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Enclosed is a revised version of the above referenced manuscript for consideration by JMB. 

We have responded in detail to the referee's comments on the attached sheets. A number of the referee's comments were quite perceptive and addressing them has required substantial changes. In particular, we have built a new training dataset and illustrated this with a new diagram (figure 2); removed the appendix; removed one objectionable subfigure; and provided information about the predictive strength of each of the features. We hope that with the revisions the manuscript is now suitable for publication. 

Also included is information about the computer files associated with the manuscript. These are available from the URLs listed on the attached sheet, and the enclosed CD-ROM. 


Yours sincerely,


Mark Gerstein


Assistant Professor 


of Molecular Biophysics & Biochemistry

Responses to Referee

-- 1 – Appendix with formal analogy to quantum mechanics --

	Reviewer

Comment
	I do not think the appendix proving the formal analogy to analyzing quantum state vectors is useful. This is material that is more appropriate for a website of an alternate publication.

I did not find either the informal or formal analogy to quantum mechanics to be useful here. The logic of the approach the authors employed can stand on its own merits, without any recourse to physics. There is no reason to suspect that the subcellular localization of proteins follows rules that are at all similar to those a many particle quantum system. It is an interesting intellectual exercise, but I don't think it made the paper any more persuasive and will likely serve to confuse more people than it helps.



	Author

Response
	We agree with the referee and have done exactly what he has suggested: We have removed the Appendix from the paper and put it on our website at http://bioinfo.mbb.yale.edu/genome/localize/papers/AppendixA.pdf as supplementary material. Because we removed this material, we also deleted one author from the author list. This author had worked only on the appendix. 
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-- 2 – Figure 5: Regarding the analysis of individual protein predictions --

	Reviewer

Comment
	Figure 5 is not useful. 

The information in Figure 5 could easily be replaced by a few lines of text, as the graphs are almost completely featureless.



	Author

Response
	We have done what the referee suggested: We have taken off one of the subfigures and merely listed the fitting function for it. We agree with the referee that this subfigure was redundant.



	Excerpt
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Revised

Manuscript
	Figure 6->Part B

Variation of the entropy with the error rate (not shown here) can be described by the equation of the trend-line S = 0.044Y – 0.3, where S is the entropy and Y is the error rate.


-- 3 – Circular Validation --

	Reviewer

Comment
	it is absolutely essential that the authors either adjust their analysis or satisfactorily address the issue of circular validation. With a correct cross-validation, the paper is a significant contribution to that field that I believe would be of interest to many readers of JMB; without it, it is nothing more than a discussion of a computational method.

The subcellular localization information in YPD (as well as in other databases) is based on a combination of experimental data and computational predictions, and there appears to be some overlap between the computational predictions used by YPD and those used in this paper. For example, YPD describes the localization of the gene

YHR078W as "unspecified membrane; integral membrane", and the website associated with Drawid et a. places YHR078W in the "me2" category that includes all integral membrane proteins. However, YPD's assignment of YHR078W to the integral membrane category appears solely based on its

having four predicted membrane domains. Since one of the features used by Drawid, et al. is whether or not the protein has predicted transmembrane domains, it is hardly a surprise that THR078W is predicted to be a transmembrane protein, and this should not be construed as providing confirmation of the success of the method.

My brief scan of the data located additional examples of

this circular logic. It is difficult to know whether the results are merely mildly tainted by such examples or if they are completely invalidated, but this analysis can not be published as it is. Since the manuscript depends, in large part, on successful validation, the authors must either redo this analysis using only genes with experimentally determined subcellular localizations or present an analysis that demonstrates that this concern is not a serious one.



	Author

Response
	We have done extensive analysis to address this criticism and believe we have completely addressed it.  In fact, we have COMPLETELY REDONE OUR ENTIRE ANALYSIS with new datasets based on the referee’s suggestions. We exhaustively looked at the localization annotations for all the yeast proteins in Swiss-Prot and MIPS. We assigned a quality value for the localization of each protein in these databases. We determined the quality of localization by observing whether a protein was annotated to have a predicted or guessed location or trans-membrane domain. We also checked whether the localization of a protein was consistent over these databases. Thus, a protein with high-quality localization had an experimentally observed location that was consistent across the databases.  To explain our method in detail, we made a new figure (figure 2 – Creation of Four Training Datasets), and also expanded our “Implementation->The Localized-1342, the Training and Testing Dataset and Prior” section. All the results in our paper are now based on the Localized-1342 dataset, which contains only those proteins that have high-quality localization. Thus, now we do not have any circular logic affecting our results. We have explained in our paper in detail how these new results are not affected by circular logic.

