1 Artificial transmembrane oncoproteins smaller than the 2 bovine papillomavirus E5 protein redefine sequence requirements 3 for activation of the platelet-derived growth factor β receptor 4 5 6 Kristina Talbert-Slagle¹, Sara Marlatt², Francisco N. Barrera³, Ekta Khurana³, 7 Joanne E. Oates⁵, Mark Gerstein³, Donald M. Engelman³, Ann Dixon⁵, 8 and Daniel DiMaio^{2,3,4*} 9 10 11 ¹Department of Epidemiology and Public Health, P.O. Box 208034 12 ²Department of Genetics, P.O. Box 208005 13 ³Department of Molecular Biophysics & Biochemistry, P.O. Box 208114 14 ⁴Department of Therapeutic Radiology, P.O. Box 208040 15 Yale University School of Medicine, New Haven, CT 06520 USA 16 ⁵ Department of Chemistry, University of Warwick 17 18 Room B600, Gibbet Hill Road, Coventry UK CV4 7AL 19 20 Running Title: Small transmembrane activators of the PDGF receptor 21 Keywords: transmembrane; oncogene; PDGF receptor; E5 protein; bovine papillomavirus 22 Word count: Abtract = 190; Text = 8,637

JVI Accepts published online ahead of print

^{*}Corresponding author: Tel: 203-785-2684; Fax: 203-785-6765; Email: <u>daniel.dimaio@yale.edu</u>

KTS 1

25	The bovine papillomavirus E5 protein (BPV E5) is a 44-amino acid homodimeric
26	transmembrane protein that binds directly to the transmembrane domain of the PDGF β receptor
27	and induces ligand-independent receptor activation. Three specific features of BPV E5 are
28	considered important for its ability to activate the PDGF β receptor and transform mouse
29	fibroblasts: a pair of C-terminal cysteines, a transmembrane glutamine, and a juxtamembrane
30	aspartic acid. By using a new genetic technique to screen libraries expressing artificial
31	transmembrane proteins for activators of the PDGF β receptor, we isolated much smaller
32	proteins, from 32 to 36 residues, that lack all three of these features yet still dimerize non-
33	covalently, specifically activate the PDGF β receptor via its transmembrane domain, and
34	transform cells efficiently. The primary amino acid sequence of BPV E5 is virtually
35	unrecognizable in some of these proteins, which share as few as seven consecutive amino acids
36	with the viral protein. Thus, small artificial proteins that bear little resemblance to a viral
37	oncoprotein can nevertheless productively interact with the same cellular target. We speculate
38	that similar cellular proteins may exist but have been overlooked due to their small size and
39	hydrophobicity.

40

41

JVI Accepts published online ahead of print

42 INTRODUCTION

43 Viruses are tiny relative to the cells they infect. The largest animal viruses encode at 44 most a few hundred genes, in contrast to the tens of thousands of genes expressed by the host 45 cell. To overcome the constraints imposed by their small size, viruses use multiple or even 46 overlapping reading frames and alternative splicing to produce more than one protein from single 47 transcripts, build capsids from repeating subunits, harness cellular mechanisms to produce viral 48 products, and express extremely small proteins. Several of these small viral proteins are 49 membrane-anchored, including the 44-residue SH protein of parainfluenza virus 5, which blocks 50 apoptosis of infected cells (16), and the 96-residue M2 protein of influenza A, which forms an 51 ion channel in endosomal membranes of infected cells and is required for infectivity {reviewed 52 in (38)}. One of the best-characterized viral small transmembrane proteins is the E5 protein 53 encoded by bovine papillomavirus type 1 (BPV E5). BPV E5 contains only 44 amino acids and 54 is thus essentially an isolated transmembrane domain (Fig. 1) {reviewed in (47)}. It is the 55 primary translation product from a small open reading frame and is sufficient to cause 56 tumorigenic cell transformation, making it the smallest known autonomous oncoprotein. 57 BPV E5 induces cell transformation by specifically activating a much larger cellular 58 target, the PDGF β receptor tyrosine kinase (8, 14, 30, 35). The PDGF β receptor, a single-span 59 transmembrane protein of more than 1000 amino acids, is normally activated by the binding of 60 its dimeric ligand, PDGF, to the extracellular domain of the receptor. In contrast, a dimer of the BPV E5 protein binds to the transmembrane domain of two monomers of the PDGF β receptor 61 (5, 8, 13, 34, 45), inducing ligand-independent receptor dimerization, trans-phosphorylation of 62 63 tyrosine residues in the intracellular catalytic domain of the receptor, and sustained mitogenic 64 signaling (24, 47). This interaction is highly specific; at normal expression levels, BPV E5 does

00	
67	Extensive characterization of BPV E5 showed that its ability to activate the PDGF β
68	receptor requires only a few specific features, in addition to its overall hydrophobic composition:
69	the ability to form covalently-linked homodimers mediated by two C-terminal cysteines, a
70	transmembrane glutamine that is important both for the homodimerization of BPV E5 and for its
71	interaction with the PDGF β receptor, and a juxtamembrane aspartic acid that provides a
72	negative charge necessary for interacting with the PDGF β receptor (17, 20, 21, 43, 44, 46).
73	These essential amino acids, gln17, asp33, cys37, and cys39, are perfectly conserved among the
74	E5 proteins of the other papillomaviruses including the deer papillomavirus E5 protein, which
75	also activates the PDGF β receptor and transforms cells (22). In contrast, the transmembrane
76	sequences of these proteins are otherwise not well conserved. These findings imply that the
77	fibropapillomavirus E5 proteins evolved from a common precursor and that various substitutions
78	of the hydrophobic residues in these proteins have been well-tolerated over evolutionary time, as
79	long as the four essential amino acids were preserved.
80	Mutational analysis of the BPV E5 protein supports these conclusions, demonstrating that
81	it can tolerate significant changes to its primary amino acid sequence without loss of activity, as
82	long as these essential amino acids are present. Frameshift mutations that introduced or removed
83	residues from the N-terminal sequence of BPV E5 had little effect on its ability to induce cell
84	transformation if the remainder of the protein was translated in-frame (6, 18). Removal of nine
85	C-terminal residues (positions 35-44) of BPV E5 also did not abrogate its activity, as long as the
86	juxtamembrane aspartic acid was preserved and a cysteine was introduced at the terminal
87	position, presumably to allow covalent dimerization (29). In addition, many hydrophobic

not bind or activate other receptor tyrosine kinases, not even the closely-related PDGF α receptor

66 (14, 33).

65

88	substitutions were tolerated in the transmembrane domain, but almost all of the active mutants
89	retained at least the transmembrane glutamine, the aspartic acid, and the C-terminal cysteines
90	(17, 18, 29). Indeed, insertion of a transmembrane glutamine into otherwise inactive proteins
91	with random transmembrane domains often restored transforming activity (23), and a
92	heterologous dimerization domain could compensate for loss of the cysteines (28). By screening
93	libraries that express thousands of small proteins with randomized transmembrane domains, we
94	identified small transmembrane proteins that induced focus formation in murine C127 fibroblasts
95	by activating the endogenous PDGF β receptor (10, 12, 39). These proteins were designed to
96	retain the N-terminal and C-terminal segments of BPV E5, including the cysteines important for
97	dimerization, and all of the active proteins shared at least 50% sequence identity with BPV E5
98	(11, 39).
99	In addition to inducing focus formation in C127 cells, BPV E5 can also induce PDGF β
100	receptor-dependent proliferation of murine hematopoietic BaF3 cells, which ordinarily require
101	the cytokine IL-3 for survival and proliferation. Parental BaF3 cells do not express the PDGF β
102	receptor and do not respond to BPV E5, but the E5 protein can induce growth factor
103	independence in BaF3 cells engineered to express the PDGF β receptor (8). Here, we used these
104	cells to isolate a 32-residue protein with a novel transmembrane domain that specifically
105	activated the exogenous PDGF β receptor in BaF3 cells, even though it lacked the
106	transmembrane glutamine, the juxtamembrane aspartic acid, and twelve C-terminal residues,
107	including the two cysteines. Furthermore, high-level expression of certain 36-amino acid
108	
	proteins with randomized transmembrane domains and no cysteines was sufficient to induce
109	efficient PDGF-receptor-dependent transformation of C127 and BaF3 cells, even though they
109 110	efficient PDGF-receptor-dependent transformation of C127 and BaF3 cells, even though they retained only seven contiguous amino acids from BPV E5. Our results demonstrate that small

111 transmembrane proteins that differ almost completely from the BPV E5 protein can effectively 112 activate the PDGF β receptor via transmembrane interactions and transform cells. Furthermore, 113 the elements once thought to be essential for this interaction can, in fact, be removed. Thus, by 114 studying artificial transmembrane proteins significantly shorter than the wild-type E5 protein, we 115 have redefined sequence requirements for PDGF β receptor activation and cell transformation.

