genes.
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	Change in Text

 We have added the note that “Further exploration is required in order to relate those gene clusters to biological pathways that are relevant to these conditions.” 

We also augmented figure 8 with clear demonstration of the partitioning information encoded in the eigen-arrays and eign-genes

Figure 8 Optimal array partitioning obtained by the 1st singular vectors of the log-interaction matrix. The data consists of eight measurements of mRNA ratios for three pair of cell types: (A,a) benign breast cells and the wild-type cells transfected with the CSF1R oncogene causing them to invade and metastatize; (C,c) cells transfected with a mutated oncogene causing an invasive phenotype and cells transfected with the wild type oncogene; and (D,d) cells transfected with a mutated oncogene causing a metastatic phenotype and cells transfected with the wild type oncogene. In this case we pre-selected differentially expressed genes such that for at least one pair of samples the genes had a three fold ratio. The sorted eigen-gene v1 and eigen-array u1 have gaps indicating partitioning of patients and genes respectively. As a result, the outer product matrix sort(u1 ) sort(v1)T has a “soft” block structure. The block structure is hardly seen when the raw data is sorted but not normalized. However it is more noticeable when the data is both sorted and normalized. Also, shown is the conditions projected onto the first two partitioning eigenvectors u​1 and u​2. Obviously, using the extra dimension gives a clearer separation.


.

	Reviewers Comments: 

14. The section on ‘probabilistic interpretations’ makes good reading. However, the interpretation of p(j|i) as the probability of sample j to have a high expression level for a given gene i is very hard to make sense of. In particular: what is high expression level? It is clear that this “probability” is proportional by definition to the corresponding expression value, but the definition of the random variable whose probability is p has to be given more unambiguously. 


	Authors’ Response 

 In the section “probabilistic interpretation” we clarify thereationship between the row and column normalizations with probabilistic interpretation.  This normalization can be cast in probabilistic terms by imagining first choosing a random RNA transcript from all RNA in all samples (conditions), and then choosing one more RNA transcript randomly from the same sample.  Here, when we speak of choosing "randomly" we mean that each possible RNA is equally likely to be chosen.  Having chosen these two RNA's, we take note of which sample they come from and which genes they express.  The matrix entry 
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 that the sample is j, given that the first RNA chosen was transcribed from gene i. Similarly,  
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 that the gene corresponding to the first transcript is k, given that the sample is j.  Moreover, the product of the row-normalized matrix and the column-normalized matrix approximates the conditional probability 
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 of choosing a transcript from gene i, given that we also chose one from gene k.    (Under the assumption that k and i are approximately conditionally independent given j, which amounts to saying that the probability of drawing a transcript from gene k, conditional on having  chosen sample j, does not depend on whether or not the other RNA that we drew happened to be from gene i, 


[image: image11.wmf](

)

11

|||||

(|)(|)(|,)(|)(|)()()

T

ggsggsgsggs

ik

jj

pkipjipkjipjipkjRACA

--

=»=

åå


This expression reflects the tendency of genes i and k to be expressed together, averaged over the different genes.

	Change in Text

This normalization can be cast in probabilistic terms by imagining first choosing a random RNA transcript from all RNA in all samples (conditions), and then choosing one more RNA transcript randomly from the same sample.  Here, when we speak of choosing "randomly" we mean that each possible RNA is equally likely to be chosen.  Having chosen these two RNA's, we take note of which sample they come from and which genes they express.  The matrix entry 
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 that the sample is j, given that the first RNA chosen was transcribed from gene i.  Similarly, 
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 that the gene corresponding to the first transcript is k, given that the sample is j.  Moreover, the product of the row-normalized matrix and the column-normalized matrix approximates the conditional probability 
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 of choosing a transcript from gene i, given that we also chose one from gene k.    (Under the assumption that k and i are approximately conditionally independent given j, which amounts to saying that the probability of drawing a transcript from gene k, conditional on having chosen sample j, does not depend on whether or not the other RNA that we drew happened to be from gene i, 
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This expression reflects the tendency of genes i and k to co-express, averaged over the different samples.  Similarly, the product of the column and row-normalized matrices approximates the conditional probability ps|s(j|l)  that reflects the tendency of samples j and l to be expressed together, averaged over the different genes.   


	Reviewers Comments: 

15.  Even assuming the loose interpretation of p, the assumption that p(i|j,k)=p(i|k) is, I believe, incorrect: in the light of previous observations by the authors that two genes (in this case i and k) in the same gene block are correlated (even if they are in the same chip j), and thus they can hardly be conditional independent given j. The assumption is reasonable if genes i and k are in different blocks.