We were happy to find that these actually improved our overall accuracy (75% for Localized-1342 and Localized-704 and 88% for Localized-465, against 74% for our previous analysis)!! We have put the feature and state vectors regarding all new training sets as well as the old training set on our website (http://bioinfo.mbb.yale.edu/genome/localize). 

The protein the referee questioned (YHR078) has low-quality localization in Swiss-Prot. As low-quality localization proteins are not included in our training dataset (Localized-1342), this protein is not included in it either. As described earlier, several such proteins with predicted trans-membrane domains are excluded from the Localized-1342 dataset.
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	Section Implementation->The Localized-1342, the Training and Testing Dataset 

To train and test our system, we used the localizations from Swiss-Prot (Bairoch & Apweiler, 2000) and MIPS (Frishman et al., 1998; Mewes et al., 1998, 1999; Frishman & Mewes, 1997) -- and to a lesser extent from the Yeast Protein Database (YPD, version 9.08) (Hodges et al., 1999). We prepared 4 different datasets of localized yeast proteins. We called them Localized-465, Localized-704, Localized-1342 and Localized-2013, where the terminal number (e.g. "-465") represented the number of proteins in the dataset. The four datasets are described in detail in figure 2. They differ in their overall "quality." 

Our quality factor for each protein describes the degree to which we were sure that its localization was based on real experimental evidence (rather than computational predictions), and that this localization was consistent amongst the various data sources (e.g. MIPS versus Swiss-Prot). In particular, a Swiss-Prot localization was characterized as high-quality only if it was not annotated as “predicted” or “possible,” and if the protein could be easily assigned to a single collapsed location (e.g. excluding cytoskeletal proteins or proteins with multiple locations). Similar exhaustive characterizations were performed for proteins with MIPS localizations.

Consideration of the data quality was critical for training and testing, since we had to be careful to guard against "circular logic" -- that is, training our computational prediction algorithm on computationally predicted localizations in the training set. For example, if the training data contained proteins that were predicted to have membrane (T) localization according to transmembrane prediction programs, the results of our algorithm could not be considered valid as it also makes use of a generic transmembrane prediction program. 

Amongst our four datasets, the smallest one (Localized-465) contained only the proteins with the highest quality localizations, i.e. proteins which had consistent localizations in MIPS, Swiss-Prot and YPD, and which were not annotated to have predicted localization in any of these data sources. The largest one (Localized-2013) contained a number of additional proteins with more problematic localizations that could potentially be derived from computational predictions. Unfortunately, we were not sure of the degree to which localization was derived from computational predictions because of the incomplete annotations of many yeast proteins. Our third dataset (Localized-1342) included all proteins that had non-conflicting localizations in either MIPS or Swiss-Prot or both, and that were not annotated to have a predicted localization. We felt that this dataset gave the best balance between overall quality and the number of proteins and largely avoided the “circular validation” problem. The cross-validation and extrapolation results in this paper are based on this dataset.

Figure 2

The Venn diagram shows how we analyzed the known protein localizations from different data sources to build our test and training sets. We were particularly concerned about making sure that our training data was of high quality -- that it was based on experimentally determined localizations and that these localizations were consistent among the various data sources. See text for more discussion. The Venn diagram consists of 4 circles. The bottom circle represents proteins in Swiss-Prot with high-quality localization (704). This is our core data. The right circle represents proteins in MIPS which have some localization annotation and which can be easily collapsed into a single compartment (e.g. excluding cytoskeletal proteins or proteins with multiple locations; see text; 1935). The left circle represents proteins in YPD which have some localization annotation and which can be easily collapsed into a single compartment (2143). The top circle represents proteins that have “predicted” localization annotation and thus are flagged as low-quality. (Note by definition this cannot intersect the Swiss-Prot circle.)

From these circles, we form four subsets (described as “sets”) as follows. Set 1: Proteins that have the same collapsed localization in Swiss-Prot, MIPS and YPD, and have high-quality localization in Swiss-Prot and MIPS. Set 2: Proteins that have high-quality localization in Swiss-Prot, but do not have the same collapsed localization in all of Swiss-Prot, MIPS and YPD (including the proteins that do not have any localization annotation in either MIPS or YPD or both). Set 3: Proteins with high-quality localization in MIPS that have either low-quality or no localization in Swiss-Prot. Set 4: Proteins in MIPS that are annotated as predicted, and that have either low-quality or no localization in Swiss-Prot. From these four sets we simply derived our four training and testing datasets as follows: 

Dataset                    Formation                 Number of Proteins 
% Correct Predictions after Cross-validation

Localized-465
Set 1
                                465
88

Localized-704
Localized-465 + Set 2
704
75

Localized-1342
Localized-704 + Set 3
1342
75

Localized-2013
Localized-1342 + Set 4
2013
72

Our system was independently trained and tested using each of these 4 datasets. In each case, cross-validation was performed using a seven-fold jackknife test, a prior based on the relative proportions of the corresponding dataset (fig 4), entropy localization and the comparison of individual protein predictions with observed locations. The last column of the table denotes the percentage of the total proteins that were predicted to have correct localization after thresholding individual protein state vectors. 