116 MATERIALS and METHODS

117	Library and retroviral clone construction. To construct the LFC5 library, we used a
118	degenerate oligonucleotide with a fixed upstream sequence that encoded residues 9-13 of the
119	wild-type BPV E5 sequence, including a SpeI restriction site, followed by a randomized
120	sequence corresponding to residues 14-30 of the wild-type BPV E5 protein, and finally a
121	nucleotide sequence encoding residues 31-38 of the E5 sequence, with position 33 also
122	randomized. For the randomized codons, position one was an equal mix of A, C, T and G;
123	position two was a mixture of T:A:C in the ratios 5:1:0.1; and position three was an equal mix of
124	C and G. To this degenerate oligonucleotide, we annealed an oligonucleotide that was
125	complementary to the fixed sequence encoding residues 34-38 and that also contained residues
126	39-44 of the BPV E5 protein as well as a downstream BamHI restriction site. After extension of
127	these oligonucleotides, we amplified them by PCR with short, internal primers and digested the
128	purified PCR products with SpeI and BamHI. The products were subcloned into a pRV-Hyg ^R
129	retroviral vector (40) downstream of residues 1-12 of the BPV E5 protein. The predicted
130	composition of the randomized segment of this library is as follows (with percentages): L(30.7),
131	V(20.5), I(10.2), M(10.2), F(10.2), K(2), N(2), stop(2), Y(2), Q(2), H(2), E(2), D(2), S(0.4),
132	T(0.4), $P(0.4)$, $A(0.4)$. Further cloning details are available from the authors upon request (for
133	primer sequences, see Table S1).
134	To construct the KTS1 library, we used a degenerate oligonucleotide that encoded
135	residues 10 and 11 of the wild-type BPV E5 protein, which we had altered by silent mutation to
136	encode an AvrII restriction site, followed by randomized codons corresponding to positions 12-
137	30 of the wild-type BPV E5 protein, then fixed residues 31 and 32 of wild-type BPV E5, a stop
138	codon at position 33, and a BamHI site for cloning. For randomized codons, position one was a

139	mix of A:C:G:T in the ratios 1:1:1:0.5, position two was a mixture of A:C:G:T in the ratios
140	0.1:0.25:0.1:1, and position three was a mix of C and G in the ratios 1:0.1. This composition
141	allows all 20 amino acids at ratios approximating those present in natural transmembrane
142	proteins (26). The predicted composition of the randomized segment of the KTS1 library is as
143	follows: L(20.6), V(19.7), I(17.9), M(1.8), F(8.95), K(0.18), N(1.8), stop(0.09), Y(0.9), Q(0.18),
144	H(1.8), E(0.18), D(1.8), S(1.8), T(4.9), P(4.9), A(4.9). As with the LFC5 library, we synthesized
145	double-stranded products of these randomized nucleotide sequences, amplified them with short,
146	internal primers, and then cloned the library into the pT2H-F13 retroviral plasmid. pT2H-F13
147	was derived from pRV-Hyg ^R ; it contains a Kozak consensus sequence in the fixed 5' sequence of
148	the BPV E5 gene and an additional internal AvrII restriction site created by silent mutation.
149	Further cloning details are available from the authors upon request (for primer sequences, see
150	Table S1).
151	To generate cell lines expressing individual small transmembrane proteins, we cloned the
152	genes into pRV-Hyg ^R or pT2H-F13. We also utilized the high-expression retroviral plasmid
153	pMSCVhygro (Clontech, Mountain View, CA, USA) to express some of the individual proteins.
154	Genes encoding the chimeric receptors were cloned into an LXSN plasmid, which confers G418
155	resistance. Further details are available in Supplementary Information. Mutation of single
156	residues in protein pTM32-1 was performed using the Quick Change Site-Directed Mutagenesis
157	protocol (Stratagene, La Jolla, CA, USA) on pTM32-1 cloned in pRV-Hyg ^R , and sequences were
158	confirmed on both strands. See Table S1 for primer sequences.
159	Cell Lines, Retroviral Infections, and Tissue Culture. BaF3 cells and their derivatives
160	were maintained in RPMI/IL-3 as described (7, 8), and C127 and HEK293T cells were

162 (DMEM10) (10). 163 To generate cell lines expressing the murine PDGF β receptor or the $\beta\alpha\beta$ or β Kit β 164 chimeric receptors, we prepared retroviral particles by calcium phosphate cotransfection of 165 HEK293T cells with the LXSN retroviral plasmid encoding the receptor of interest and the pCL-166 Eco and VSV-G packaging plasmids (Imgenex, San Diego, CA, USA). We harvested retroviral 167 supernatants from these cells at 24, 48, and 72 hours post-transfection, pooled and filtered the 168 retroviral supernatants through 0.45 micron filters (Millipore, Leiden, The Netherlands) and 169 concentrated the retrovirus in Amicon Ultra high-speed centrifugal filtration concentrators 170 (Millipore). We infected parental BaF3 cells with the concentrated retrovirus as follows: 5×10^5 171 BaF3 cells in 500 µl of medium per well of a 12-well dish were infected with 500 µl of 172 concentrated virus. We added polybrene at a concentration of 4 µg/ml and incubated at 37°C for 173 four hours. The infected cells were then transferred to a T25 flask containing 9 ml of RPMI/IL-3 174 with polybrene. After 48 hours, we added G418 at a final concentration of 1 mg/ml. We 175 subcloned the pool of infected, G418-resistant cells by serial dilution in a 96-well plate. We 176 expanded individual clonal lines and tested them for receptor expression, either by 177 immunoblotting (described below) or by determining their ability to survive in the absence of IL-178 3 and the presence of PDGF-BB (Calbiochem, San Diego, CA, USA). Clonal lines expressing 179 the desired receptor and maintaining a strict requirement for IL-3 were used for the experiments 180 reported here. 181 To express small transmembrane proteins in BaF3 cell lines, we prepared retroviral 182 particles from HEK293T cells and infected BaF3 cells with up to 500 µl of concentrated virus, as 183 described above. To select for infected cells, the cells were incubated in RPMI/IL-3 + 1 mg/ml

maintained in Dulbecco's Modified Eagle Medium containing 10% fetal bovine serum (FBS)

161

184

185 concentrations used for selection. 186 C127 cells at approximately 50% confluence in a 60 mm dish were infected as follows: 187 filtered, concentrated virus was brought to a volume of 1 ml in DMEM10. C127 cells were 188 infected with a 1:20 dilution of this stock in DMEM10 to a final volume of 1 ml (virus 189 expressing BPV E5 was diluted 1:200), and supplemented with 4 μ g/ml polybrene. After four 190 hours at 37°C, we aspirated the virus-containing medium and added 4 ml of DMEM10 191 containing polybrene. After 24 hours, the cells were passaged for focus forming assays and titer, 192 as described below. 193 IL-3-Independence assays, focus forming assays, viral titering, and recovery of 194 transforming clones. To assess whether infected BaF3 cultures required IL-3, cells were

hygromycin. We maintained selected cells in hygromycin and G418 (where applicable) at the

washed twice with 10 ml phosphate-buffered saline (PBS) and resuspended in 10 ml complete
RPMI medium lacking IL-3. We maintained the cells in T25 flasks without further passaging
and counted viable cells at various time points.

198 To determine focus-forming ability of individual clones in C127 cells, we trypsinized the 199 infected or mock-infected cells 24 hours post-infection, resuspended the cells in a total of 12 ml 200 DMEM10, and added 4 ml of the cell suspension into each of two 60 mm dishes. Cells were 201 maintained in DMEM10 for 11 days, then fixed and stained with Giemsa (Sigma-Aldrich). To 202 determine titer, we plated dilutions of the remaining cell suspension into 100 mm dishes. After 203 24 hours, we added hygromycin to the medium (final concentration: 0.3 mg/ml) and maintained 204 the cells in selection medium until mock-infected cells had died. We then fixed and stained the 205 cells, and counted colonies to determine colony-forming units per ml of virus. We normalized

206	focus forming ability to the number of colony-forming units from a given infection, taking into
207	account the dilution of virus used to infect the cells.
208	To recover library sequences, we harvested genomic DNA from 2x10 ⁶ IL-3-independent
209	BaF3 cells using a DNeasy kit (Qiagen, Valencia, CA, USA). We amplified the library
210	sequences from 400 ng of genomic DNA using PCR primers specific to fixed sequences that
211	flanked the randomized transmembrane segments. See Table S1 for primer sequences. Detailed
212	PCR program information is available from the authors upon request. We subcloned the
213	amplified inserts back into the original retroviral vectors used to build the libraries, (pRV-Hyg ^R
214	for LFC5; pT2H-F13 for KTS1) and sequenced both strands of individual clones.
215	PDGF β receptor inhibitor studies. BaF3- β R cells expressing BPV E5 or pTM32-1
216	were grown in RPMI/IL-3 to a density of approximately 10^6 /ml. One hundred thousand cells
217	from each culture were incubated in 10 ml RPMI or RPMI/IL-3 in the presence of 50 μM
218	AG1295 (Calbiochem) or an equivalent volume of dimethyl sulfoxide (DMSO) (the vehicle).
219	C127 cells expressing BPV E5 or pTM36-4 were incubated for four days in DMEM10
220	containing 50 µm AG1295 or an equivalent volume of DMSO.
221	Biochemical analyses. For detection of proteins, lysates were prepared from
222	approximately $4x10^7$ BaF3 cells in either RIPA-MOPS (20 mM morpholinepropanesulfonic acid,
223	pH 7.0/150 mM NaCl/1 mM EDTA/1% Nonidet P-40/1% deoxycholate/1% SDS) or CHAPS [15
224	mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate /30 mM NaCl/1 mM
225	EDTA/50 mM Tris-HCl (pH 7.4)] buffer containing protease and phosphatase inhibitors. We
226	then immunoprecipitated the protein of interest essentially as described (7, 8). Briefly, we added
227	5-7 μ l of α PR-A rabbit antiserum raised against the carboxy-terminal 13 amino acids of the
228	human PDGF β receptor to 1 mg of protein extract. After rotating overnight at 4°C, we added 50

