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Abstract

A variety of methods are currently available for creating multiple alignments, and these can be used

to define and characterize families of related proteins, such as the globins or the immunoglobulins.

We have developed a method for using a multiple alignment to identify an average structural “core,”

a subset of atoms with low structural variation.  We show how the means and variances of core-

atom positions summarize the commonalities and differences within a family, making them

particularly useful in compiling libraries of protein folds. We show further how it is possible to

describe the rotation and translation relating two core structures, as in two domains of a multi-

domain protein, in a consistent fashion in terms of a “mean” transformation and a deviation about

this mean.  Once determined, our average core structures (with their implicit measure of structural

variation) allow us to define a measure of structural similarity more informative than the usual RMS

deviation in atomic position, i.e. a “better RMS.”   Our average structures also permit

straightforward comparisons between variation in structure and sequence at each position in a

family.

We have applied our core finding methodology in detail to the immunoglobulin family. We find

that the structural variability we observe just within  the VL and VH domains anticipates the

variability that others have observed throughout the whole immunoglobulin superfamily; that a core

definition based on sequence conservation, somewhat surprisingly, does not agree with one based

on structural similarity; and that the cores of the VL and VH domains vary about 5° in relative

orientation across the known structures.
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1. Introduction

The number of  protein structures in the Protein Data Bank is now quite large and is rapidly

increasing.  A recent estimate puts the total number of chains within the databank at 3000,

increasing by about one a day (Orengo, 1994). One way to deal with this huge amount of structural

information is by grouping related proteins into families, such as such as the globins or the

immunoglobulins (Levitt & Chothia, 1976; Chothia & Finkelstein, 1990; Richardson, 1981).

Members of protein families have similar overall folds but differences in their detailed structure.

The classification of the entire databank using protein families has recently been attempted by a

number of groups (Johnson et al., 1990; Sander & Schneider, 1991; Murzin et al., 1994;  Holm et

al., 1993; Orengo et al., 1993; Pascarella & Argos, 1992; Orengo et al., 1994), and it has been

found that some protein families are quite large. The immunoglobulin family is a case in point. In

the databank, there are currently over 25 structures of different antibody molecules, and when the

whole immunoglobulin superfamily is considered (Bork et al., 1994), there are at least 20

additional immunoglobulin-like structures, which include such disparate proteins as the enzyme

myosin light chain kinase and the cell-surface receptor CD2.

Thus, because of both the great numbers of structures and of families, it has become desirable

(even necessary) to summarize the common features within a family, whilst separating out the

variable ones. One of the most basic commonalities shared by each member of a family is a set of

atoms which occupy the same relative positions in space.  Our focus here is in identifying these

atoms, and then in characterizing them statistically.  We show how to construct an average core

structure for a protein family in such a way that the average is unbiased and the resulting structure

has acceptable stereochemistry.  This core structure can then be used to characterize the structural

variability within a family, to define the average relative orientation of domains in multi-domain

complexes, and to develop new measures of similarity between members of the same structural

family.   We illustrate our ideas here through application to the archetypal protein family: the all β-

sheet immunoglobulins.  Previously, we had demonstrated some preliminary aspects of the core

calculation on the all α-helical globin family (Altman & Gerstein, 1994).  Our method for defining
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regions of low structural variation is also useful for the analysis of structures solved NMR

spectroscopy and generated by molecular dynamics  since both techniques produce an ensemble of

structures — in a sense, a family of very similar structures.

For the purposes of this discussion, we define “core atoms” as those having the same local

conformation (i.e. secondary structure) and the same global conformation relative to their non-

bonded neighbors across a family. This is similar to core-structure concept developed extensively

by Chothia & Lesk, who have used it for such applications as analyzing protein motions (Lesk &

Chothia, 1984; Chothia & Lesk, 1986; Lesk, 1991). However, Chothia & Lesk confine their core

structure calculations to comparisons between pairs of proteins, while we aim to generalize the

calculations so they are applicable to the many proteins in a family. Many other investigators have

also used the term “core structure” but in a different sense from that used here. For instance, Bryant

& Lawrence (1993) define a core in terms of conserved secondary structure elements, and others

define a core structure based on measures of sequence conservation or hydrophobicity (Swindells,

1995).  As will be discussed later, our results indicate that a core based purely on structural

considerations is not the same as one based on sequence considerations, so, clearly, these

definitions of “core” do not always coincide.

Practically, our method directly builds upon the large amount of recent work on superposition of

families of structures.  This work has either focused on finding the optimum superposition of a

series of structures in which the corresponding atoms already have been defined (Diamond, 1992;

Gerber & Müller, 1987; Kearsley, 1990; Shapiro et al., 1992) or on finding a structural alignment

between a pair of structures for which the corresponding atoms have not been defined (Taylor &

Orengo, 1989; Sali & Blundell, 1990; Holm & Sander, 1993; Subbiah et al., 1993;  Yee & Dill,

1993).  Our core finding builds on both of these foundations: structural alignments are refined

iteratively to include only low variance “core” atoms using the techniques of series superposition.

Because the average cores we define have reasonable stereochemistry, coupled with a consensus

sequence, profile, or hidden Markov model (Gribskov et al., 1990 ; Bowie et al., 1991; Overington

et al., 1992; Krogh et al., 1994), they may also be useful as starting points for a variety of
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homology modeling tasks. Furthermore, a library of carefully constructed core structures could

eventually prove useful for summarizing the roughly 1000 folds that are thought to occur in nature

(Chothia, 1992).  This is particularly true with regard to the nine superfold structures (Orengo et

al., 1994). A library of core structures could also help speed up threading calculations, which

match a sequence against a collection of structures  (Ponder & Richards, 1987; Sippl, 1990; Jones

et al., 1992; Bryant & Lawrence, 1993; Madej & Mossing, 1994), and make them less sensitive to

the non-essential details of individual structures.

Once a core for a family of structures has been calculated,  it is possible to use it to assess the

similarity of two structures in the family in a better way than the usual RMS deviation in atom

positions after doing a fit.  The problem with the usual RMS value is that it weights each atom

position equally and it gives equal weight to deviations in any direction.  That is, a poorly fitting

atom in the core of a structure is given equal weight to a poorly fitting atom in a highly variable

surface loop.  We use the variances calculated as part of the average core structure to weight the

deviations and then use these “calibrated” deviations to calculate a better RMS.

