
 

 

Figure 1 
 
This figure gives an overview of important parts of the biclustering process. Part A shows the problem: shuffling a gene 
expression matrix to reveal a checkerboard pattern associating genes with conditions.  Part B shows how this problem can 
be approached through solving an “eigenproblem.” If a gene expression matrix A has a checkerboard structure, applying it 
to a step-like condition classification vector x will result in a step-like gene classification vector y.  Moreover, if one then 
applies AT to y, one will regenerate a step-like condition classification vector with the same partitioning structure as x. This 
suggests one can determine if A has a checkerboard structure through solving an eigenvalue problem. In other words, if A 
has a (hidden) checkerboard structure there exist some piecewise constant partition vectors *x v=  and *y u=  such that 

2
* *

TA Av vλ= and 2
* *

TAA u uλ= (bottom quadrant of part B).  To reveal whether the data has checkerboard structure one 
can inspect if some of the pairs of monotonically sorted gene and tumor eigenvectors iv  and iu  have an approximate 

stepwise (piecewise) constant structure. The outer product * *
Tu v  of the sorted partitioning eigenvectors gives a 

checkerboard structure. Part C shows how rescaling of matrix A can lead to improved co-partitioning of genes and 
conditions.  
 
 
(On Next Page...)
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(A) The Problem: Identifying Marker Genes 
Associated with Certain Conditions
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(B) Identifying checkerboard matrices by their action on 
classification vectors: Formulation as “eigenproblem”
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(C) A First Step of Matrix Normalization: 
Rescaling Rows to Same Mean
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(a) bistochastic (b) biclustering 
 

Figure 2 (a) The outer product of the sorted eigenvectors u and v of the 2nd eigenvalue of the equal row- and 
column-sum bistochastic-like matrix B applied to dataset with three types of Lymphoma CLL(C), FL(F) and  
DLCL(D). Sorting of v orders the patients according to the different diseases.   (b) as in (a) the 2nd singular value 
contribution to the biclustering method (C-1AT R-1A) of Lymphoma CLL(C), FL(F), DLCL(D) partitioned the 
patients according to their disease with one exception. We pre-selected all genes that had complete data along all 
experimental conditions (samples). 
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(f) log-interactions normalization 

 

Figure 3 Lymphoma: Scatter plot of experimental conditions of the two best class partitioning eigenvectors vi,vj. 
The   subscripts (i,j) of these eigenvectors indicate their corresponding singular values .  CLL samples are denoted 
by red dots, DLCL by blue dots, and FL by green dots. (a) Bistochastization: the 2nd and 3rd eigenvectors of TBB  (b) 
Biclustering: the 2nd and 3rd eigenvectors of 1 1 TR AC A− −  (c) SVD: the 2nd and 3rd eigenvectors of TAA  (d) 
normalization and SVD: the 1st and 2nd eigenvectors of TAA  where A  is obtained by first dividing each column of 
A by its mean and then standardizing each row of the column normalized matrix. (e) Normalized cut algorithm: 2nd 
and 3rd eigenvectors of the row-stochastic matrix P. P is obtained by first creating a distance matrix S using 
Euclidean distance between the standardized columns of A, transforming it to an affinity matrix with zero diagonal 
elements and off diagonal elements defined as exp( ) / max( )ij ij ijW S Sα= − and finally normalizing each row sum of 
the affinity matrix to one. (f) as in (c) but a with SVD analysis of the log interaction matrix K instead of A.   



 

 

 
Figure 4 Scatter plots as in Fig. 3 with another Lymphoma dataset generated using Affymetrix chips 9 instead of 
microarrays.  DLCL samples are denoted by green dots, CLL by blue dots, FL by yellow dots and DLCL cell lines 
by magenta dots.   

 

 
(a) bistochastic 

 
(b) biclustering 

  
(c) SVD 

 
(d) bi-normalized 

            
(e) normalized cuts 

 
 

 
(f) log-interactions normalization 



 

 

 

 
(a) bistochastic 

 
(b) biclustering 

 
(c) SVD 

 
(d) bi-normalized 

 
(e) normalized cuts 

 
(f) log-interactions normalization 

Figure 5 Leukemia data is presented in the same format as in Fig. 3. B cell ALL samples are denoted by red dots, T 
cell ALL by blue dots, and AML by green dots. In this analysis we pre-selected all genes that had positive 
Affymetrix average difference expression levels. 

 
 
 
 
 
 
 
 



 

 

  
 

 
(a) bistochastic 
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(e) normalized cuts 
 

(f) log-interactions normalization 
Figure 6 Breast cell lines transfected with the CSF1R oncogene: Scatter plots as in Fig. 3 for mRNA ratios of benign breast 
cells and wild type cells transfected with the CSF1R oncogene causing them to invade and metastasize (A,a), ratios of cells 
transfected with a mutated oncogene causing an invasive phenotype and cells transfected with the wild type oncogene (C,c) and 
ratios of cells transfected with a mutated oncogene causing a metastatic phenotype and cells transfected with the wild type 
oncogene (D,d).   
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Figure 7 central nervous system embryonal tumor data generated using Affymetrix chips10 of medulloblastoma 
(blue), malignant glioma (pink), normal cerebella (cyan), rhabdoid (green) and primitive neuro-ectodermal (red) 
tumors. Scatter plots of experimental conditions projected onto the three best class partitioning eigenvectors using 
the same format as in Fig. 3.   



 

 

 
 
   
 

 
 
Figure 8 Optimal array partitioning obtained by the 1st singular vectors of the log-interaction matrix. The data 
consists of eight measurements of mRNA ratios for three pair of cell types: (A,a) benign breast cells and the wild-
type cells transfected with the CSF1R oncogene causing them to invade and metastatize; (C,c) cells transfected with 
a mutated oncogene causing an invasive phenotype and cells transfected with the wild type oncogene; and (D,d) 
cells transfected with a mutated oncogene causing a metastatic phenotype and cells transfected with the wild type 
oncogene. In this case we pre-selected differentially expressed genes such that for at least one pair of samples the 
genes had a three fold ratio. The sorted eigen-gene v1 and eigen-array u1 have gaps indicating partitioning of patients 
and genes respectively. As a result, the outer product matrix sort(u1 ) sort(v1)T has a “soft” block structure. The block 
structure is hardly seen when the raw data is sorted but not normalized. However it is more noticeable when the data 
is both sorted and normalized. Also, shown is the conditions projected onto the first two partitioning eigenvectors u1 
and u2. Obviously, using the extra dimension gives a clearer separation.  
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