229	µl of protein A sepharose beads and rotated for at least one hour at 4°C. The beads were pelleted
230	and washed with cold NET-N buffer containing 1 mM PMSF as described (8). For C127 cells,
231	extracts were prepared from two or more confluent, 15 cm plates of cells, which were scraped in
232	cold PBS into Eppendorf tubes, washed again with PBS, and then lysed on ice and processed as
233	described (39). The lysates were centrifuged for 30 minutes at 14000 rpm in a tabletop centrifuge
234	at 4°C. Lysates for phosphotyrosine blots were prepared from BaF3-βR cells using CHAPS
235	buffer; all other lysates from BaF3 and C127 cells were made in RIPA-MOPS. We quantitated
236	protein using a bicinchoninic acid (BCA) kit (Pierce/Thermo Scientific, Franklin, MA, USA).
237	To immunoprecipitate HA-tagged proteins, we added 50 μ l of an anti-HA affinity matrix
238	(Roche, Mannheim, Germany) to 1 mg of protein lysate, rotated overnight at 4°C, and proceeded
239	as described for receptor immunoprecipitations. All immunoprecipitated samples were
240	resuspended in 2x Laemmli sample buffer with 200 mM DTT and 5% β -mercaptoethanol.
241	We electrophoresed the samples at 150 volts for one hour in a 7.5% polyacrylamide gel
242	for PDGF β receptor and phosphotyrosine blots or a 20% polyacrylamide gel for HA blots. Gels
243	were soaked in transfer buffer (39), and then transferred electrophoretically for one hour at 90
244	volts to either 0.45 micron polyvinylidene difluoride (PVDF) membrane (Biorad, Hercules, CA,
245	USA), for PDGF β receptor and HA blots, or 0.45 micron nitrocellulose (Biorad) for
246	phosphotyrosine blots. We blocked the membranes for one hour at room temperature or at 4°C
247	overnight, in 5% BSA/TBST (TBS with 0.1% [vol/vol] Tween 20) for phosphotyrosine blots or
248	5% milk/TBST for all others, as described (8, 39).
249	We immunoblotted for PDGF β receptor as previously described (8). For detection of
250	phosphotyrosine, we used a P-Tyr-100 antibody (Cell Signaling Technology, Danvers, MA,
251	USA) at a 1:1500 dilution in 5% BSA/TBST, and for anti-HA blots, we used a 1:500 dilution of

252	a mouse monoclonal antibody recognizing the HA epitope tag (a generous gift from Susan
253	Baserga, Yale University) in 5% milk/TBST. We incubated all membranes in primary antibody
254	overnight at 4°C, washed five times in TNET (8) (PDGF β receptor blots) or TBST (all others),
255	and then added protein-A HRP secondary antibody (Amersham, 1:7500 in 5% milk/TBST) to
256	detect PDGF β receptor or donkey anti-mouse HRP to detect phosphotyrosine (1:10,000 in 5%)
257	BSA/TBST) and HA (1:5,000 in 5% milk/TBST). Super Signal West Pico or Femto
258	chemiluminescent detection (Pierce/Thermo Scientific) were used to visualize bands.
259	TOXCAT assay. The transmembrane sequences (positions 8-32) of wild-type pTM32-1,
260	E19L, and T29L mutants were cloned into the TOXCAT chimeric construct, and expressed in E.
261	coli. The level of oligomerization was determined via enzymatic CAT activity quantification,
262	employing ³ H-chloramphenicol, as described (41). The CAT activity was normalized using the
263	known dimerization properties of GpA variants. Wild-type GpA, a strong dimer in the
264	membrane, was used as a positive control, while the G83I mutant, which forms only a very weak
265	dimer, was used as a negative control (41). The expression level of all constructs was determined
266	by Western blotting, with an antibody which specifically recognizes the maltose binding protein
267	(ZYMED laboratories, South San Francisco, CA, USA). The correct orientation of the construct
268	in the E. coli inner membrane was confirmed through a proteinase K sensitivity assay.
269	Structural Models. Modeling using CHI. The computational search strategy to generate
270	models for dimeric transmembrane peptides employing CHI (crystallography and NMR System
271	(CNS) searching of helix interactions) has been described previously (1, 2, 4). Briefly, a pair of
272	canonical alpha helices was constructed from the pTM32-1 sequence (residues W5-W32 or G11-
273	W32, with similar results in both cases), with crossing angles of $+35^{\circ}$ and -35° , a distance
274	between helices of 10.5 Å and rotation increments of 15°. Molecular dynamics (MD) simulations

were performed using simulated annealing of atomic coordinates. Energy minimization of
structures was performed before and after MD simulations, and groups of structures with a
backbone RMSD of 1 Å or less were placed into clusters. The side chain of the E19 residue was
considered in its negatively charged state.

Molecular dynamics simulations using NAMD. Three simulations were performed with the peptide dimers obtained from CHI modeling inserted in the transmembrane orientation into equilibrated and hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer patches containing 64 lipids in each leaflet. The lipid and water molecules overlapping with the peptide were removed. MD simulations were performed using the code NAMD (37) with CHARMM22 protein force field (27), CHARMM27 lipid force field (9), and TIP3P water model (19). Full details of the simulation conditions are in Supplementary Information.

286 **Peptide synthesis, purification, and analysis.** Peptides corresponding to the

transmembrane domain of E5 (E5_{TM}) and pTM36-4 (pTM36-4_{TM}) were synthesized by the Keck

288 Biotechnology Resource Center at Yale University using F-moc chemistry. The sequence of the

289 E5_{TM} peptide was KKKFLGLVAAMQLLLLLFLLLFFLVYWDHK, containing residues F₉-H₃₄

290 from E5 as well as non-native lysine residues to aid solubility and serve as end-caps on the C-

291 and N- termini. The sequence of the $pTM36-4_{TM}$ peptide was

292 KKKFLGIINLLTLFLITLILIILVFYWDHK, containing the corresponding region of this

293 protein. Both peptides were purified by reversed-phase HPLC using a linear acetonitrile gradient

294 including 0.1% trifluoroacetic acid on a Phenomenex C4 column. The purity of pooled fractions

295 was confirmed by mass spectrometry before lyophilisation.

296 Cross-linking reactions were carried out using 20 µM peptide dissolved in 10 mM SDS

297 micelles. All samples were prepared in buffer containing 20 mM sodium phosphate and 150 mM

- 299 manufacturer's protocol to cross-link the peptide in solution via primary amine groups. The
- 300 cross-linking reaction was terminated after 30 min by the addition of 1 M Tris-HCl (pH 8).
- 301 Uncross-linked samples were prepared as controls. Samples were separated by gel
- 302 electrophoresis using a NuPage 12% Bis-tris gel with the running buffer containing 0.1% SDS
- 303 (Invitrogen, Paisley, UK), and peptides were visualized by staining with silver nitrate.

304

JVI Accepts published online ahead of print

306	Use of a novel screening approach to isolate a 32-amino acid activator of PDGF β receptor.
307	To identify activators of the PDGF β receptor without relying on their ability to induce
308	focus formation, we employed a novel screening approach with a derivative of BaF3 cells, a
309	mouse hematopoietic pro-B cell line that ordinarily requires IL-3 for growth. Because parental
310	BaF3 cells do not express endogenous PDGF β receptor, they do not grow in the presence of
311	PDGF-BB or BPV E5 unless IL-3 is supplied. For the experiments reported here, we used BaF3
312	cells engineered to express the murine PDGF β receptor (designated BaF3- β R cells) (8). As
313	reported previously, BaF3- β R cells proliferate in the absence of IL-3 if PDGF-BB is added to the
314	growth media or if they express <i>v-sis</i> , a viral homologue of PDGF. Importantly, expression of
315	the wild-type E5 protein also allows BaF3- β R cells to proliferate in the absence of IL-3 (8).
316	We constructed a library expressing 44-amino acid proteins with randomized
317	transmembrane domains from a retroviral vector. In this library, designated LFC5, the
318	transmembrane region of the wild-type E5 protein was randomized from positions 14 through 30
319	and at position 33 (Fig. 1). The randomization scheme encoded predominantly hydrophobic
320	amino acids, although approximately two hydrophilic residues, on average, were also encoded
321	per randomized segment. At each randomized position, a stop codon was predicted to occur
322	approximately 2% of the time.
323	To screen the LFC5 library for activators of the PDGF β receptor, we infected twelve
324	independent cultures of clonal BaF3- β R cells with the library, selected for hygromycin resistance
325	in the presence of IL-3, and then incubated the cells in the absence of IL-3. Cells containing the
326	empty vector died in the absence of IL-3, but cells survived and proliferated in three of the pools

327 infected with the library. We isolated genomic DNA from these pools, amplified the library

328 inserts using PCR with primers that annealed to the fixed portion of the vector (see Table S1), 329 cloned the PCR products, and sequenced the recovered clones. 330 From one of the proliferating pools, we isolated only a single sequence, which was 331 predicted to encode a 32-amino acid protein because a stop codon had been inserted at position 332 33. This protein, which we named pTM32-1 (Fig. 1), had a novel transmembrane sequence and 333 lacked the twelve C-terminal residues of the wild-type E5 protein, including the aspartic acid and 334 two cysteines thought to be required for the activity of the E5 protein and all other known 335 transmembrane activators of the PDGF β receptor. 336 pTM32-1 induces IL-3 independence by activating the PDGF β receptor. 337 To determine whether pTM32-1 induced IL-3 independence and whether this activity 338 required the PDGF β receptor, we stably expressed the wild-type E5 protein or pTM32-1 in 339 parental BaF3 cells and in BaF3-βR cells. Infected cells were selected with hygromycin and then 340 tested for growth factor independence (Fig. 2A). As expected, the empty vector did not induce 341 IL-3 independence in either cell line, and the E5 protein induced IL-3 independence in BaF3-βR 342 cells, which express the wild-type PDGF β receptor, but not in the parental BaF3 cells lacking 343 PDGF β receptor expression. Like the E5 protein, pTM32-1 induced IL-3 independence in 344 BaF3-βR cells but not in parental cells, demonstrating that it conferred growth factor 345 independence in a PDGF β receptor-dependent fashion. 346 We utilized a selective PDGF β receptor kinase inhibitor, AG1295, to determine whether 347 the tyrosine kinase activity of the receptor was required for the growth factor independence 348 induced by pTM32-1 (Fig. 2B). AG1295 did not significantly affect the growth of BaF3- β R 349 cells expressing BPV E5 or pTM32-1 in the presence of IL-3, because the growth of these cells 350 was driven by IL-3 signaling. In contrast, in the absence of IL-3, BaF3- β R cells expressing BPV

E5 or pTM32-1 died in the presence of AG1295, indicating that sustained signaling by the PDGF
β receptor was required for proliferation under these conditions.