For a multi-domain protein, such as the antibody molecule, one could compute an average core

structure for all the domains taken together.  However, this average structure would have the effect

of any rigid-body motion between the domains spread throughout it in a correlated and highly

redundant fashion.  Consequently, we describe the average core structure of a multi-part protein in

terms of the individual core structures of its component parts and then the average rigid-body

positioning of one part relative to the another.  We, furthermore, show how this average

positioning can be described in terms of a mean and a variance in a manner that is completely

consistent with the formalism we use to construct the average core structures.

2. Methods

The methods developed and applied in this paper fall into five categories: finding an average core,

characterizing structural variation using this core, calculating sequence variation in a way that can

be related to structure variation, using our calculation of structural variation to define a better RMS,

and defining the average positioning of two cores.
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a. Core finding algorithm

The core finding algorithm has been described in detail previously (Altman & Gerstein, 1994).  It

can be summarized as a five step process: (1) We start with an ensemble of aligned structures  (e.g.

all the immunoglobulin structures after they have aligned according to the Kabat numbering).

Initially, we consider each atom position that occurs in every aligned structure to be a member the

of the “putative core.” (2) We construct an unbiased average structure from all these putative core

positions, using one of the available methods for superimposing a series of corresponding

structures (Altman & Gerstein, 1994; Diamond, 1992; Gerber & Müller, 1987; Kearsley, 1990;

Shapiro et al., 1992). (3) We determine the spatial variation of each group of aligned atoms about

the average structure in terms of the volume of an “error ellipsoid” (as described in the next

section). (4) We remove from the putative core the position with the largest structural variation. We

then return to step 2 with a smaller core. We repeat this process until all  aligned positions have

been removed from the core. (This is a generalization of the “sieve-fit” procedure described in

Gerstein & Chothia, 1991). The result is an ordered list of atomic positions, ranked according to

structural variability, which we call the “throw-out” order. (5) Based on a variety of different

criteria, discussed in detail in the caption to Figure 3, we pick one cycle in this overall core-finding

procedure as best representing the separation between core and non-core atoms. The average

structure calculated in this cycle is what we call the “core structure.”

b.  Calculating the Structural Variation of a Given Position

When all the structures in the ensemble are fit to the average core structure, it is possible to quantify

the structural variation at each aligned position using an “error ellipsoid.”  We summarize the

variability of each aligned position i over all structures in the ensemble of structures by using the

variance/covariance matrix C.  Each element in this 3 × 3 matrix, represented by cov(m,n), is the

covariance between two coordinates, m and n, where m and n can be 1, 2, or 3 (representing the x,

y, and z coordinates), over the ensemble at position i. Thus, for instance, cov(1,3) represents the

covariance between the x and z coordinates, and the diagonal elements of the matrix, cov(m,m),

contain the variance in coordinate m at position i over the ensemble.  The variance/covariance
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matrix can be translated into an “ellipsoid of errors” centered at the mean position of the atom x i .

To find the orientation and axes lengths of the ellipsoid, the matrix is diagonalized in standard

fashion to give:

Ci = Ri SiRi
−1 [1]

where Ri is a rotation matrix that specifies the orientation of the principal axes of the ellipsoid, and

S i is a diagonal matrix of eigenvalues.  The square roots of the eigenvalues (denoted by σx, σy,

and σz)  give the standard deviation of the distribution in its three principal directions and are

conventionally taken as the lengths of the semi-axes of the ellipsoid.  Consequently, if the

distribution of atomic positions is a three-dimensional normal distribution (for which we provide

evidence for in Section 3.c), then an ellipsoid drawn at one standard deviation should contain

approximately two thirds of the atoms in the sample.  In order to get a single scalar estimate of the

amount of variation in atomic position, we calculate the volume of the ellipsoid from the

eigenvalues:

V = 4
3 x y z = 4

3 det C  . [2]

c.  Calculating the Sequence Variation of a Given Position

One of the advantages of our “volumetric” measure of structural variability is that it can be directly

compared with measures of sequence variability at each aligned position, to see whether they are

correlated.  We calculate sequence variability through the computation of an information-theoretic

entropy (Schneider & Stephens, 1991; Schneider et al., 1991;  Shenkin et al., 1991).  In particular,

we measure variability of a given position i in the alignment in terms of its entropy relative to that if

the sequences were aligned randomly:

Rseq (i ) = f (t )
t =1

20∑ log2 f (t ) − f (i ,t )
t =1

20∑ log2 f (i ,t )  . [3]

where the first and second terms represent the standard Shannon entropy H for the random and

actual alignments, f(i,t) is frequency of amino acid t  at position i, and f (t )  is the average frequency

of residue type t over the whole the alignment.
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d. Using the Core to Calculate a “Better RMS”

Once a core for a family of structures has been calculated, it can be used to assess the similarity

of two structures in the family in a better way than the usual RMS value in atom positions.  The

basic idea is that one uses the amount of structural variation observed at each position in the core to

scale the interatomic distances between two structures.   If an atom position has low structural

variation in the core structure and if the difference in the position of the corresponding atoms in two

structures is large relative to this variation, then this difference should contribute more to the overall

of difference between the two structure.  Conversely,  if the difference in position of corresponding

points is small relative to the variation, then it should contribute less, regardless of the absolute

value of the difference.

In the usual RMS measure of similarity, DRMS, at each residue position i, one takes the vector

difference between the coordinate positions in the first structure and the second structure

di = x1i − x 2i [4]

Then one averages the squares of these differences (i.e. the Euclidean distance) and takes the

square root to get the RMS value,

DRMS = di
2 [5]

where the brackets denote averaging over the residues position index i.  It is obviously harder to fit

more residues well, and the overall RMS value, from fitting two arbitrarily selected segments of

protein structure of length M, increases proportionately with the square root of M (McLachlan,

1984; Remington & Matthews, 1980).

The usual RMS measure weights the difference di at each residue position equally.  However, if

a given position is highly variable in all the structures used in the core finding procedure, it might

be more reasonable to down-weight the coordinate difference at this position.  Furthermore, the

structural variability in a family may be oriented preferentially along a certain direction, so one

would want to weight down the variation in this direction more than in the other directions.  Using

the “ellipsoid of errors” representation for structural variability developed in the previous sections,

it is possible to make such a compensation.  The weighted coordinate difference at each position w i
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is the normal distance expressed in the units of standard deviation along the principal axes of the

errors ellipsoid (discussed above):

w i = Si

− 1
2Ri

−1di [6]

The above formula expresses the operation of translating and rotating the atoms into the coordinate

system of the errors ellipsoid and then scaling their separation by an amount inversely proportional

to the lengths of its principal axes.  The root mean square (i.e. RMS) of this “standard-deviation”

distance can then simply be computed to give, what we call an SD-RMS:  DSD = wi
2 .