	Authors’ Response 

 Our assumption is that p(i|j,k)=p(i|j) and not p(i|j,k)=p(i|k). This assumption implies that if one knows the condition then the probability that a gene is expressed is determined. This can be encoded in a Bayesian network of the form p(i,j,k)=p(i|j)p(k|j)p(j), which directly implies our assumption.


	Reviewers Comments: 

16.  There is some abuse of notation in the names of the probability distributions: p(.|.) is used for probability of genes given sample, probability of gene given gene, and probability of sample given gene. Different symbols should be used for each of these.



	Authors’ Response 

 We now use pg|c , pg|g and pc|g to clarify notation.


	Reviewers Comments: 

17.  In the results a note is made of the DLCL patients expression pattern being closer to those of the FL patients that to that of DLCL cell-lines. Can this be demonstrated using the probability measures?  May be it can be shown that the asymmetrical affinity measurement p(DLCL|FL) is indeed higher than p(DLCL|DLCL-cell line). 


	Authors’ Response 

 We have computed these probabilities and indeed we found that p(DLCL|FL) = 0.23 > p(DLCL|DLCL-cell line) = 0.14, indicating that the DLCL patients expression pattern is closer to those of the FL patients that to that of DLCL cell-lines.




	Reviewers Comments: 

18.  A last comment. Throughout the paper there is no sense of statistical significance of the results presented. For example, the best eigenvector will have a goodness of fit when partitioned fitted with piece-wise linear functions. It would be desirable to understand if such goodness of fit is better than what is expected by randomizing the gene expression matrix. 


	Authors’ Response 

 The significance of the results can be evaluated by goodness of fit of the blocks indicated by the partitioning eigenvectors relative to blocks determined for a random shuffle of the gene expression matrix. For example, in fig 6 fitting the normalized dataset to a 2x2 matrix obtained by division according to the second largest pair of eigenvectors of the original matrix is compared to fitting of 10000 shuffled matrices (after bi-stochastisation) to their corresponding best 2x2 block approximations. The least-square fitness of the dataset is more than 100 standard deviations smaller from the mean of the 10000 least-square scores obtained from the shuffled matrices. A conservative upper bound for the probability of a shuffled matrix to have such a small score is given by the Chebychev’s Inequality 
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	Change in Text

 In addition to the uses of biclustering as a tool for data visualization and interpretation, it is natural to ask how to assess the quality, stability, or statistical significance of biclusters.  However, this type of problem is far from settled; in fact, even in the simpler setting of ordinary clustering new efforts to address these questions regularly continue to appear.  One type of approach attempts to quantify the "stability" of suspected structure observed in the given data.  This is done by mimicking the operation of collecting repeated independent data samples from the same data-generating distribution, repeating the analysis on those artificial samples, and seeing how frequently the suspected structure is observed in the artificial data.  If the observed data contains sufficient replication, then the bootstrap approach of (Kerr and Churchill 2001) may be applied to generate the artificial replicated data sets.  However, most experiments still lack the sort of replication required to carry this out.   For such experiments, one could generate artificial data sets by adding random noise (Bittner et al. 2000) or subsampling (Ben-Hur et al. 2002) the given data.    An alternative to the above stability approaches is to test a null hypothesis of no structure in the data matrix.  To show an example of how this works, we first normalized the data and then used the best partitioning pair of eigenvectors (among the six leading eigenvectors) to determine an approximate 2x2 block solution. We then calculated the sum of squared errors (SSE) for the least-squares fit of these blocks to the normalized data matrix. Next, to assess the quality of this fit we randomly shuffled the data matrix and applied the same process to the shuffled matrix.  For example, in the breast cell oncogene data set introduced below, fitting the normalized dataset to a 2x2 matrix obtained by division according to the second largest pair of eigenvectors of the original matrix is compared to fitting of 10000 shuffled matrices (after bi-stochastisation) to their corresponding best 2x2 block approximations. The SSE for this dataset is more than 100 standard deviations smaller than the mean of the SSE scores obtained from the shuffled matrices, leading to a correspondingly tiny P value for the hypothesis test of randomness in the data matrix.   



Reviewer II

	Reviewers Comments: 

 1. A more lay description of what was done is needed. The presentation of the results and analysis is very detailed, however, only high end statistical analysis people can appreciate what was done here. The readership of Genome Research represents a broad audience, and hence, a more lay description of many of the methods is needed.