353 To test whether pTM32-1 activated the PDGF β receptor, we immunoprecipitated the 354 receptor from whole cell detergent lysates of BaF3-BR cells expressing empty vector or pTM32-355 1, electrophoresed the immunoprecipitated material, and immunoblotted with antibodies specific 356 for the PDGF β receptor or for phosphotyrosine. Expression of the mature and precursor forms 357 of PDGF β receptor was similar in both cell lines (Fig. 2C, top). The PDGF β receptor was not 358 tyrosine phosphorylated in BaF3- β R cells infected with the empty vector. In contrast, the PDGF 359 β receptor was phosphorylated in response to pTM32-1, indicating that pTM32-1 activated the 360 receptor (Fig. 2C, bottom). This response was most striking for the precursor form of the PDGF 361 β receptor, as we and others have previously noted for the E5 protein {*e.g.*, (3, 35, 44)}. These 362 results provided biochemical evidence that pTM32-1 activated the PDGF β receptor. 363 To determine whether either hydrophilic residue in the transmembrane segment of 364 pTM32-1, glutamic acid 19 or threonine 29, was important for its biological activity, we 365 constructed leucine substitutions at these positions and tested the activity of the mutated proteins. 366 Mutating the threenine to leucine had no effect on activity (data not shown), but changing the 367 glutamic acid to leucine (E19L) abrogated the ability of the mutant protein to confer IL-3 independence (Fig. 2D). In addition, the E19L mutant no longer induced PDGF β receptor 368 369 phosphorylation, as shown by immunoblotting (Fig. 2C). Collectively, these biochemical and 370 physiological results demonstrated that pTM32-1 activated the PDGF β receptor in BaF3- β R 371 cells, which resulted in growth factor independence, and suggested that these activities require a 372 transmembrane glutamic acid, although it is possible that other hydrophilic amino acids could 373 substitute for glutamic acid.

374	pTM32-1 specifically activates the PDGF β receptor by transmembrane interactions.
375	BPV E5 activates the PDGF β receptor by interacting directly with its transmembrane
376	domain. To determine whether pTM32-1 also required the transmembrane domain of the PDGF
377	β receptor, we utilized chimeric receptors in which the transmembrane domain of the wild-type
378	PDGF β receptor was replaced with the transmembrane domain of either the closely-related
379	PDGF α receptor or the stem cell factor receptor (c-Kit), another receptor tyrosine kinase (Fig.
380	S1). These chimeras retained the extracellular ligand binding domain and the intracellular
381	signaling domain of the PDGF β receptor, but they were unable to respond to the E5 protein
382	because they lacked the transmembrane domain of the PDGF β receptor (10). Genes encoding
383	these chimeric receptors were introduced into BaF3 cells, generating BaF3- $\beta\alpha\beta$ and BaF3-
384	β Kit β cells, respectively. These cells did not proliferate in the absence of growth factors, but
385	they displayed growth factor independence in response to <i>v</i> -sis, which binds to the ligand
386	binding domain retained in the chimeras, indicating that the chimeric receptors were expressed
387	and functional despite the foreign transmembrane domain (Fig. 3).
388	We expressed the E5 protein or pTM32-1 in parental BaF3, BaF3- β R, BaF3- $\beta\alpha\beta$, or
389	BaF3- β Kit β cells and assayed the growth of these cells in medium lacking IL-3. The E5 protein
390	and pTM32-1 were inactive in parental BaF3 cells and in cells expressing the chimeric receptors,
391	but they induced growth factor independence in cells expressing wild-type PDGF β receptor
392	(Fig. 3). The empty vector was inactive in all cell types, as expected. Thus, the ability of
393	pTM32-1 to induce IL-3 independence required the transmembrane domain of the PDGF
394	β receptor. Taken together, our results show that pTM32-1 is, in effect, a 32-amino acid isolated
395	transmembrane domain whose biological activity is dependent on the integrity of the PDGF β
396	receptor transmembrane domain.

397 Dimerization and molecular modeling of pTM32-1

398	To determine whether the wild-type and mutant versions of pTM32-1 formed dimers in
399	membranes like other transmembrane activators of the PDGF β receptor, we employed the
400	TOXCAT assay (41). This assay utilizes constructs in which the transmembrane domain
401	(residues L8-W32) of pTM32-1, E19L, or T29L is flanked by a maltose binding domain and by
402	the oligomerization-dependent, DNA-binding domain of the ToxR transcriptional activator. We
403	expressed these constructs in E. coli harboring a reporter gene in which chloramphenicol
404	acetyltransferase (CAT) expression is driven by the ToxR-responsive <i>ctx</i> promoter (10, 41). If
405	the transmembrane domain oligomerizes in the bacterial inner membrane, then the reconstituted
406	ToxR transcriptional activator will activate the <i>ctx</i> promoter and drive expression of CAT. In this
407	assay, CAT expression is proportional to the strength of the transmembrane interactions (41). As
408	controls, we used glycophorin A (GpA), a transmembrane helix that forms a high-affinity dimer,
409	and the GpA mutant, G83I, which dimerizes weakly. The fusion construct containing the
410	transmembrane domain of pTM32-1 and its mutants induced high CAT activity, 1.6 times higher
411	than that induced by wild-type GpA and similar to that induced by the transmembrane domain of
412	the E5 protein (Fig. 4A and data not shown). Western blotting demonstrated that all constructs
413	were expressed at a similar level (data not shown). These results indicate that pTM32-1 is
414	capable of forming a stable oligomer in membranes, presumably a dimer, and that the mutations
415	E19L and T29L do not reduce oligomerization.
416	We used the CHI molecular dynamics simulation protocol, as in previous studies (10,
417	46), to generate plausible structural models of the pTM32-1 homodimer. The structural
418	calculations were performed on predicted transmembrane residues G11-W32 of pTM32-1.
419	Three models were generated, as shown in Figure 4B, left: two left-handed coiled-coils (Models

420	1 and 2), and one right-handed coiled-coil (Model 3). The plots of interaction energy (Fig. 4B,
421	right) show the predicted energetic contribution of each residue to the homodimeric interface in
422	the corresponding model. The predicted interfaces of the three models differ significantly. Of
423	note, the glutamic acid at position 19, which the TOXCAT experiment showed is not important
424	for dimerization, is predicted to be a key energetic contributor to the dimerization interface only
425	in the left-handed coiled-coil predicted in model 2. Glutamic acid 19 is oriented away from the
426	interface in the other two models. Therefore, model 2 is inconsistent with the ability of the E19L
427	mutant to form a strong dimer.
428	The CHI program optimizes the interactions of the helices relative to each other in vacuo,
429	but it does not incorporate the molecular constraints and protein-lipid interactions intrinsic to a
430	lipid bilayer environment. Additionally, it considers the side chain E19 as negatively charged,
431	but it is reasonable to assume that this charged state would be unfavorable within the
432	hydrophobic core of the membrane. To assess the stability of the three structures generated by
433	the CHI program in a lipid milieu in silico, we performed simulations with the peptides inserted
434	in DMPC bilayer patches using the program NAMD. The root mean square deviation (RMSD)
435	values for backbone atoms shown in Figure 4C represent the deviation from the initial backbone
436	coordinates during the course of the simulations (model 1: 2.63 ± 0.95 Å, model 2: 2.13 ± 0.59 Å
437	and model 3: 1.33 \pm 0.39 Å). A low RMSD value along with low standard deviation, as is the
438	case for model 3, indicate higher stability of the initial structure in the lipid environment. Based
439	on the RMSD values and the observation that model 2 requires Glu19 for stabilization of the
440	homodimeric interface, we propose that model 3 is the most plausible structure for pTM32-1.

441 Thus, unlike BPV E5 and several other small, transmembrane activators of the PDGF β receptor

that we previously isolated (10, 12), these data suggest that homodimeric pTM32-1 forms a
right-handed coiled-coil.

444 Truncated BPV E5 protein binds to and activates the PDGF β receptor.

445 The ability of pTM32-1 to activate the PDGF β receptor was surprising because we and 446 others had previously reported that the full-length E5 protein requires the C-terminal cysteine 447 residues for transforming activity (17, 29, 42). In our previous screens of small, transmembrane 448 protein libraries, we used a low expression vector and selected for focus formation in C127 449 fibroblasts, which endogenously express PDGF β receptor. Now we are using retroviral vectors 450 that express small transmembrane proteins at much higher levels than vectors used in the past 451 (data not shown), and pTM32-1 was isolated because it induced growth factor independence in 452 hematopoietic cells expressing exogenous PDGF β receptor. We hypothesized that high-level 453 expression of an E5 protein lacking the cysteines might dimerize non-covalently in cells and 454 induce growth factor independence because the transmembrane domain of BPV E5 has intrinsic 455 ability to dimerize, as assessed by TOXCAT experiments and biophysical studies (10, 32). 456 Therefore, we determined whether over-expression of a truncated version of the BPV E5 457 protein that lacked the C-terminal cysteines but retained the wild-type transmembrane domain 458 bound and activated the PDGF β receptor in BaF3- β R cells and induced growth factor 459 independence. We introduced a stop codon at position 34 in the wild-type E5 sequence to 460 generate a clone that expressed the first 33-amino acids of the E5 protein (Fig. 1). We chose to 461 keep the aspartic acid at position 33 in this mutant, because prior mutational analysis 462 demonstrated the importance of this residue in the full-length E5 protein for activation of the 463 PDGF β receptor (20). We also added an N-terminal HA epitope tag in order to visualize this 464 protein biochemically because the C-terminal truncation removed the epitope recognized by the