Because w i and the SD-RMS are expressed in units of standard deviation, they can not simply

be related back to normal RMS values, which are usually expressed in units of Ångstroms.

Consequently, it is helpful to introduce a conversion of the standard deviation “unit” back into

Ångstroms.  For each position, we define a “calibrated Ångstroms” distance ai to be

 ai =
DRMS

DSD

w i [7]

where the ratio DRMS/DSD is the “conversion factor” between the average standard deviation unit

for atom i  and Ångstroms.  Thus, the calibrated-Ångstroms distance expresses the coordinate

difference between two atoms in Ångstrom units that have be inflated or deflated according to the

structural variability observed at position i the family of structures.  Note that the RMS value of the

calibrated Ångstrom distances (which is taken over all atoms) is necessarily the same as that of the

standard RMS  value.   However, at particular positions the calibrated Ångstrom distance will be

larger than the normal Cartesian distance if there is little variability in the family — i.e. these are

expensive “Ångstroms.”  Conversely, if there is much variability in the family, the calibrated

distance will be less than the normal distance.

Finally, it is possible to do this whole analysis with one of the two structures as the average

structure — i.e. x2i  = xi .  This allows one to decide which of an ensemble of structures is most

like the mean structure overall or at a given residue position.
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e. Finding the Average Orientation of Two Rigid Cores

For a multi-domain protein, such as the immunoglobulins, one could compute an average core

structure for all the domains taken together.  However, this core structure would have the effect of

any rigid-body motion between the domains spread throughout all of its error ellipsoids, in a

correlated and highly redundant fashion.  This would obviously create problems in the core-finding

procedure, as one would tend to throw out all the atoms of mobile domain together, and it would

make detecting the subtle structural variations within a mobile domain more difficult.

Consequently, it is useful to describe the average core structure of a multi-part protein in terms of

individual core structures of its component parts and then the average rigid-body positioning of one

part relative to the another.  The variation about this mean positioning would summarize the range

of orientations that are adopted throughout the ensemble of structures.

Describing the average relative position of two rigid bodies involves calculating an average

translation and an average rotation.  The translation is straightforward.  We treat all the translation

vectors exactly the same way as the atom coordinates at one aligned position in a family.  That is, to

get a mean translation we just average the vectors.  Likewise, to describe the variation, we can form

a variance/covariance matrix C from the translation vectors and then compute an “errors ellipsoid”

volume from the determinant this matrix.  This allows us to describe a rigid-body translation in

exactly the same the language as we use to describe the individual atom positions.

Describing an average rotation is not so simple.  As rotations do not commute, one can not

simply compute a normal (commutative) average all the components in a list of rotation matrices.

However, for small rotations, is possible to express each rotation as a vector and then average these

in a straightforward fashion.  By a small rotation we mean one with a small rotation angle θ, such

that sin θ ≈ θ.  This is usually about 10°.  The vector representation we use for rotations are the

four quaternion parameters, qT = (λ µ  ν  σ) (Altmann, 1986).  These are simply related to the

rotation angle θ and the direction cosines of the rotation axis l, m, and n:

qT = (ls ms ns c )  [8]

where
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s = sin
2

  and c = cos
2

.

As opposed to the direction cosines, for which the rotation angle is treated distinctly differently

from the rotation axis, quaternions have the advantage that all four components enter on essentially

equal footing.  Consequently, in averaging rotations it is reasonable to average each component of

series of quaternions in an equivalent and symmetric fashion.  Since each quaternion has unit length

(i.e. q2   = λ2 + µ2 + ν2 + σ2 = 1), we treat the average quaternion as a vector constrained to be

on the unit sphere (in four dimensions), and we average a number of orientations by vector

summing their quaternion vectors and then normalizing the result.  That is,

q =
q j∑
q j∑

, [9]

where the qj are individual rotations and q  is the average rotation. 1

The beauty of the quaternion representation is that since it uses vectors to describe orientation, it

is possible to describe the variation in orientations using the same formalism we used above to

describe the variation of atom positions in core structures and of the translations.  Since both the 4-

component quaternion and the direction cosines (l m n) are normalized to have a length of one, we

find that, for small rotations, the variation in orientation can be described completely in terms of

RMS variation in the rotation angle, 2   .

In averaging rotations, one additional point must be considered.  Often the rotation that one

wants to average is conventionally described as large.  For instance, the average orientation of one

immunoglobulin domain relative to the another (i.e. VL to VH) is usually described in terms of a

pseudo two-fold axis or a 180° rotation.  This is hardly a small rotation and so would not appear

amenable to the averaging scheme discussed above.  However, in comparing a series of Fv

fragments, the difference  in orientation of one VL relative to another VL is small.  Consequently,

as shown in Figure 8, it possible to do the averaging calculation in “bootstrap” fashion.  One finds

1Note that for small θ, 2qT ≈ ( θl  θm  θn 2), so averaging quaternions is very similar to averaging the vector

representation for infinitesimal rotations (Goldstein, 1980).
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the difference in orientation of all VL domains as compared to an arbitrarily chosen first one and

then averages these small differences.  Then one combines the large rotation of the first VL relative

to VH with average of the difference rotations to get the correct average rotation of VL relative to

VH.  Differences relative this unbiased average can then be computed to get the variation in

orientations.
Fig. 8 her

3. Results

a. Immunoglobulin core
Fig. 1 her

We started with 12 VL (κ) domains and 12 VH domains (listed in Table 1A).  As shown in Figure

1, we used the the Kabat numbering scheme (Kabat et al., 1983) to align the VL and VH domains

individually, and we used the structural alignment in Chothia and Lesk (1987) to align the VL and

VH frameworks to each other.  After removing the three difficult-to-align hypervariable loops, we

started our core finding with 90 aligned positions for VL, 99, for VH, and 89 for the combined

VL-VH.  We found cores with 70 Cα atoms for VL, 87, for VH, and 52 for VL-VH combined.

The error ellipsoids for cores are shown in Figure 2.
Table 1 he

Fig. 2 h

Because of the way we chose the core vs non-core threshold, all the core structures had

acceptable Cα stereochemistry. As discussed in Figure 3, the Cα-Cα bond lengths were all nearly

3.8 Å and the Cα bond and torsion angles were within normal ranges.
Fig. 3 h

The throw out order was very similar for all three runs: from the original positions we first

threw out loop regions — in particular, the long loop connecting the C” strand to the D strand —

and then A’ and C” strands and the ends of G and C’ strands.  The second group of strands to be

thrown out included A and D; the third group included E and the rest of G and C’; and the last

group included B, C, and F.