	Authors’ Response 

 Following the reviews we have revised the paper considerably. In addition we have extended figure 1 to include a detailed intuitive explanation of the method, and we augmented Figure 8 with new illustrations that demonstrate the utility of our methods.  We believe that these modifications clarify the paper. However, we feel that to understand the spectral approach and the results it is necessary to maintain a quite detailed outlay of the method. 


	Reviewers Comments: 

 2. In the analysis of the brain tumors, it is not fair to simply throw out the PNET tumors. This is the whole point of classification. I would ask that the PNETs be added in and the analysis redone as this is biologically relevant. 

	Authors’ Response 

 We added the PNETs and reanalyze the data as can be seen in the new subplots of Fig 6 and changed the text accordingly.

	Change in Text 

Fi      Finally, we analyzed the recently published CNS embryonal tumor dataset. Pomeroy et al (Pomeroy et al. 2002) 

partitioned this these five tumor types using standard principal component analysis, but after employing a pre-selection of genes exhibiting variation across the data set (see Fig 1(b) in (Pomeroy et al. 2002)). Using all genes we find that the bi-stochastization method, and to a lesser degree the biclustering method partitioned the medulloblastoma, malignant glioma, and normal cerebella tumors. As can be seen in Figure 7, the remaining rhabdoid tumors are more widely scattered in the subspace obtained by projecting the tumors onto the 2nd-4th gene partitioning eigenvectors of the biclustering and bi-stochastization methods. Nonetheless, the rhabdoid tumor distribution does not overlap with the other tumor distributions if we use the bi-stochastization method. The primitive neuro-ectodermal tumors (PNETs) did not cluster and were even hard to classify using supervised methods.



Reviewer III

	Reviewers Comments: 

 1. Near the end of the "Introduction" Section: 

a) In "The normalization step, which eliminates irrelevant effects..." in the next to last paragraph of the paper.  I would remove the word "irrelevent".  Basal expression levels are relevent to many important questions.  It's confusing in this section, before we've read about the precise approach. 

b) The authors try to summarize their approach using technical terms that are only properly defined later in the paper.  I felt they were just confusing in this section.  In both "..we integrate biclustering, normalization and background subtraction.. and "In these spectral models the background..." background corresponds to the constant coming from the first eigenvalue that's thrown away.  Background is a loaded term in the microarray field and has nothing to do with what the authors are talking about.  This is a trivial background that corresponds to a constant of pre-scaled data.  I would get rid of the word "background" in the first sentence mentioned and the second sentence altogether. 

c)  In "...a pre-processing normalization stage in which the data matrix is converted to become doubly stochastic-like" they should either try to define double stochastic-like-"all rows sum to a constant and all columns sum to a different constant" or try to find another way to describe it that will make some sense before one has read the paper. 


	Authors’ Response 

a) We have removed the word “irrelevant.”

b) We replaced “background” by “overall uniform contribution.”

c) Added explanation of double-stochastic-like: “in which all rows sum to a constant and all columns sum to a (different) constant”.

	Change in Text

 Our approach exploits the effect of clustering of experimental conditions on clustering of the genes and vice versa. Finally, we apply a similar approach after a pre-processing normalization stage in which the data matrix is converted to become doubly stochastic-like, in which all rows sum to a constant and all columns sum to a (different) constant.


	Reviewers Comments: 

2.  They write "However, iterative searches for biclusters are computationally expensive and based on heuristics...".  In effect they are a bit dismissive of previous approaches; however, they make no clear head to head comparison of their methods either in terms of performance or computational expense with these methods.  They do compare their results to those of the authors who published the original data sets, but that's altogether different.  There is also the question of how truely automated this approach is given that you have to do the post-processing search for the relevent eigenvalues.  I would either confirm improved performance based on objective test metrics or simply highlight the differences with their method and delete the dismissive comments.  



	Authors’ Response 

 We have modified the section to highlight the differences between our method and others’.

	Change in Text

Old text: However, iterative searches for biclusters are computationally expensive and based on heuristics that find only a small fraction of interesting patterns (Cheng and Church 2000; Getz et al. 2000; Hastie et al. 2000; Stolovitzky et al. 2000).

New text: These methods apply greedy iterative search to find interesting patterns in the matrices, an approach that is common also in one-sided clustering (Hastie et al. 2000; Stolovitzky et al. 2000). We, on the other hand, focus on finding global biclusters using all columns (conditions/patients) and all genes or differentially expressed genes. 