465	anti-E5 antibody. The resulting protein, named HA/E5 $_{33}$, was expressed in parental BaF3 cells,
466	BaF3- β R cells, and BaF3- β Kit β cells and assayed for its ability to support IL-3 independent
467	growth. Like the full-length E5 protein, HA/ $E5_{33}$ was inactive in parental BaF3 and BaF3-
468	β Kit β cells, but it induced IL-3 independence in cells expressing wild-type PDGF β receptor
469	(Fig. 5A). All of the infected BaF3- β Kit β cell lines grew in the presence of PDGF-BB,
470	demonstrating that the chimeric receptors were expressed and functional (data not shown). These
471	results indicated that a truncated BPV E5 protein lacking the C-terminus can functionally interact
472	with the transmembrane domain of the wild-type PDGF β receptor, but not the c-kit
473	transmembrane domain, and induce growth factor independence. To determine whether HA/E5 $_{33}$
474	induced tyrosine phosphorylation of the PDGF β receptor, we immunoprecipitated the receptor
475	from BaF3- β R cells expressing HA/E5 ₃₃ , the full-length E5 protein, or an empty vector control,
476	and immunoblotted for the receptor and phosphorylated tyrosine. The wild-type PDGF $\boldsymbol{\beta}$
477	receptor was expressed in all transduced cell lines, and it was tyrosine phosphorylated in BaF3-
478	β R cells expressing HA/E5 ₃₃ or BPV E5, but not in cells containing the empty vector (Fig. 5B).
479	Thus, HA/E5 ₃₃ , like pTM32-1 and BPV E5, specifically activated the PDGF β receptor via
480	transmembrane interactions.
481	To determine whether the truncated E5 protein or pTM32-1 was able to activate the
482	PDGF β receptor in the cell system we traditionally use to measure E5-mediated cell
483	transformation, we expressed wild-type BPV E5, HA/E5 ₃₃ , pTM32-1, and an empty retroviral
484	vector control in C127 cells and assayed for focus formation. The control vector was devoid of
485	transforming activity, while HA/E533 and pTM32-1 exhibited very low levels of focus forming
486	activity, approximately 2% and 0.2%, respectively, the level of the wild-type E5 protein (Table
487	1, Fig. 6A). Although there was background tyrosine phosphorylation of the mature form of the

488	PDGF β receptor in untransformed C127 cells, both HA/E5_{33} and pTM32-1 induced tyrosine
489	phosphorylation of the precursor form of the PDGF β receptor in C127 cells, as determined by
490	immunoprecipitation of the receptor from whole cell lysates and immunoblotting for tyrosine
491	phosphorylation (Fig. 6B). Thus, removal of the C-terminal segment of the E5 protein markedly
492	inhibited but did not eliminate focus forming activity in C127 cells, although this truncated
493	protein still induced tyrosine phosphorylation of the PDGF β receptor.
494	By immunoprecipitating with a monoclonal antibody that recognizes the HA epitope,
495	followed by immunoblotting with the same antibody, we demonstrated that the truncated E5
496	protein was expressed in infected BaF3- β R and C127 cells (data not shown). In addition, we
497	used co-immunoprecipitation to determine whether HA/E5 $_{33}$ formed a stable complex with the
498	PDGF β receptor in C127 cells. Whole cell detergent lysates were immunoprecipitated with
499	anti-HA affinity matrix beads, separated by SDS-PAGE, and immunoblotted using an antibody
500	recognizing the PDGF β receptor. As shown in Figure 6C, the HA antibody immunoprecipitated
501	the precursor form of the PDGF β receptor (predicted molecular weight of approximately 200
502	kDa) from cells expressing HA/E5 ₃₃ , but not from cells expressing the untagged E5 protein. In
503	the reciprocal experiment, immunoprecipitation of the PDGF β receptor followed by
504	immunoblotting with the anti-HA antibody also demonstrated a stable interaction between the
505	PDGF β receptor and HA/E5 ₃₃ (data not shown). Collectively, these data indicated that HA/E5 ₃₃
506	and pTM32-1 activated the PDGF β receptor sufficiently to induce its phosphorylation and to
507	transform BaF3- β R cells, but these extremely small proteins were markedly defective in their
508	ability to induce focus formation in C127 cells. Strikingly, the truncated E5 protein that lacked
509	the C-terminal segment still bound and activated the PDGF β receptor in C127 cells.

511	fibroblasts.
512	Unlike the truncated HA/E5 $_{33}$ and pTM32-1 proteins, the full-length E5 protein
513	efficiently induces focus formation in C127 cells. To determine whether it was possible to
514	identify small transmembrane proteins that lacked the C-terminal domain of the E5 protein yet
515	efficiently transformed both BaF3- β R cells and mouse C127 fibroblasts, we constructed and
516	screened a new library designed to encode small transmembrane proteins lacking this domain. In
517	this library, designated KTS1, residues 14 to 30 of the wild-type E5 sequence were randomized
518	to encode primarily hydrophobic amino acids, and a fixed stop codon was inserted at position 33
519	(Fig. 1). We also appended a hexahistidine tag at the amino terminus, resulting in a library that
520	encoded proteins with a total size of 36 amino acids. The library was introduced by retroviral
521	infection into BaF3- β R cells in the presence of IL-3. After hygromycin selection, IL-3 was
522	removed from the growth medium, genomic DNA was isolated from cells that proliferated in the
523	absence of exogenous growth factors, and inserts were recovered by PCR and sequenced.
524	The sequences of the transmembrane domains of two of the recovered clones, pTM36-3
525	and pTM36-4, differed markedly from one another and from the transmembrane sequences of the
526	E5 protein and pTM32-1 (Fig. 1). Expression of pTM36-3 or pTM36-4 induced growth factor
527	independence in BaF3- β R cells, but not in BaF3- β Kit β cells, demonstrating that these clones
528	functionally interacted with the transmembrane domain of the PDGF β receptor (Fig. 7A).
529	Furthermore, in the absence of IL-3, BaF3- β R cells expressing pTM36-3 or pTM36-4 died in the
530	presence of the PDGF β receptor kinase inhibitor AG1295 (data not shown), confirming that
531	PDGF β receptor signaling is required to induce growth factor independence. Thus, diverse

552 transmemorane proteins facking the C-terminus of the E5 protein can activate the FDOI	532	transmembrane proteins lacking the C-terminus of the E5 protein can activate the PDGF
---	-----	---

533	β receptor and	thereby induce g	growth factor independ	dence in BaF3-βR cells.
-----	----------------------	------------------	------------------------	-------------------------

534 Remarkably, unlike pTM32-1 and HA-E533, pTM36-3 and pTM36-4 induced substantial 535 focus formation in C127 cells (Fig. 6A). Indeed, after normalization for retroviral titer, pTM36-536 4 induced foci at >30% the level of the 44-amino acid wild-type E5 protein (Table 1), a 150-fold 537 increase over pTM32-1, even though it too lacked the C-terminal amino acids of the native viral 538 protein and shared only seven consecutive amino acids with the transmembrane domain of the 539 wild-type E5 protein. As shown in Figure 7B, the kinase inhibitor AG1295 caused a reversion of 540 the transformed morphology of C127 cells expressing BPV E5 or pTM36-4, demonstrating that 541 sustained PDGF receptor signaling was required for this phenotype. In addition, phosphotyrosine 542 blotting demonstrated that these small transmembrane proteins induced tyrosine phosphorylation 543 of the precursor form of the PDGF β receptor in transformed C127 cells (Fig. 7C). Thus, certain 544 transmembrane domains do not require the C-terminal portion of the E5 protein to induce PDGF 545 β receptor activation, growth factor independence, and efficient focus formation. 546 To determine whether the hydrophobic segment of pTM36-4 was able to form a dimer,

547 we synthesized a peptide consisting of pTM36-4 amino acids 13 to 36 (corresponding to E5 548 amino acids 9 to 32). This peptide was reconstituted in SDS micelles, and its ability to dimerize 549 was assessed by electrophoresis. As shown in Figure 8, the pTM36-4 peptide migrated as a 550 monomer in the absence of a chemical cross-linking agent. However, if the peptide was treated 551 with cross-linker prior to electrophoresis, a clear fraction migrated as a sharp band at the position 552 of a homodimer. The appearance of this band and not a ladder or high molecular weight smear 553 suggests that this is a specific dimer and not a higher order oligomer or an aggregate. A 554 substantial fraction of a control E5 transmembrane peptide migrated as a dimer in the presence or

- 556 weak intrinsic homodimerization potential. Attempts to use co-immunoprecipitation to show
- 557 complex formation between pTM36-4 and the PDGF β receptor were unsuccessful. If pTM36-4
- and the PDGF β receptor form a complex, it is not stable in our lysis conditions or during
- 559 biochemical analysis, perhaps because of the relative instability of the pTM36-4 dimer.