The core structures included all of strands A, B, C, D, E, and F and most of the strands C’ and

G.  Only one of the strand residues sandwiched between the two sheets and none of the strand

residues forming the VL-VH interface were thrown out in the VL or VH cores.  (The sandwich and

interface residues were identified by Chothia et al. (1986) and indicated by “•” and “x” in Figure 1).
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The last residues to be thrown out include the absolutely conserved disulfide bridge, the buried Trp

(C4), and the residues immediately surrounding the disulfide (B5, F3, C4, B3, B4, E2, E3, E4,

and F2, indicated by a ‘p’ in Figure 1).   These residues constitute the “pin” holding together the

two immunoglobulin sheets (Lesk & Chothia, 1982).

We performed similar core calculations to the ones described above starting with a larger subset

of aligned atoms: i.e., we started with all backbone atoms or with all possible backbone atoms plus

all alignable sidechain atoms. These calculations resulted in essentially the same core structure and

throw-out order, indicating that Cα atoms alone were enough to define the essential features of the

core.

b. No correlation between sequence and structure variation

Figure 4 shows the relationship between sequence variation, measured by Shannon entropy, and

structural variation, measured by ellipsoid volume.  We find there is no significant correlation

between them (discussed more fully in the figure caption).  This is true whether we consider all the

aligned positions (89), the core positions (52), or the non-core positions (27).
Fig. 4 h

c. SD-RMS Calculations

After calculating the VL-VH combined core, we fit each of the 24 immunoglobulin variable

domains to it and then computed RMS and SD-RMS distances between all pairs. We then used

these distances to cluster the immunoglobulins into two different trees, which are shown in Figure

5.  The trees from the normal RMS and SD-RMS calculations are distinctly different, having a rank

correlation of only ~0.8.  This means that the SD-RMS is not a redundant calculation and does

indeed provide new and potentially useful information to use in comparing structures. Furthermore,

the comparison of the trees well illustrates how SD-RMS de-emphasizes the usual sources of

variation between between structures and accentuates the unique differences of each individual

structure.

Figure 6 illustrates the use of the calibrated Ångstrom measure:  for two representative variable

domains, we compare at each aligned positions the standard Cα-Cα distance with the calibrated
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Ångstroms distance.  In regions of little structural variability, such as in the B strand the calibrated

distance is greater than the normal distance.  This is because even small differences between

structures are very significant in this highly conserved region.  The contrasting situation is

observed in highly variable regions, such as the C”D turn, where the calibrated distance is usually

less than the normal distance.
Fig. 6 her

In order to evaluate the degree to which a three-dimensional normal distribution accurately

describes the distribution of actual atom positions around the average core structure, we plotted the

displacement of each atom in each variable domain structures from the average core structure (after

fitting all structures to the calculated core).  To put all the displacements on the same scale, we

expressed them in S.D. units as weighted coordinate differences w i .  Figure 7 shows the

distribution of these weighted coordinate differences for three arbitrarily selected α-carbons and the

aggregate distribution of weighted differences derived from all α-carbons.  The distributions are

unimodal, peaked at zero, and nearly symmetric.  Thus, to a good degree they can be considered

normal.
Fig. 7 her

d. Average orientation

The average positioning of the VH domains relative to a VL domains is described in Table 2.

We express this positioning as the rotation and translation necessary to superimpose a VL domain

onto a VH domain.  As described in the caption to the table, we chose our coordinate system so that

the average  transformation could simply be described as a 173° rotation around the z axis followed

by a 24.4 Å translation along the x-axis.
Table 2 he

Once we found the mean transformation we could compute deviations about this mean for each

structure.  These deviations are the incremental rotation and translation that need to be applied after

the mean transformation to correctly position the VL and VH domains in each Fv fragment.  We

find that on average the incremental rotation is 5.4° and the incremental translation is 0.94 Å.  The

incremental rotations appear to be roughly equally spread among the three axis directions (x, y, and
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z).  However, most of the incremental translation is in the z direction (parallel to the pseudo-

twofold), while the least is in the x-direction.

The amount of rotation and the amount of translation required are fairly well correlated (with a

correlation coefficient of 0.79) so that structures that require significant additional translation also

require further rotation.  Structures that are close to the mean orientation are HyHEL-10, which has

the smallest incremental translation (0.26 Å) and a small incremental rotation (4.5°),  and B13I2,

which has a small translation (0.43 Å) and the smallest rotation (3.6°).  The structure farthest from

the mean is NC41, which has both the largest rotation and largest translation (7.6° and 1.8 Å).

Note that even this maximum rotation is rather small, so the assumptions underlying the rotational

averaging procedure are fully satisfied.

4. Discussion

a. Methodology

Our core finding procedure requires an initial alignment between the structures in a family.  It then

iteratively refines this alignment, throwing out atoms with high spatial variation. It is designed to

work on families of relatively similar structures, such as the globins or immunoglobulins, where it

is possible to get an initial structural alignment by eye or by sequence alignment. We, clearly,

depend on a high-quality alignment as a starting point, and the availibility of automatic structural

alignment procedures (Taylor & Orengo, 1989; Sali & Blundell, 1990; Holm & Sander, 1993;

Subbiah et al., 1993;  Yee & Dill, 1993) increases the applicability of our method. Considering the

analogy with methods for multiple sequence alignment (Subbiah, 1989), we believe our method for

finding and refining an unbiased average could extend these pairwise structure alignment

procedures to allow them to perform multiple structural alignment.

The basic core finding procedure we present is also only applicable to monomeric proteins.

However, we show how it is possible to extend it for use on multi-domain proteins such as the

immunoglobulins in an intelligent and consistent fashion. Since the orientation averaging

calculations are not that computationally expensive, we see no limitations in applying our

calculations to even larger assemblies than immunoglobulin Fv fragments. Furthermore, our
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formalism for describing average positioning of two rigid cores has obvious applications for

describing the rigid-body motion of domains (Gerstein et al., 1993, 1994) and the rigid-body

docking of macromolecular complexes, such a protein binding to DNA (Suzuki et al., 1994, 1995).

The core structures generated by our procedure exhibit acceptable stereochemistry.  This is a

natural consequence of the way we discard the most variable positions and only average α-carbons

(and thus never have to worry about averaging over a flipped peptide).  Moreover, because of their

acceptable stereochemistry and their variability measures at each site, our core structures might

provide good starting points for model-building and threading, and this, in turn, suggests that they

may provide a useful representation to use in building up a compact library of folds.

Another application for our core structures is that they allow one to compare structures using the

SD-RMS and calibrated Ångstroms.  These measures of structural similarity emphasize differences

between structures in regions of low variability and discount them in regions of high variability.