One issue with training on these 4 datasets is the degree to which circular logic enters into our analysis. We scrutinized the Swiss-Prot and MIPS localization annotations of all proteins to find if they were experimentally observed to lie in a compartment or if they were predicted or guessed to be present in a location. Our first 3 datasets (Localized-465, Localized-704 and Localized-1342) contain only those proteins that were experimentally observed to belong to a compartment, and hence circular logic cannot apply to them. As one can see from the table, the results of the cross-validation using these datasets are in fact better than those obtained by using the dataset Localized-2013.

The Localized-1342 dataset has the largest number of proteins that are annotated to have high-quality localization information, and hence this dataset is independent of any circular logic. The cross-validation and extrapolation results in this paper are based on the Localized-1342 set.


-- 4 – Jackknife calculation results on the web --

	Reviewer

Comment
	(I should note that the results of the jackknife calculation are not provided on the website, so I am only assuming that YHR078W was scored as a success based on the provided state vectors on their website).

	Author

Response
	The results of the jackknife test are have been put on our website (http://bioinfo.mbb.yale.edu/genome/localize). 
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-- 5 – Generation of unbiased subsets for cross-validation --

	Reviewer

Comment
	Since the authors do not yet have access to independent measurements of the subcellular localization for these 4,000 or so genes, they divide the set of 2,028 genes into 7 sets and "predict" the subcellular localizations of genes in one set based solely on the genes in the remaining 6. The results of this analysis appear quite encouraging. However, I have some serious concerns about whether this is truly an unbiased test.

It is also a little unclear how the seven subsets were generated. Was any consideration given to placing duplicated genes in the same bin or where the subsets completely random? It seems that duplicated genes might also present a problem of circularity in cross-validation.



	Author

Response
	We have addressed the referee’s comment. The subsets for the jackknife test are generated completely randomly using a random seed. Each protein belongs to only one subset, and there are no duplicated proteins in any subset.
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	Section Implementation->Cross-validation and Correlated Features

Our Bayesian system is a "naive" or "simple" case of a more general Bayesian network in that it implicitly assumes that all features are independent and uncorrelated (Friedman et al., 1997). This is, of course, not completely true for the features we are using. However, by partitioning our dataset into separate training and test sets and using cross-validation to measure the performance of our system, we can avoid misleading results due to over-parameterization (Efron & Tibshirani, 1986). Furthermore, we can identify the most redundant features -- those that contribute the least to the overall prediction accuracy or actually hurt the prediction -- and remove them. We can also highlight the features that contribute the most to the strength of the overall prediction. 

Specifically, we trained and tested our system using a seven-fold jackknife on the proteins with known localizations. We divided the Localized-1342 set into 7 subsets, each containing ~190 proteins. The proteins in each subset were selected completely randomly. Each protein belonged to only a single subset, and there were no duplicated proteins in any subset. We then predicted the localization of the proteins in each subset based on training our system on the remaining ~1150 proteins that belonged to the other 6 subsets.


--  6 – Useful information from the features --

	Reviewer

Comment
	The authors should include a discussion of how much useful information the genomic data provides. Are their successful predications based primarily on the strength of available computational methods? It would be interesting to provide some analysis of the how useful each of the features is in predicting subcellular localization and to discuss why the authors chose the manner in which they processed the genomic data. One way to do this would be to make a figure with some representation of the feature vectors and to discuss some of the interesting associations. For example, by examining the feature vectors, there is an apparent enrichment for cytoplasmic genes among genes with high absolute expression levels, but few other obvious patterns in this data. For the cell cycle data, and there are no obvious associations that can be picked out. Does this data really have useful information? Is there really an association between subcellular localization and the standard deviation of a gene's expression level across the cell cycle? Why was standard deviation chosen and not some other feature of the data (e.g. whether or not the gene was periodically expressed or during which stage of the cell cycle it reached peak expression)? Is there anything that can be said about what kind of information is provided by each of the features,especially the gene expression data? 