560 **DISCUSSION**

561	By conducting a genetic screen in BaF3 cells engineered to express the PDGF β receptor,
562	we isolated pTM32-1, a 32-residue artificial transmembrane protein that specifically activated
563	the PDGF β receptor to induce growth factor independence. pTM32-1 is the shortest
564	transforming protein yet isolated, and unlike other known transmembrane activators of the PDGF
565	β receptor, it lacked the entire C-terminus including both cysteines and the aspartic acid, was
566	almost devoid of focus forming activity, and appeared to dimerize non-covalently and form a
567	right-handed coiled-coil. These findings indicate that there are multiple transmembrane sequence
568	motifs and configurations that can drive PDGF β receptor activation. These results led us to
569	reassess the role of the C-terminus of the E5 protein itself. We demonstrated that an HA-tagged,
570	truncated E5 (HA/E5 ₃₃), which lacks the two cysteines and nine other C-terminal residues, still
571	bound and activated the PDGF β receptor and induced growth factor independence in BaF3- βR
572	cells. HA/E5 ₃₃ also induced focus formation in C127 cells at markedly reduced levels compared
573	to the wild-type protein. We attribute the ability of this truncated protein to transform cells to
574	our current use of retroviral vectors that yield much higher expression levels than the vectors we
575	used previously.
576	To determine whether the E5 C-terminus was required for efficient focus formation, we
577	screened a library of randomized transmembrane proteins that lacked this segment. We
578	identified a 36-residue protein, pTM36-4, which efficiently induced focus formation in C127
579	cells as well as growth factor independence in BaF3- β R cells. Other than the six-residue
580	histidine tag and the initiating methionine, pTM36-4 consisted of only 29 amino acids and shared
581	only seven consecutive amino acids with the E5 protein, which are not required for focus
582	formation (6, 18). Therefore, essentially the entire amino acid sequence of BPV E5 can be

583	changed, or even partially removed, without eliminating high-level transforming activity or
584	specificity for the transmembrane domain of the PDGF β receptor. Our findings corroborate a
585	previous report showing that a 34-residue E5 protein with only a single cysteine was still capable
586	of inducing foci, although the role of PDGF β receptor was not assessed in that study (29), and
587	contrast to an older report that the carboxyl-terminus has independent mitogenic activity (15).
588	Do pTM32-1 and pTM36-4 activate the PDGF β receptor by using similar mechanisms
589	as those used by the E5 protein? The cysteines and glutamine 17 in the E5 protein are
590	important for homodimerization of the E5 monomers, which is thought to generate two identical
591	binding sites for the receptor. This allows the viral protein to bind the transmembrane domains
592	of two PDGF β receptor molecules simultaneously, inducing receptor dimerization and trans-
593	phosphorylation. In addition, glutamine 17 and aspartic acid 33 appear to form specific contacts
594	with amino acids in the receptor, but they can be replaced by structurally similar amino acids
595	(20, 21). The small artificial proteins reported here lack glutamine 17, aspartic acid 33, and the
596	cysteines. Nevertheless, pTM32-1, pTM36-4, and the E5 protein share important features: they
597	are predominantly hydrophobic, extremely small, likely to form alpha helical, homodimeric
598	coiled-coils in membranes, contain one or two transmembrane hydrophilic amino acids, and
599	require the transmembrane domain of the PDGF β receptor for activity. Therefore, we think it is
600	likely that pTM36-4 and pTM32-1 use variations of the strategies employed by the E5 protein to
601	bind to the transmembrane region of the PDGF β receptor and induce receptor dimerization and
602	transphosphorylation. For example, the hydrophilic residues in pTM32-1 and pTM36-4 may
603	form essential hydrogen bonds with amino acids in the transmembrane domain of the PDGF β
604	receptor, a requirement that would account for the defect caused by the glutamic acid mutation in
605	pTM32-1. However, because we have not demonstrated that these proteins form a complex with

607	different mechanisms to activate the PDGF β receptor.
608	Our results suggest that tiny hydrophobic proteins with apparently unrelated sequences
609	can bind the PDGF β receptor by using specific hydrophilic residues that form hydrogen bonds
610	or electrostatic contacts with the receptor, as well as hydrophobic side chains that generate a
611	three-dimensional hydrophobic molecular surface that binds a complementary surface of the
612	transmembrane domain of the receptor. These motifs may be difficult to recognize if they are
613	generated by residues that are not contiguous in the primary amino acid sequence of these small
614	proteins or if they are formed by amino acids from both monomers of dimeric proteins, as we
615	proposed for the wild-type E5 protein (46). Further experiments are required to determine the
616	mechanism of PDGF β receptor activation by these new proteins and will shed insight into
617	alternative molecular strategies to activate the receptor from within the membrane.
618	Transmembrane activators of the PDGF β receptor display distinct activity profiles.
618 619	Transmembrane activators of the PDGF β receptor display distinct activity profiles. Wild-type BPV E5, pTM36-3, and pTM36-4 efficiently induced focus formation and growth
618 619 620	Transmembrane activators of the PDGF β receptor display distinct activity profiles. Wild-type BPV E5, pTM36-3, and pTM36-4 efficiently induced focus formation and growth factor independence, whereas pTM32-1 and HA-E5 ₃₃ induced growth factor independence but
618 619 620 621	Transmembrane activators of the PDGF β receptor display distinct activity profiles. Wild-type BPV E5, pTM36-3, and pTM36-4 efficiently induced focus formation and growth factor independence, whereas pTM32-1 and HA-E5 ₃₃ induced growth factor independence but were markedly defective for focus formation. We reported earlier that some small
 618 619 620 621 622 	Transmembrane activators of the PDGF β receptor display distinct activity profiles. Wild-type BPV E5, pTM36-3, and pTM36-4 efficiently induced focus formation and growth factor independence, whereas pTM32-1 and HA-E5 ₃₃ induced growth factor independence but were markedly defective for focus formation. We reported earlier that some small transmembrane proteins that efficiently induce foci are severely impaired in their ability to
 618 619 620 621 622 623 	Transmembrane activators of the PDGF β receptor display distinct activity profiles. Wild-type BPV E5, pTM36-3, and pTM36-4 efficiently induced focus formation and growth factor independence, whereas pTM32-1 and HA-E5 ₃₃ induced growth factor independence but were markedly defective for focus formation. We reported earlier that some small transmembrane proteins that efficiently induce foci are severely impaired in their ability to activate specific transient mitogenic signaling pathways (39). In addition, some point mutants of
 618 619 620 621 622 623 624 	Transmembrane activators of the PDGF β receptor display distinct activity profiles. Wild-type BPV E5, pTM36-3, and pTM36-4 efficiently induced focus formation and growth factor independence, whereas pTM32-1 and HA-E5 ₃₃ induced growth factor independence but were markedly defective for focus formation. We reported earlier that some small transmembrane proteins that efficiently induce foci are severely impaired in their ability to activate specific transient mitogenic signaling pathways (39). In addition, some point mutants of BPV E5 induce PDGF β receptor tyrosine phosphorylation and enhanced growth of human
 618 619 620 621 622 623 624 625 	Transmembrane activators of the PDGF β receptor display distinct activity profiles. Wild-type BPV E5, pTM36-3, and pTM36-4 efficiently induced focus formation and growth factor independence, whereas pTM32-1 and HA-E5 ₃₃ induced growth factor independence but were markedly defective for focus formation. We reported earlier that some small transmembrane proteins that efficiently induce foci are severely impaired in their ability to activate specific transient mitogenic signaling pathways (39). In addition, some point mutants of BPV E5 induce PDGF β receptor tyrosine phosphorylation and enhanced growth of human diploid fibroblasts, but not focus formation, differences that appear to be due to activation of
 618 619 620 621 622 623 624 625 626 	Transmembrane activators of the PDGF β receptor display distinct activity profiles. Wild-type BPV E5, pTM36-3, and pTM36-4 efficiently induced focus formation and growth factor independence, whereas pTM32-1 and HA-E5 ₃₃ induced growth factor independence but were markedly defective for focus formation. We reported earlier that some small transmembrane proteins that efficiently induce foci are severely impaired in their ability to activate specific transient mitogenic signaling pathways (39). In addition, some point mutants of BPV E5 induce PDGF β receptor tyrosine phosphorylation and enhanced growth of human diploid fibroblasts, but not focus formation, differences that appear to be due to activation of specific PDGF receptor-initiated intracellular signaling pathways (31, 36). These results suggest
 618 619 620 621 622 623 624 625 626 627 	Transmembrane activators of the PDGF β receptor display distinct activity profiles. Wild-type BPV E5, pTM36-3, and pTM36-4 efficiently induced focus formation and growth factor independence, whereas pTM32-1 and HA-E5 ₃₃ induced growth factor independence but were markedly defective for focus formation. We reported earlier that some small transmembrane proteins that efficiently induce foci are severely impaired in their ability to activate specific transient mitogenic signaling pathways (39). In addition, some point mutants of BPV E5 induce PDGF β receptor tyrosine phosphorylation and enhanced growth of human diploid fibroblasts, but not focus formation, differences that appear to be due to activation of specific PDGF receptor-initiated intracellular signaling pathways (31, 36). These results suggest that activation of the PDGF β receptor is not an all-or-nothing phenomenon, but rather more

the receptor, it remains possible that the E5 protein and the proteins reported here employ

606

629	perhaps by activating different signaling pathways. We also note that the short transmembrane
630	proteins reported here preferentially activate the precursor, presumably intracellular, form of the
631	PDGF β receptor. This tendency was previously observed for the wild-type E5 protein but is
632	more pronounced for these shorter proteins, and may reflect different primary cellular
633	localization of these proteins or subtly different interactions with the PDGF β receptor.
634	The development of BaF3 cells as a platform for screening libraries of small
635	transmembrane proteins for activators of the exogenous PDGF β receptor liberates us from
636	relying on focus formation in mouse fibroblasts and will allow the recovery of activators, and
637	possibly inhibitors, of a variety of exogenous transmembrane targets. Furthermore, libraries of
638	truncated small transmembrane proteins that cannot undergo covalent dimerization will express
639	monomeric proteins that could display various biological activities.
640	Our results hold promise for the design and synthesis of biologically active,
641	transmembrane peptides based on the sequences recovered from genetic libraries. Not only are
642	the proteins described here significantly shorter than the full-length E5 protein, but they lack
643	cysteine residues that might induce aggregation. It may be possible to add such peptides to cells
644	where they can insert into membranes, bind their targets, and exert biological activity. Such
645	peptides would also be useful for structural analysis because of their more favorable chemical
646	properties than proteins containing multiple cysteines. Finally, because of the relatively simple
647	structures adopted by transmembrane helices, they may serve as templates for the design of
648	peptidomimetic compounds with important research or clinical applications.
649	Viruses have responded to the evolutionary pressures of their size by using small
650	transmembrane proteins to modulate cellular targets. Here, we have followed their example and
651	constructed extremely small transmembrane proteins that modulate a much larger cellular target,

652	thereby exerting a tremendous effect on cell behavior. Because up to 30% of all cellular proteins
653	are thought to have membrane-spanning helices (25), a substantial fraction of the biochemical
654	functions of cells could be modulated by similar mechanisms. It seems likely that cells express
655	similar, small transmembrane proteins as a powerful and energy-efficient mechanism to regulate
656	their biochemical activities. Such proteins would not have been detected in standard genomics
657	searches or biochemical analyses and may represent elusive protein analogues of microRNAs.