	Reviewers Comments: 

 3. In the subsection "Independent rescaling of genes and conditions" under section "Spectral Biclustering":

First a general comment.  If I understand this subsection, the authors (a) first formulate the expected model of the underlying data and (b) lead you to the actual method which is applying SVD to the rescaled matrix A hat.  I feel they should break this section into two parts: one describing the expected model of the data and a short section on the actual method used.  The short method section would be put on the same footing as the "Bi-stochastic rescaling ..." section.  Mixing the expectation of what the data should be like with the method confused me.  For example, I thought that they might actually be multiplying an arbitrary "classification vector" to their  row rescaled matrix, but I believe this is just what is expected to come out in the eigenvectors.  I think this point is obscured by having their model and methods mixed together as they have.  

Some detailed comments:

(a) In the first paragraph of the subsection: "Two genes that participate in one pathway are expected to have..." is first not necessarily correct...attempts to find common transcription factor binding sites in genes that are in the same pathway has been a dismal failure and second your method does not rely on such a strong conjecture.  Genes that have strong correlated expression profiles may be co-regulated or commonly regulated which is all you need for there to be some biologically significant relationship which highlights global differences between tumor types.  So I would restate it in the looser sense...something like "Two genes that are co-regulated are expected ...".  

(b) In the next sentence, "We can obtain better estimates of the actual expression levels..." is totally wrong!!  Normalizing arrays to each other better allows comparison of any given gene across conditions; however, normalizing genes across experiments is quite arbitrary and obscures estimation of actual expression levels.  Again, you don't need to properly estimate expression levels because, as you've stated numerous times, you are trying to discover correlations of expression patterns that are independent of average expression levels.  I would just get rid of this sentence.   

(c) I would restate "Thus, the data can be treated as a composition of blocks.." more as "We model the data as a composition of..." or "We assume the data takes a block structure...".  This is your model of the data.

(d) I would re-write the actual description of the expected "block" pattern of the data..it starts with "The expression level of a specific gene i under..." and ends with "We further take the simplifying assumption that the three factors are independent". You write "...hidden base expression level, is denoted by Eij, where each term in this matrix is the mean over a random variable."  What's the random variable?  Intuitively I think your saying there is variation within a block.  In the next sentence, you write "We assume that the entries of E within each block are a constant".  But this defines a block.  If the entries of E changed a lot within a block..would it still be considered a block?  I would leave out the two sentences "This factor expresses the tendency of a gene..." and "This factor expresses the overall tendency of genes..." I feel they are redundant.  You just said they are the average over the row or column.



	Authors’ Response 

 We have divided the description of the “independent rescaling of genes and conditions” into two parts, the first part (now under “spectral biclustering” describes the model, and the second part (now under “independent rescaling of genes and conditions”) describes the method.

(a)     We changed  “participate in one pathway” to “are co-regulated.”

(b) We replaced “actual expression levels” to “correlations between expression profiles.”
(c) We replaced "Thus, the data can be treated as a composition of blocks.." to "We model the data as a composition of..."

(d) We have modified this paragraph to match the reviewer’s comments.

	Change in Text

The old text reads   “The first factor, which we called the hidden base expression level, is denoted by Eij, where each term in this matrix is the mean over a random variable. We assume that the entries of E within each block are constant. The second factor is the mean expression level of a gene over all experimental conditions, denoted ri. This factor expresses the tendency of a gene to be expressed under many conditions. The last factor is the mean expression level of all genes under a specific experimental condition, denoted cj. This factor expresses the overall tendency of genes to be expressed under the respective condition. We further take the simplifying assumption that the three factors are independent.” 

The new text reads   “The first factor, which we called the hidden base expression level, is denoted by Eij,. We assume that the entries of E within each block are constant. The second factor, denoted ri, represents the tendency of gene i to be expressed under all experimental conditions. The last factor, denoted cj, represents the overall tendency of genes to be expressed under the respective condition. We assume the microarray expression data to be a noisy version of the product of these three factors.”


	Reviewers Comments: 

 4. In the section "Post processing the eigenvectors to find partitions":

(a) Given the comment "In principle, the eigenvalues of the classification eigenvectors may not be the second largest and we closely inspect a few...", it's not clear just how automated the process of selecting the best eigenvector(s) is.  A simple comment would be helpful if this is a fully automated process or not.