Consequently, they are useful in highlighting structures with particularly distorted core geometry

and in assessing whether a particular structure differs from the other members of the family in a

typical or unique fashion.

Unlike other aspects of our procedure, the way we represent the structural variation of a

particular site with an “error ellipsoid” is somewhat arbitrary.  Underlying such a representation is a

normal (i.e. symmetric and unimodal) model for the distribution of actual atom coordinates around

the average structure.  Our results show that at least for the immunoglobulins this assumption of

normality is reasonable.  However, there are clearly cases (e.g. particular surface sidechains) in

which the distributions may be multimodal and asymmetric.  In these cases, neither our core-

finding algorithm nor our SD-RMS calculation would lose its applicability or validity since it is still

completely valid to perform calculations based on the first two moments, i.e. mean and variance, of

an asymmetric, multi-modal distribution.  However, certain common interpretations  of our average

core structures would not be valid (e.g. that the average structure is the most probable location for

atoms in a family or that a one standard deviation contour contains two-thirds of the atoms in a

family).
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Another aspect of procedure that is somewhat arbitrary is the way we choose a threshold

between core and non-core.  We used the variance of the non-core atoms as a criteria because it was

straightforward to calculate and produced consistent results (as discussed in the caption to Figure

3).  For specific applications one might want to choose a different way of drawing the line between

core and non-core atoms.  For instance, one could use a particular maximum ellipsoid volume (e.g.

1 Å3) as a cutoff for core atoms.  Such a cutoff would have the advantage of being even more

directly related to the stereochemistry of the resulting core than is our present criteria. Alternatively,

one could choose a core cutoff based on minimizing the overlap between the ellipsoid volume

distributions of core and non-core atoms.

While the particular dividing line between core and non-core is arbitrary, the throw-out order

generated by our procedure is not.  This ordering is essentially a ranking of the atoms by their

structural variability in the family.  The throw-out order does not depend on whether one starts core

finding with all possible aligned atoms, just mainchain atoms, or just Cα atoms.  Residues appear

to be thrown out as units.  This suggests that for finding an average core structure for a family  one

gets most of the relevant information by just using α-carbons.

b. Immunoglobulin Core

Our analysis of the immunoglobulins shows that the throw-out order can be quite biologically

illuminating.  The immunoglobulin superfamily has recently been divided into 4 groupings on the

basis of sequences and structures: the V-set, the C1-set, the C2-set, and the I-set (Harpaz &

Chothia, 1994; Williams & Barclay, 1988).  The V-set includes the immunoglobulin variable

domains (i.e. VL and VH) as well as parts of the T-cell receptor (e.g. domain 1 of CD2).  Each

molecule in the V-set contains the 10 β-strands found in VL and VH (A, A’, B, C, C’, C”, D, E,

F, and G) with the exception of CD2 and CD4 which are missing strand A.  The C1-set includes

the constant domains of the immunoglobulins and various parts of Major Histocompatibility

Complex (MHC) molecules.  In comparison with the V-set, it is missing all of strands A’ and C”

and the ends of strands G and C’.  The C2-set is similar to the C1-set but is also missing strand D.

The I-set, which includes cell-adhesion molecules and surface receptors, is intermediate between
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the V-set and the C1-set in that it contains A’ and the end of G but does not contain C” and the end

of C’.  All immunoglobulin molecules contain a highly conserved “pin” holding together the two

sheets (Lesk & Chothia, 1982; Bork et al., 1994): this consists of two pairs of interlocking strands

(B-C and E-F), which contain the conserved disulfide and Trp and the residues contacting them.

The throw-out order we found during the immunoglobulin core finding is very consistent with

the division of the immunoglobulin superfamily.  The first strands thrown-out (C”, A’, and the

ends of C’ and G) were the most variable strands in the superfamily, determining whether a

molecule is in the V-set, I-set, and so forth.  The next grouping of strands thrown-out included

strands A and D.  The presence or absence of these strands separates VL and VH from other

members of the immunoglobulin family in a less fundamental way than C” or A’.  Finally, the last

strands to be thrown-out were B, C, and F, which contain the conserved disulfide and make up the

bulk of the pin.

 Thus, a ranking of structural variability within  the variable domains is consistent with structural

variability within the whole immunoglobulin superfamily.  This is quite a striking finding since no

where in our immunoglobulin core-finding did we incorporate any information about variability in

other members of the superfamily beside VL and VH, yet our procedure identified as variable those

parts of immunoglobulin structure that vary greatly throughout the superfamily.

Structural variability is clearly correlated with sequence variability at the level of the overall fold

— i.e. similar sequences have the same fold.  However, with regard to the immunoglobulins, we

find that sequence variation is not correlated with structural variation in terms of the detailed

positioning of atoms (as measured by our error ellipsoids). This is true whether we consider just

the core atoms or both core and non-core atoms. Our results are consistent with the idea that

structural accommodation is global: in responding to mutations helices and sheets shift slightly,

more or less as rigid bodies (reflecting their fixed hydrogen-bonded geometry), and spread the

effect of the mutation throughout whole core. Such global accomodation has been found in the

structures of T4 lysozyme mutants (Eriksson et al., 1992; Baldwin et al., 1993).
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Previously, we demonstrated similar results regarding sequence and structure variability for the

globins (Altman & Gerstein, 1994). Our work with the globins also manifest the importance of the

throw-out order. In particular, we found that purely on the basis of throw-out order the globins

could be partitioned into a more variable region (the F helix) and a conserved core, which turned

out to have the essentially the same structural elements as the repressor protein.

For the immunoglobulins, as well as the globins, it appears that the parts of the protein thrown

away first had fewer tertiary interactions than those thrown away later. For the immunoglobulins

this is obvious in comparing, say, the first strands thrown-out (A’ and C”, on the edge of the

protein) with those thrown out last (B-C and E-F, in the center of the domain). Thus, the core-

finding procedure appears to start at the outside and successively peel of away layers of protein

until it gets to the center.

5. Conclusion

We have presented a method for finding an unbiased, average structural core and for finding the

average orientation between two rigid cores.  An integral part of our method is assigning a measure

of variability (i.e. the error ellipsoid), to each position in a family and ranking all the positions

according to their structural variability (i.e. the throw-out order).  Once calculated this measure of

variability can be used to calculate a more informative measure of structural similarity than the

normal RMS difference atom positions — i.e. a better RMS — and can be easily compared with

sequence variability.  Furthermore, when applied to specific protein families, our average core

structures and measures of variability yield a number of biologically significant results.  For

instance,  by looking at variability just within the variable domains of immunoglobulin family, we

are able to see patterns of variability that reoccur throughout the whole superfamily.