658 Acknowledgments

659	We thank Lisa Freeman-Cook, Tobin Cammett, and Gregory Korbel for help with library
660	design and construction and construction of chimeric receptors, Emily Freed for assistance with
661	the isolation of pTM32-1, and Jan Zulkeski for assistance in preparing this manuscript. The
662	molecular dynamics simulations using NAMD were performed at the Yale Center for High
663	Performance Computation in Biology and Biomedicine. F.N.B. was supported by a postdoctoral
664	fellowship from the Fundación Alfonso Martin Escudero. J.O. and A.M.D. were supported by
665	Cancer Research UK (CR-UK) grant number C21449/A6926 to A.M.D. This work was
666	supported by a grant from the NIH to DD (CA37157).

667 **REFERENCES**

668 1. Adams, P. D., I. T. Arkin, D. M. Engelman, and A. T. Brunger. 1995. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain 669 670 of phospholamban. Nature Struct. Biol. 2:154-162. 671 2. Adams, P. D., D. M. Engelman, and A. T. Brunger. 1996. Improved prediction of the structure of the dimeric transmembrane domain of glycophorin A obtained through global 672 searching. Proteins: Struct. Funct. Genet. 26:257-261. 673 Adduci, A. J., and R. Schlegel. 1999. The transmembrane domain of the E5 oncoprotein 674 3. 675 contains functionally discrete helical faces. J. Biol. Chem. 274:10249-10258. 676 4. Brunger, A. T., P. D. Adams, G. M. Clore, W. L. DeLano, P. Gros, R. W. Grosse-Kunstleve, J. S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, 677 678 T. Simonson, and G. L. Warren. 1998. Crystallography & NMR system: A new 679 software suite for macromolecular structure determination. Acta. Crystallogr. D. Biol. 680 Crystallogr. 54:905-921. 681 5. Cohen, B. D., D. J. Goldstein, L. Rutledge, W. C. Vass, D. R. Lowy, R. Schlegel, and J. T. Schiller. 1993. Transformation-specific interaction of the bovine papillomavirus E5 682 oncoprotein with the platelet-derived growth factor receptor transmembrane domain and 683 the epidermal growth factor receptor cytoplasmic domain. J. Virol. 67:5303-5311. 684 DiMaio, D., D. Guralski, and J. T. Schiller. 1986. Translation of open reading frame 685 6. 686 E5 of bovine papillomavirus is required for its transforming activity. Proc Natl Acad Sci 687 USA 83:1797-801. 688 7. Drummond-Barbosa, D., and D. DiMaio. 1997. Virocrine transformation. Biochim. 689 Biophys. Acta. 1332:M1-17. 690 8. Drummond-Barbosa, D. A., R. R. Vaillancourt, A. Kazlauskas, and D. DiMaio. 691 1995. Ligand-independent activation of the platelet-derived growth factor beta receptor: 692 requirements for bovine papillomavirus E5-induced mitogenic signaling. Mol. Cell. Biol. 693 15:2570-2581. 9. Feller, S. E., D. Yin, R. W. Pastor, and A. D. MacKerell. 1997. Molecular dynamics 694 695 simulation of unsaturated lipid bilayers at low hydration: parameterization and 696 comparison with diffraction studies. Biophys. J. 73:2269-2279. 697 10. Freeman-Cook, L., A. M. Dixon, J. B. Frank, Y. Xia, L. Ely, M. Gerstein, D. M. 698 Engelman, and D. DiMaio. 2004. Selection and characterization of small random 699 transmembrane proteins that bind and activate the platelet-derived growth factor β 700 receptor. J. Mol. Biol. 338:907-920. 701 11. Freeman-Cook, L. L., and D. DiMaio. 2005. Modulation of cell function by small 702 transmembrane proteins modeled on the bovine papillomavirus E5 protein. Oncogene 703 **24:**7756-7762. 704 Freeman-Cook, L. L., A. P. B. Edwards, A. M. Dixon, K. E. Yates, L. Ely, D. M. 12. 705 Engelman, and D. DiMaio. 2005. Specific locations of hydrophilic amino acids in 706 constructed transmembrane ligands of the platelet-derived growth factor β receptor. J. 707 Mol. Biol. 345:907-921. 708 13. Goldstein, D. J., T. Andresson, J. J. Sparkowski, and R. Schlegel. 1992. The BPV-1 709 E5 protein, the 16 kDa membrane pore-forming protein and the PDGF receptor exist in a 710 complex that is dependent on hydrophobic transmembrane interactions. EMBO J. 711 **11:**4851-4859.

712	14.	Goldstein, D. J., W. Li, LM. Wang, M. A. Heidaran, S. A. Aaronson, R. Shinn, R.
713		Schlegel, and J. H. Pierce. 1994. The bovine papillomavirus type 1 E5 transforming
714		protein specifically binds and activates the beta-type receptor for platelet-derived growth
715		factor but not other tyrosine kinase-containing receptors to induce cellular
716		transformation. J. Virol. 68:4432-4441.
717	15.	Green, M., and P. M. Loewenstein. 1987. Demonstration that a chemically synthesized
718		BPV1 oncoprotein and its C-terminal domain function to induce cellular DNA synthesis.
719		Cell 51: 795-802.
720	16.	He, B., G. Y. Lin, J. E. Durbin, R. K. Durbin, and R. A. Lamb. 2001. The SH integral
721		membrane protein of the paramyxovirus Simian Virus 5 is required to block apoptosis in
722		MDBK cells, J. Virol. 75: 4068-4079.
723	17.	Horwitz, B. H., A. L. Burkhardt, R. Schlegel, and D. DiMaio, 1988, 44-amino-acid E5
724	1.1	transforming protein of boying papillomavirus requires a hydrophobic core and specific
725		carboxyl-terminal amino acids Mol Cell Biol 8 :4071-8
726	18	Horwitz, B. H., D. L. Weinstat, and D. DiMaio, 1989 Transforming activity of a 16-
727	10.	amino-acid segment of the boyine papillomavirus E5 protein linked to random sequences
728		of hydrophobic amino acids I Virol 63.4515-9
729	19	Iorgensen W.L. I. Chandrasekhar, I.D. Madura, R.W. Imney and M.L. Klein
730	17.	1983 Comparison of simple potential functions for simulating liquid water. I Chem
731		Phys 79 .926-935
732	20	Klein O D Kegler-Fho I Su S Smith and D DiMaio 1999 The bovine
733	20.	papillomavirus E5 protein requires a juxtamembrane negative charge for activation of the
734		platelet-derived growth factor beta recentor and transformation of C127 cells. I. Virol
735		73 •3264-3272
736	21	Klein, O., G. W. Polack, T. Surti, D. Kegler-Ebo, S. O. Smith, and D. DiMaio, 1998
737	21.	Role of glutamine 17 of the hovine papillomavirus E5 protein in platelet-derived growth
738		factor beta recentor activation and cell transformation I Virol 72 :8921-8932
739	22	Kulke, R., and D. DiMajo, 1991. Biological properties of the deer papillomavirus E5
740		gene in mouse C127 cells: growth transformation induction of DNA synthesis and
741		activation of the platelet-derived growth factor recentor I Virol 65 :4943-9
742	23	Kulke R B H Horwitz T Zibello and D DiMaio 1992 The central hydrophobic
743	20.	domain of the bovine papillomavirus E5 transforming protein can be functionally
744		replaced by many hydrophobic amino acid sequences containing a glutamine. I Virol
745		66·5 05-11
746	24	Lai, C. C., C. Henningson, and D. DiMaio, 2000 Boyine papillomavirus E5 protein
747	21.	induces the formation of signal transduction complexes containing dimeric activated
748		nlatelet-derived growth factor B recentor and associated signaling proteins. I Biol Chem
740		275 •0832-0840
750	25	Lehnert II V Xia T F Rovce C S Coh V Liu A Senes H Vu Z L Zhang D
751	23.	M Engelman and M Gerstein 2004 Computational analysis of membrane proteins:
752		genomic occurrence, structure prediction and helix interactions. O Rev Biophys
753		37 •121_146
754	26	Lin V. D. M. Engelman and M. Gerstein 2002 Genomic analysis of membrane
755	20.	protein families: abundance and conserved motifs. Genome Riol. 3(10):54 1-54 12
756	27	MacKerell A. D. D. Bashford Ir. M. Bellott R. I. Dunhrack I. D. Evancack Ir
757	21.	M I Field S Fischer I Gao H Guo S Ha D Inconh-McCarthy I Kuchnir K
151		na, g. 1 Mu, S. Fischer, g. Gao, 11. Guo, S. 11a, D. Juseph-Meearury, D. Kuehini, K.