(b) (b) Another revealing comment "...in some cases an eigenvector with a small eigenvalue could be the partitioning one. (This occurs typically when the separation between blocks in E is smaller than the variance within a block)."  If I understand this correctly, this is saying that in some cases the inner "block" variance is greater than the between "block" average values.  If this is the case, I would not call it a "block".  Indeed, this might have been data that did not conform to the model.  It would be helpful if the authors arrived at a criteria for determining when the underlying data did not fit the model (even a crude one would be helpful).  For example take, random numbers generated from the same distribution so there is no underlying block structure and apply their methods.  Do any of the microarray data resemble the random results?  Do they still find partitioning eigenvectors?  It would also be very helpful if in addition to showing the best eigenvectors as in figures (3)-(7) which reveal the method does separate conditions, they could arrive at a metric which tests more directly whether the data does have a "block" structure, something like comparing the inter "block" variance to the intra "block" variance.  Showing the worst and best case where a classification was made would help reveal just how good their model is.



	Authors’ Response 

(a) We have added the following sentence to clarify this issue: “In the experiments below we performed this procedure automatically to the six most dominant eigenvectors allowing for two or three partitions.”  Once we selected the partitioning eigenvectors we projected the data into these eigenvectors to visualize the clusters.
(b) We mentioned for completeness that in theory the partitioning may be found in one of the non- dominant eigenvectors. However, in microarray data this is undesired, since such eigenvectors may be affected primarily by noise. Thus, in the experiments we limited our examination to the six most dominant eigenvectors. There are quite a few heuristic ways to evaluate fitness to the model. In the paper we did so by checking how well an eigenvector fits a step-like structure. This provided a crude criterion that was sufficient for our experiments. One can extend this to test both left and right eigenvectors in pairs. Alternatively, The significance of the results can be evaluated by goodness of fit of the blocks indicated by the partitioning eigenvectors relative to blocks determined for a random shuffle of the gene expression matrix. (e.g., in fig 6 a 2x2 division according to the second largest pair of eigenvectors of the original matrix and the shuffled matrix (after bi-stochastisation of both) yields a ratio of 0.22 (so the block fit of the original matrix is ~4 times better than a shuffle matrix).

	Change in Text

 In addition to the uses of biclustering as a tool for data visualization and interpretation, it is natural to ask how to assess the quality, stability, or statistical significance of biclusters.  However, this type of problem is far from settled; in fact, even in the simpler setting of ordinary clustering new efforts to address these questions regularly continue to appear.  One type of approach attempts to quantify the "stability" of suspected structure observed in the given data.  This is done by mimicking the operation of collecting repeated independent data samples from the same data-generating distribution, repeating the analysis on those artificial samples, and seeing how frequently the suspected structure is observed in the artificial data.  If the observed data contains sufficient replication, then the bootstrap approach of (Kerr and Churchill 2001) may be applied to generate the artificial replicated data sets.  However, most experiments still lack the sort of replication required to carry this out.   For such experiments, one could generate artificial data sets by adding random noise (Bittner et al. 2000) or subsampling (Ben-Hur et al. 2002) the given data.    An alternative to the above stability approaches is to test a null hypothesis of no structure in the data matrix.  To show an example of how this works, we first normalized the data and then used the best partitioning pair of eigenvectors (among the six leading eigenvectors) to determine an approximate 2x2 block solution. We then calculated the sum of squared errors (SSE) for the least-squares fit of these blocks to the normalized data matrix. Next, to assess the quality of this fit we randomly shuffled the data matrix and applied the same process to the shuffled matrix.  For example, in the breast cell oncogene data set introduced below, fitting the normalized dataset to a 2x2 matrix obtained by division according to the second largest pair of eigenvectors of the original matrix is compared to fitting of 10000 shuffled matrices (after bi-stochastisation) to their corresponding best 2x2 block approximations. The SSE for this dataset is more than 100 standard deviations smaller than the mean of the SSE scores obtained from the shuffled matrices, leading to a correspondingly tiny P value for the hypothesis test of randomness in the data matrix.   