As we have defined them, the core atoms represent the structurally invariant components of

protein families.  Since they adopt the same position in all members of the family, the core atoms

are probably not responsible for functional differences within these families.  Instead, the atoms

which are classified as non-core are logically the ones to which functional differences can be

assigned.
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Availability of Results on the Internet

We make available C and lisp source code for performing the core finding and calculating the SD-

RMS; alignments of the immunoglobulins; the actual coordinates of the immunoglobulin cores;

ProteanD, a program for displaying error ellipsoids on a Silicon Graphics workstation; and further

documentation in hypertext form.  These items can be retrieved by sending e-mail to

mbg@hyper.stanford.edu or altman@camis.stanford.edu or through anonymous ftp to the

following URL:

ftp://camis.stanford.edu/pub/AvgCore/
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Table 1 Families, Structures, and Ensembles

A Structures used

PDB Immunoglobulin Species Reference chains

4FAB 4-4-20 mouse Herron et al.,  1989 H κ
1HIL 17/9 mouse Schulze-Gahmen et al., 1988 H κ
1NCA NC41 mouse Colman et al., 1987 H κ
2FB4 KOL human Marquart et al., 1980 H λ
1DBA DB3 mouse Arevalo et al., 1993 H κ
1IGF B13I2 mouse Stanfield et al., 1990 H κ
2FBJ J539 mouse Suh et al., 1986 H κ
1MCP McPC603 human Satow et al., 1987 H κ
6FAB 36-71 mouse Strong et al., 1991 H κ
1FDL D1.3 mouse Amit et al., 1986 H κ
2HFL HyHEL-5 mouse Sheriff et al., 1987 H κ
3HFM HyHEL-10 mouse Padlan et al., 1989 H κ
1REI REI (VL dimer) human Epp et al., 1975 κ

B Ensembles used

Ensembles Number of
aligned
atoms

Number of
structures

Average, Min, and Max  RMS
between structures in ensemble
(Å per atom)

VL (κ) 90 12 0.79 0.44 1.33
VH 99 12 1.13 0.49 1.74
Common to both VL and VH 89 24 1.43 0.44 2.16

All immunoglobulin structures are of uncomplexed antibodies except for 2HFL, 3HFM, and

1FDL.  All the structures were taken from the protein databank (Bernstein et al., 1977).
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Table 2 The average positioning of immunoglobulin
VL and VH domains

Translation (Å) Rotation (°) (d)
components in
each direction

magnitude components in
each direction

magnitude

T(x) T(y) T(z) |T| R(x) R(x) R(x)

Mean (a) 24.4 0 -0.17 24.4 0 0 173 173

Deviation from Mean (b)
HyHEL-10 0.18 -0.18 0.00 0.26 3.9 0.7 -2.2 4.5
B13I2 0.21 -0.35 0.13 0.43 3.4 -1.0 0.3 3.6
McPC603 0.18 -0.29 0.28 0.44 -3.2 -1.7 0.5 3.6
17/9 0.30 -0.14 -0.51 0.61 1.3 2.9 -1.8 3.7
36-71 -0.12 0.43 0.63 0.77 -0.2 -2.7 3.3 4.3
KOL -0.36 -0.64 -0.46 0.86 -2.0 2.3 -3.3 4.5
HyHEL-5 -0.11 0.62 -0.63 0.89 4.2 0.8 -1.4 4.5
DB3 0.51 0.23 0.78 0.96 1.3 -4.9 5.2 7.3
D1.3 -0.38 -0.90 0.30 1.02 -2.3 1.4 -5.4 6.1
J539 0.28 0.23 -1.03 1.09 -5.8 3.5 -3.0 7.4
 4-4-20 -0.06 0.18 -1.11 1.13 -2.6 4.0 3.0 5.6
NC41 0.25 0.97 1.49 1.80 2.1 -5.4 4.9 7.6

RMSD (c) 0.28 0.51 0.74 0.94 3.1 3.0 3.3 5.4

The results of applying our orientation averaging procedure to the immunoglobulins: the mean

rotation and translation necessary to superimpose a VL domain onto a VH domain and deviations

about this mean.  (a) The mean transformation was derived from fitting the VH domain of a

particular structure to the average VL domain (using the VL-VH alignment in Figure 1) and then

refitting on VH.  The VL domain was positioned in the coordinate system so that its centroid is at

the origin; the rotation, which is applied before the translation, is around the z axis; and as much as

possible of the translation is along the x axis.  With these conventions, one would roughly  expect

the z axis to be parallel to the β-strands in the immunoglobulins; the x-axis to be perpendicular to

the plane of the β-sandwich in each domain; and the y axis to be parallel to the plane of the

sandwich but perpendicular to the strand direction.

(continued....)
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Table 1 (continued)

(b) Once the average transformation is applied one can determine the incremental rotation and

translation necessary to perfectly superimpose particular VH domains. These deviations from the

mean transformation are shown for each Fv fragment.  (c) The average of deviations from the mean

transformation in (b) are zero.  However, one can measure the spread of each component deviation

by computing its RMS, which is shown.  |T| is the magnitude of the translational component.

Analogously,  θ is the magnitude of the rotational component.  (d) The rotation is expressed in

terms of three components and an overall rotatation angle.  The three components are the direction

cosines scaled by the angle of rotation. They  are the usual way to describe small rotations

(Goldstein, 1980; Altmann, 1986).  Because sin θ≈θ for small rotations, the four numbers are

easily related to the four quaternion parameters:

q = ( , , , ) =
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As should be apparent the way the translations and rotation are expressed in this table is completely

equivalent. This one of the strengths of the quaternion representation.
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Figure 1 Outline of immunoglobulin structure

Part (A) shows a schematic outine of the structure of  an immunoglobulin Fv fragment, looking

down the pseudo-twofold axis at the hypervariable loops.  The 9 principal strands in each domain

are indicated by boxes, along with the standard strand names (A-G).  (Loops 1-3 are also labeled,

and strand A' is omitted for clarity.)  Part (B) is a table that gives a detailed overview of the

structural role of each immunoglobulin residue in conjuction with the degree of structural variability

found for it by our core-finding procedure.  The leftmost two columns (a) show the Kabat

numbering (Kabat et al., 1983) for the antibodies and the alignment we used between VL and VH.