	Author

Response
	We have done exactly what the referee suggested: in our feature-description table (table 2A), we have added two new columns (“%Change” and “Status”) that indicate the predictive strength and importance of each feature. The positive values in the “%Change” column denote the fall in the prediction accuracy if the cross-validation is performed after excluding the corresponding feature from our system. The negative values in the “%Change” column denote the fall in the prediction accuracy if the cross-validation is performed after including the feature in the system. The “Status” column provides further information regarding the significance of the feature. A feature has “Important” status if the prediction accuracy falls by more than 0.5% after the exclusion of the feature from the system. Thus, we can see that features like the Young expression data (3.6% change) and MIT1 (5.1% change) contribute highly to the overall prediction accuracy. A feature has “Included” status if it is not a significant contributor to prediction accuracy, but is still used in our final implementation along with the “important” features. A feature has “Redundant” status if its inclusion in the system hurts the prediction accuracy. Such features are not significant for our prediction, and are not included in our final implementation.
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	Table 2 – Features

The table describes the 30 features used in our system. In the first table, each row contains the name of a feature, its general type and subtype, its contribution towards the overall prediction strength (in terms of a percentage change described below), its status regarding our implementation, and the number of bins used to model it. The second table provides more extended description of each feature.

The positive values in the “%Change” column denote the fall in the prediction accuracy if the cross-validation is performed without the corresponding feature -- i.e. if it is excluded from the 19 basic features used for the analysis. Note that the prediction accuracy for cross-validation for the Localized-1342 set is 75% (74.7% to be exact) when we use the 19 basic features. Thus, for example, when the feature MIT1 is excluded, prediction accuracy falls by 5.1% (to 74.7 - 5.1 = 69.6%). Negative values in the “%Change” column denote a fall in the prediction accuracy if the cross-validation is performed after including the corresponding feature in the system, beyond the 19 basic ones. Thus, when the feature COILDCO is included in our system, prediction accuracy falls by 0.1% (to 74.7 - 0.1 = 74.6%). A feature has “Important” status if the prediction accuracy falls by more than 0.5% after the exclusion of the feature. Such features are included in our final implementation. The status of the feature is “Included” if the feature is included in our final implementation along with the “Important” features. A feature has “Redundant” status if its inclusion decreases the prediction accuracy. Such features are not included in our final implementation. (We could also have computed the redundancy of each of our features by computing the mutual information between each of them.) Some further notes: (i) "from-MIPS" means “this information could be derived from MIPS or PEDANT” (Frishman et al., 1998; Mewes et al., 1998, 1999; Frishman & Mewes, 1997). (ii) "from-YPD" means “as given in the Yeast Protein Database, YPD” (Hodges et al., 1999). We mostly used version 8.15. However, some features were taken from a newer version (9.08). (iii) "from-NK92" means “as described in Nakai & Kanehisa (1992).” (iv) The protein sequence patterns are written in the UNIX regular expression format. 

Feature
Type
Subtype
%Change
Status
Bins

MIT1
Motif
Signal
5.1
Important
2

GLYC
Motif
Signal
1.2
Important
10

SIGNALP
Motif
Signal
1.0
Important
2

SIG1
Motif
Signal
0.7
Important
2

NUC1
Motif
Signal
0.6
Important
6

PI
Overall-sequence
Isoelectric Point
1.3
Important
10

TMS1
Overall-sequence
Transmembrane helix
0.9
Important
5

MAYOUNG
Whole-genome
Absolute expr. (GeneChip)
3.6
Important
10

KNOCKOUT
Whole-genome
Knockout mutation
1.8
Important
2

MRDIASD
Whole-genome
Expr. fluctuation (Diauxic Shift)
1.4
Important
10

PLMNEW1
Motif
Signal
0.3
Included
2

FARN
Motif
Signal
0.3
Included
2

GGSI
Motif
Signal
0.3
Included
2

MIT2
Motif
Signal
0.2
Included
2

HDEL
Motif
Signal
0.1
Included
2

NUC2
Motif
Signal
0.1
Included
3

POX1
Motif
Signal
0.1
Included
2

MRCYELU
Whole-genome
Expr. fluctuation (Cell Cycle)
0.4
Included
10

MRCYCSD
Whole-genome
Expr. fluctuation (Cell Cycle)
0.2
Included
10

COILDCO
Motif
Coiled coils
-0.1
Redundant
2

CKIISITE
Motif
Kinase target site
-0.1
Redundant
2

CDC28SITE
Motif
Kinase target site
-0.3
Redundant
4

PKASITE
Motif
Kinase target site
-0.5
Redundant
5

ROSTALL
Overall-sequence
Surface residue composition
-0.8
Redundant
9

LENGTH
Overall-sequence
Protein length
-1.6
Redundant
10

MASAGEL
Whole-genome
Absolute expr. (SAGE)
-0.3
Redundant
10

MRCYC15
Whole-genome
Expr. fluctuation (Cell Cycle)
-0.4
Redundant
10

MRCYC28
Whole-genome
Expr. fluctuation (Cell Cycle)
-0.6
Redundant
10

MASAGEG
Whole-genome
Absolute expr. (SAGE)
-0.7
Redundant
10

MASAGES
Whole-genome
Absolute expr. (SAGE)
-0.9
Redundant
10
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