	Reviewers Comments: 

 Near the end the of the section they write "However, sometimes performing SVD on the logarithm of the raw expression data results in slightly better partitioning..".  Some reviewers might have said "why go through all this if this infinitely simpler approach works nearly as well?".  In my view, this comment highlights a broader point that can be made.  The authors are coming up with a "high-level" method that takes array data as input.  Now as the author's well know, there is a whole field of "low-level" signal extraction of array data that is still an active area of research.  Taking the log of expression data generates error distributions which are "more normal" then that of the raw data (eg. because the noise is multiplicative).  The authors could have taken the log of the raw data and applied all the other bi-clustering methods.  I would simply point out that they are separate issues.. Better estimators of expression level and high level methods used for clustering the data.  They are a bit mixed together in the SVD log(A) comparison.



	Authors’ Response 

 We agree with the reviewer that the issue of taking the log of the data is independent of the clustering method. We tested SVD+log since this somewhat inproved the results over SVD on the original microarray data. However, in most examples SVD+log under-performed our method (see, e.g., figure 6).   We note that the following normalization (which we are not aware of its use in preprocessing of microarray data) is similar in spirit to the normalizations we implemented because it is aimed to extract the gene-sample residual interaction matrix. In this normalization one takes the log transformation of the data matrix A followed by subtraction of the column and row means and addition of the overall mean of log(A) at each entry. In fact this matrix can be easily converted to a bi-stochastic matrix by adding the same constant of this residual matrix such that all new entries become positive.

We augumented the Simultaneous normalization of genes and conditions section with detailed description of this normalization and we changed subpanel f of figures 3-7 accordingly.
We modified the text “However, sometimes performing SVD on the logarithm of the raw expression data results in slightly better partitioning (subpanel f).” to read “Performing instead SVD on the log-interaction matrix of the raw expression data tends to produce results that are similar to those obtained with bi-stochastization. (subpanel f)”.


	Change in Text

We have also investigated an alternative to bi-stochastization that we call the log-interactions normalization. A common and useful practice in microarray analysis is transforming the data by taking logarithms.  The resulting transformed data typically has better distributional properties than the data on the original scale – distributions are closer to Normal, scatterplots are more informative, and so forth.  The log-interactions normalization method begins by calculating the logarithm 
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 of the given expression data, and then extracts the interactions between the genes and the conditions, where the term "interaction" is used as in the analysis of variance (ANOVA).    

The log-interactions normalization is motivated by the idea that two genes whose expression profiles differ only by a multiplicative constant of proportionality are really behaving in the same way, and we would like these genes to cluster together.  In other words, after taking logs, we would like to consider two genes whose expression profiles differ by an additive constant to be equivalent.  This suggests subtracting a constant from each row so that the row means each become 0, in which case the expression profiles of two genes that we would like to consider equivalent actually become the same.  Likewise, the same idea holds for the conditions (columns of the matrix).  Constant differences in the log expression profiles between two conditions are considered unimportant, and we subtract a constant from each column so that the column means become 0.  It turns out that these adjustments to the rows and columns of the matrix to achieve row and column means of zero can all be done simultaneously by a simple formula.  Defining 
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 to be the average of the whole matrix, the result of these adjustments is a matrix of interactions 
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.  This formula is familiar from the study of two-way ANOVA, from which the terminology of "interactions" is adopted.  The interaction 
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 between gene i and condition j captures the extra (log) expression of gene i in condition j that is not explained simply by an overall difference between gene i and other genes or between condition j and other conditions, but rather is special to the combination of gene i with condition j.   Again, as described before, we apply the SVD to the matrix K to reveal block structure in the interactions.

The calculations to obtain the interactions are simpler than the bistochastization, as they are done by a simple formula with no iteration.  Another implementation detail also contrasts with the previously discussed normalizations, for which the first term of the SVD is an uninteresting constant background matrix.  When using the log interactions normalization, we do not automatically discard the first singular vectors, which are in fact typically important.  Finally, we note another connection between matrices of interactions and matrices resulting from bistochastization.  Starting with a matrix of interactions K, we can produce a bistochastic matrix simply by adding a constant to K.  


	Reviewers Comments: 

 7. One last general comment: Given that array data can be quite noisy, the fact that the method inherently relies on multiplying a "noisy" matrix to it's transpose may be a weakness due to a reduction of the effective signal to noise ratio.  Taking products of "noise" which when averaged is zero can lead to "noise" squared terms which don't average away.  This may be worth a comment.



	Authors’ Response 

 This claim might apply also to the SVD procedure in general, since the singular values of a matrix are in fact the square roots of the eigenvalues of the product of the matrix with its transpose, yet SVD finds the best low-rank approximation of a noisy matrix. Our bi-clustering method works in exactly the same way, since it is equivalent to the SVD of the rescaled matrix 
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