Black bars mark  loops 1, 2, and 3, and  the 3 hypervariable loops.  The first annotation column (b)

shows a canonical labeling scheme for the residues within the β-sheets, which is derived from the

work of Chothia and others (Lesk & Chothia, 1982; Chothia et al., 1985; Chothia & Lesk, 1987;

Chothia et al., 1988; Chothia et al., 1989; Harpaz & Chothia, 1994).  The “inner” sheet that forms

that VL-VH interface consists of strands A’, C, C’, C”, F, and G and the “outer” sheet consists of

strands A, B, D, and E.  The next annotation column (c) gives additional information about the

structural role of the residues: x, •, and o are β-strand residues that, respectively, participate in the

VL-VH interface (x), pack between the 2 sheets (•), or are not in the two preceding categories (o); b

are residues in a β-bulge; C and W are the conserved Cys and Trp; p are the residues (with the

conserved C and W) that form the conserved “pin” identified by Lesk & Chothia (1982) that holds

the two sheets together; v and ^ are residues in interstrand loops on the side of the molecule near or

not-near the hypervariable loops.  The columns marked “throw-out order” (d) give the order that

residues were thrown out in the core finding procedure when it was applied only to the VL

structures, only to the VH structures, and to the VL and VH structures taken together.  For the

latter calculation,  the 12 VL and 12 VH structures were aligned based on this table and then the

core-finding routine was applied to this whole group of 24 structures to generate an average

structure that is representative of both VL and VH.  The throw out numbers marked with filled-in

black boxes correspond to residues that were not included as part of the core and those simply

boxed correspond to the residues that were the last 15 residues to be thrown out last.  It is notable

that the two conserved Cys residues and one conserved Trp were among this residues last to be

thrown out.
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Figure 1 (continued)
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Kabat (a) Annotation Throw-out order  Kabat Annotation Throw out order
 VL    VH (b) (c) VL VH VLVH (d)   VL   VH VL   VH    VLVH

1 1 ^ 1 1 2 53 56 C"1 11 11 1
2 2 ^ 8 19 10 54 57 C"2 7 31 8
3 3 ^ 36 70 38 55 58 C"3 9 56 7
4 4 A1 • 51 71 55 59 57
5 5 A2 o 38 61 47 60 22

6 6 A3 • 89 49 50 56 61 v 2 7 3
7 7 21 51 23 57 62 v 10 5 4
8 29 58 63 v 42 4 12
9 8 8 59 64 v 41 9 13

10 9 A'1 o 46 3 5 60 65 v 43 2 14
11 10 A'2 o 45 14 21 61 66 v 63 13 24
12 11 A'3 o 22 30 25 62 67 v 65 29 35
13 12 A'4 • 18 45 33 63 68 D1 o 64 59 51

14 13 v 19 46 41 64 69 D2 • 59 64 61

15 14 v 20 47 42 65 70 D3 o 32 60 49
16 15 v 26 42 40 66 71 24 52 48

17 16 v 25 26 32 67 72 16 41 17
18 17 v 30 38 34 68 73 53 16 16
19 18 B1 • 60 37 64 74 ^ 6
20 19 B2 o 69 58 77 75 ^ 15
21 20 B3 •p 57 91 76 69 76 o 75 40 37
22 21 B4 op 81 97 78 70 77 E1 o 70 76 56

23 22 B5 C 74 94 79 71 78 E2 •p 80 81 70

24 23 B6 o 52 72 53 72 79 E3 op 79 77 74
25 24 B7 • 34 53 46 73 80 E4 •p 77 75 75

25 21 74 81 E5 o 76 50 57

Loop 1 75 82 E6 • 58 36 36

33 32 76 82a v 31 35 29

33 34 C2 • 40 65 65 77 82b v 33 20 31
34 35 C3 x 78 74 88 78 82c v 37 39 43

35 36 C4 W 86 89 85 79 83 v 27 43 44

36 37 C5 x 85 88 83 80 84 v 13 44 30
37 38 C6 • 90 87 84 81 85 v 23 83 45
38 39 C7 x 88 86 87 82 86 v 28 99 52

39 40 C8 o 62 54 27 83 87 v 35 98 54

40 41 v 15 55 15 84 88 F1 • 48 96 69

41 42 v 4 23 6 85 89 F2 o 83 95 89
42 43 C'1 o 12 10 9 86 90 F3 • 87 93 86

43 44 C'2 ob 14 27 18 87 91 F4 xp 82 92 82
44 45 C'3 xb 47 79 62 88 92 F5 C 84 90 81
45 46 C'4 o 73 85 80 89 93 F6 x 56 73 71
46 47 C'5 xb 55 69 73 90 94 F7 o 5 25 20
47 48 C'6 •b 72 34 72 95 12

48 49 C'7 • 71 28 28 Loop 3

49 50 C'8 o 66 33 22 97 102 G1 o 39 24 26

51 66 98 103 G2 x 49 67 63
52 18 99 104 G3 • 50 62 60

Loop 2 100 105 G4 ob 61 63 59

101 106 G5 •b 68 80 66
102 107 G6 • 54 78 67
103 108 G7 o 67 84 68
104 109 G8 • 44 82 58

105 110 G9 o 17 68 39

106 111 G10 • 6 48 19
107 112 G11 o 3 17 11       Rough Figure 1-B
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Figure 2 Average core structures of the immunoglobulins

(A) The mean positions and ellipsoids are shown for the 89 atoms in the common alignment of the

combined VL-VH domain (LEFT).   The non-core Cα atoms (with ellipsoids at two standard

deviations) are shown  (CENTER).  The core atoms are also shown  (RIGHT).  The central

portions of the beta-strands make up the core. Part (B) shows the cores of the VL and VH domains

positioned by the average transformation (discussed in Table 2) to yield an average Fv fragment.

The view is the same as in the schematic in Figure 1,  down the pseudo-two fold axis.
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Figure 2 (continued)
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Figure 3 Determining a core vs non-core threshold
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Depending on the specific application, a variety of measures can be used position the a threshold

within the throw-out order to separate core from non-core. Most of these methods focus on means

and variances derived from the distribution of core and non-core ellipsoid volumes. The

distribution of these core and non-core volumes is shown here at cycle 17 in the core-finding

procedure. This cycle was picked because it maximizes the difference between the average core and

non-core volume. This often is a useful core vs. non-core threshold. However, for consistency

with previous work (Altman & Gerstein, 1994), we used a slightly different threshold.

(continued...)
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Figure 3 (continued)

We placed the threshold at a point that maximizes the variance in the ellipsoid volumes of the non-

core atoms (i.e., the width of the thick-line distribution). This threshold implies that core atoms

have a uniformly small ellipsoid size and this, in turn, makes it possible for the core structure to

have particularly good Cα stereochemistry.

Three parameters characterize the stereochemistry of an α-carbon structure (Levitt, 1976):  (1)

the distance between two connected Cα atoms, which should be 3.8 Å;  (2) the angle τ between

three connected Cα atoms, which can range between approximately 80° and 135°; and (3) the

pseudo-torsion angle α between four connected Cα atoms, which can acceptably range from -180°

to +180° and so does not form a meaningful constraint on a-carbon structure.  We tabulate statistics

on the Cα—Cα virtual bond length and the τ angle below.

Bond  Length Bond Angle 
Core Structure Average

(Å)
Standard Deviation

(Å and %)
Number
within

acceptable
range (±5°)

Number
outside of
acceptable

range

Immoglobulin
(Combined VL and VH)

3.77 0.051 1.4% 35 0

Immunoglobulin VL 3.78 0.061 1.6% 53 3
Immunoglobulin VH 3.76 0.039 1.0% 68 5
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Figure 4 Sequence variation versus structure variation

Graph of sequence variation versus structural variation for each immunoglobin position in the

combined VL-VH alignment. At a particular position, structural variation is measured by the

volume of the covariance matrix ellipsoid relative to that of the smallest ellipsoid, expressed on a

log-scale (so the variation in core and non-core volumes can be shown together). Sequence

variation is measured in bits per residue as the information content of a given position in the

alignment relative to that if the sequences were aligned randomly (as described in the methods

section).  There are 89 positions represented in total here and the overall Pearson correlation

coefficient is 0.35.  The 54 core positions are highlighted by white boxes.  The correlation

between information content and ellipsoid volume for just the core positions is 0.19; and for just

the non-core positions, 0.10.  If structural variation were correlated with sequence variation, one

would expect the points to lie on a line such that small ellipsoids would be associated with a large

difference in information content relative to the random sequence (and vice versa for large

ellipsoids).
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Figure 4 (continued)
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Figure 5 Structure clustering determined by normal RMS
versus by SD-RMS

We fit each of the 24 immunoglobulin variable domains onto the VL-VH combined core.  Then, for

each of the 24 ×  23 / 2 pairs of structures, we computed the normal RMS measure of similarity and

the SD-RMS.  Trees are a way of visually displaying these pairwise distances.  We made trees

clustering the immunoglobulin structures using normal RMS values (TOP) and our SD-RMS

(BOTTOM).  Since these trees were made only on the basis of structural similarity, they are not

expected to directly comparable to phylogenetic trees made on the basis of sequences. The trees

were made with the PHYLIP package (Felsenstein, 1989; Felsenstein, 1993) .  The Spearman rank

order correlation between the ordering of the structures based on normal RMS and on SD-RMS is

0.80 (with a probability of less than .00001 of the null hypothesis that the two orderings are the

same.)
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Figure 5 (continued)
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Figure 6 Measuring Structural Deviation with Calibrated
Ångstroms

The relationship between normal distance in Ångstroms and “calibrated Ångstroms” distance,

which is scaled according to the size of the errors ellipsoid.  The thick line in the top part of the

graph shows normal distance deviations (in Å) between two representative immuoglobulin

structures (the VH of 4-4-20 and the VH of NC41) after they both have been fit onto the combined

VL-VH core structure.  The thin line at the bottom of the graph shows the average structural

variation assigned to each position in computing the core structure.  This variation is expressed as

the volume of an error ellipsoid (in cubic Å) at each position.  The thick line shows the same

distance deviations as the thin line, but now calibrated according to the amount of variation at each

position.  The RMS value of these calibrated Ångstroms deviations and the normal distance

deviations are necessarily the same and are represented here by the horizontal dotted line.  Note that

in the B sheet, which runs from 18 to 24 and is a region of the immunoglobulin structure where

there is little variation within the family, the normal distances between the two structures are small

and beneath the overall RMS value, but the calibrated distances are large and above the line.  The

converse is true for positions in the highly variable C”D turn (from 59 to 67), where the calibrated

distances are less than the normal distances.
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Figure 6(continued)
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Figure 7 Distribution of atomic positions about the average
structure

The distribution of displacements from the average coordinates in the 24 immunoglobulin variable

domains.  We fit each structure to the core and then determined the weighted coordinate differences

from the mean for each atom.  The thin lines show a histogram of the x component of these

differences for Cα atoms at positions C2, A2, C”2, and F5 (using the strand numbering shown in

Figure 1).  The thick line shows a histogram of all the weighted coordinate differences aggregated

together.  Thus, this histogram was constructed from 6408 specific coordinate differences (= 3

coordinates × 89 atoms × 24 structures).
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Figure 8 Schematic showing orientation averaging

The details of the orientation averaging procedure. As shown in Step I (at top), we start with a

number of instances of a two-domain protein with the domains having different relative orientations

(called instance 1, instance 2, and so forth).  We then form the core structures of each domain (i.e.

domain A and domain B), which are represented in Step II positioned on top of each other with

centroids at the origin.  Then in Step III, we fit the first core structure (denoted A) to first instance

of the A domain.  This involves a transformation A(1).  Then we refit to superimpose the B core

structure on the B domain.  This involves transformation B(1).  We would like to do the same

thing for all other instances of domain A and domain B and then average all the B  transformations

to get an average transformation B .  However, this leads to a problem since the B  transformations

often involve large rotations — for instance, in the case of the immunoglobulins, an almost 180°

rotation is needed  — and large rotations are not compatible with our averaging procedure.  What is

small and compatible with our procedure are the “differences” amongst the various B

transformations.  Consequently, as shown in Step IV, for all instances after the first instance, after

applying the A transformation, we apply B(1).  Using this positioning we then fit the B core

structure to the B domain.  This involves a third transformation C(i), which is the difference

between the transformation required to superpose the B domain for the first instance and for

instance i.  After computing the C transformations for all instances except the first, we average

them with our orientational averaging averaging procedure.  Since the rotation in each C(i) is small

we can average the corresponding quaternion just like a normal vector.  After finding the average

quaternion rotation and average transformation, we recombine them to produce the average

transformation C .  The average transformation relating the core structures of domains A and B is

B =B(1)C . To calculate the variation about the mean transformation B , we repeat step IV

(above), but this time using B  in place of B(1). The “differences” we calculate, which we now

denote D(i), give the transformation needed to superpose the B core on the B domain after applying

the average transformation.  (Note that unlike the procedure depicted in step IV, where C(1) was

the identity transformation, it is necessary and possible to find a non-trivial value for D(1).)
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Figure 8 (continued)   Rough
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