758		Kuczera, F. T. K. Lau, C. Mattos, S. W. Michnick, T. Ngo, D. T. Nguyen, B.
759		Prodhom, W. D. Reiher, B. Roux III, M. Schlenkrich, J. C. Smith, R. Stote, J.
760		Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. 1998. All-
761		atom empirical potential for molecular modeling and dynamics studies of proteins. J.
762		Phys. Chem. B. 102: 3586-3616.
763	28.	Mattoon, D., K. Gupta, J. Doyon, P. J. Loll, and D. DiMaio. 2001. Identification of the
764		transmembrane dimer interface of the bovine papillomavirus E5 protein. Oncogene
765		20: 3824-3834.
766	29.	Mever, A. N., YF. Xu, M. K. Webster, A. S. Smith, and D. J. Donoghue, 1994.
767		Cellular transformation by a transmembrane peptide: structural requirements for the
768		boyine papillomavirus E5 oncoprotein, Proc. Natl. Acad. Sci. USA 91: 4634-4638.
769	30.	Nilson, L. A., and D. DiMaio, 1993. Platelet-derived growth factor receptor can mediate
770	201	tumorigenic transformation by the boying papillomavirus E5 protein Mol Cell Biol
771		13: 4137-45.
772	31.	Nilson, L. A., R. L. Gottlieb, G. W. Polack, and D. DiMaio, 1995. Mutational analysis
773		of the interaction between the boying papillomavirus E5 transforming protein and the
774		endogenous beta recentor for platelet-derived growth factor in mouse C127 cells. I Virol
775		69: 5869-5874
776	32.	Oates, L. M. Hicks, T. R. Dafforn, D. DiMaio, and A. M. Dixon, 2008. In vitro
777	<i>c</i> <u>-</u> .	dimerization of the boying papillomavirus E5 protein transmembrane domain.
778		Biochemistry 47: 8985-8992
779	33.	Petti. L., and D. DiMaio. 1994. Specific interaction between the bovine papillomavirus
780		E5 transforming protein and the beta receptor for platelet-derived growth factor in stably
781		transformed and acutely transfected cells. J. Virol. 68:3582-3592.
782	34.	Petti, L., and D. DiMaio. 1992. Stable association between the bovine papillomavirus
783		E5 transforming protein and activated platelet-derived growth factor receptor in
784		transformed mouse cells. Proc. Natl. Acad. Sci USA 89: 6736-6740.
785	35.	Petti, L., L. A. Nilson, and D. DiMaio. 1991. Activation of the platelet-derived growth
786		factor receptor by the bovine papillomavirus E5 transforming protein. EMBO J. 10:845-
787		855.
788	36.	Petti, L. M., E. C. Ricciardi, H. J. Page, and K. A. Porter, 2008. Transforming signals
789		resulting from sustained activation of the PDGFB receptor in mortal human fibroblasts.
790		Cell Sci. 121: 1172-1182.
791	37.	Phillins, J. C., R. Braun, W. Wang, J. Gumbart, E. Taikhorshid, E. Villa, C. Chinot,
792	671	R. D. Skeel , L. Kale, and K. Schulten, 2005. Scalable molecular dynamics with
793		NAMD. J. Comp. Chem. 26: 1781-1802.
794	38.	Pinto, L., and R. A. Lamb. 2006. The M2 proton channels of influenza A and B viruses
795	201	(Minireview), J. Biol. Chem. 281 :8997-9000.
796	39.	Ptacek, J. B., A. P. B. Edwards, L. L. Freeman-Cook, and D. DiMaio, 2007, Packing
797		contacts can mediate highly specific interactions between artificial transmembrane
798		proteins and the PDGF beta receptor. Proc. Natl. Acad. Sci USA 104 :11945-11950.
799	40.	Riese, D. J., II. and D. DiMaio. 1995. An intact PDGF signaling pathway is required for
800	•••	efficient growth transformation of mouse C127 cells by the boyine papillomavirus E5
801		protein. Oncogene 10: 1431-1439.
802	41.	Russ, W. P., and D. M. Engelman. 1999. TOXCAT: a measure of transmembrane helix
803		association in a biological membrane. Proc. Natl. Acad. Sci. USA 96:863-868.

804	42.	Schapiro, F., J. Sparkowski, A. Adduci, F. A. Suprynowicz, R. Schlegel, and S.
805		Grinstein. 2000. Golgi alkalinization by the papillomavirus E5 oncoprotein. J. Cell. Biol.
806		148: 305-315.
807	43.	Schlegel, R., M. Wade-Glass, M. S. Rabson, and YC. Yang. 1986. The E5
808		transforming gene of bovine papillomavirus encodes a small hydrophobic protein.
809		Science 233: 464-467.
810	44.	Sparkowski, J., M. Mense, M. Anders, and R. Schlegel. 1996. E5 oncoprotein
811		transmembrane mutants dissociate fibroblast transforming activity from 16-kilodalton
812		protein binding and platelet-derived growth factor receptor binding and phosphorylation.
813		J. Virol. 70: 2420-2430.
814	45.	Staebler, A., J. H. Pierce, S. Brazinski, M. A. Heidaran, W. Li, R. Schlegel, and D. J.
815		Goldstein. 1995. Mutational analysis of the beta-type platelet-derived growth factor
816		receptor defines the site of interaction with the bovine papillomavirus type 1 E5
817		transforming protein. J. Virol. 69:6507-6517.
818	46.	Surti, T., O. Klein, K. Aschheim, D. DiMaio, and S. O. Smith. 1998. Structural models
819		of the bovine papillomavirus E5 protein. Proteins 33: 601-612.
820	47.	Talbert-Slagle, K., and D. DiMaio. 2009. The bovine papillomavirus E5 protein and the
821		PDGF β receptor: It takes two to tango. Virology 384: 345-351.
822		

823 FIGURE LEGENDS

824 Figure 1. Amino acid sequences of small transmembrane proteins and libraries. The wild-825 type bovine papillomavirus E5 protein sequence is shown in bold, as are the BPV E5 residues 826 deliberately retained in the other small transmembrane proteins. All sequences are aligned to the 827 fixed tryptophan at position 5 in BPV E5. Epitopes for antibody recognition are underlined. 828 Residues randomized in small transmembrane protein libraries are represented by X's. 829 830 Figure 2. pTM32-1 specifically activates the PDGF β receptor. (A) BaF3 cells without 831 exogenous receptor (dashed lines, open shapes) or with PDGF β receptor (solid lines, closed shapes) expressing empty retroviral vector (circle), BPV E5 (triangle), or pTM32-1 (square), 832 833 were incubated in medium lacking IL-3. Live cells were counted on the indicated days. (B) 834 BaF3-βR cells expressing BPV E5 or pTM32-1 were grown in the presence or absence of IL-3 as 835 indicated and were treated with either DMSO (filled bars) or the PDGF β receptor kinase 836 inhibitor AG1295 (open bars). Live cells were counted on day four. (C) PDGF β receptor was 837 immunoprecipitated from BaF3-βR lysates expressing either empty vector, pTM32-1, or the 838 E19L mutant. Blots were probed for PDGF β receptor expression (β R) or phosphorylated 839 tyrosine (PY). The mature (M) and precursor (P) forms of the PDGF β receptor are indicated. 840 (**D**) BaF3-βR cells expressing BPV E5 (triangle), pTM32-1 (square), or the pTM32-1 E19L 841 mutant (circle), were incubated in medium lacking IL-3. Live cells were counted on indicated 842 days. Results shown in all panels are representative of at least three independent experiments. 843 844 Figure 3. Induction of IL-3 independence by pTM32-1 requires the transmembrane

846 $\beta\alpha\beta$ (hatched bars), or BaF3- β Kit β (gray bars) were infected with the empty retroviral vector, or 847 with viruses expressing wild-type BPV E5, pTM32-1, or the *v-sis* oncogene. Cells were plated in medium lacking IL-3, and live cells were counted after five days. Results shown are

representative of multiple independent experiments.

Figure 4. Dimerization and molecular modeling of pTM32-1. (A) The graph shows

normalized CAT activity induced by fusion proteins with the indicated wild-type and mutant

transmembrane domains in a TOXCAT assay, which is proportional to the strength of the

transmembrane interactions. Mean and standard deviations of two independent experiments,

done in triplicate, are shown. GpA, glycophorin A; G83I, glycophorin A glycine to isoleucine

mutation at position 83. (B) Left panel. Helical backbone of three models of the pTM32-1

homodimer predicted by CHI molecular dynamics simulation. Glutamic acid at position 19 is

shown in orange. **Right panel.** The plots show the interaction energy of the amino acids

predicted to form the homodimer interface for each model. The sequence of the predicted

transmembrane domain of pTM32-1 is shown at bottom. (C) Root mean square deviation

(RMSD) of the backbone atoms from the initial coordinates for the three homodimer models

862 during NAMD molecular dynamics simulations. Model 1, black; Model 2, red; Model 3, green.

863

864 Figure 5. Ha/E5₃₃ activates the PDGF β receptor in BaF3 cells. (A) Parental BaF3 cells (open 865 bars), BaF3- β R cells (filled bars), or BaF3- β Kit β cells (gray bars) stably expressing either empty 866 retroviral vector, wild-type BPV E5, or HA/E5₃₃ were plated in medium lacking IL-3, and live 867 cells were counted after five days. Results shown are representative of three independent 868 experiments. (B) PDGF β receptor was immunoprecipitated from BaF3- β R lysates expressing

either empty vector, BPV E5, or HA/E5₃₃. Blots were probed for PDGF β receptor expression (β R) or phosphorylated tyrosine (PY). The mature (M) and precursor (P) forms of the PDGF β receptor are indicated.

872

873 Figure 6. Truncated E5 protein induces low-level focus formation, forms a stable complex 874 with the PDGF β receptor in C127 cells, and induces receptor phosphorylation. (A) C127 875 cells were infected with high-titer stocks of the empty retroviral vector or viruses expressing the 876 indicated small transmembrane protein and incubated for 11 days. (B) PDGF β receptor was 877 immunoprecipitated from lysates of C127 cells expressing empty vector, BPV E5, HA/E5₃₃, or 878 pTM32-1. Blots were probed for the receptor (βR) or phosphorylated tyrosine (PY). The mature 879 (M) and precursor (P) forms of the PDGF β receptor are indicated. (C) Lysates of C127 cells 880 expressing empty vector, BPV E5, or HA/E5₃₃ were immunoprecipitated with antibody 881 recognizing the HA epitope and probed for the PDGF β receptor. Molecular weight marker is 882 shown for reference. 883 884 Figure 7. pTM36-3 and pTM36-4 specifically activate the PDGF β receptor. (A) BaF3- β R (solid lines) and BaF3-BKitB (dashed lines) expressing BPV E5 (squares), pTM36-3 (triangles), 885 886 or pTM36-4 (circles) were incubated in medium lacking IL-3. Live cells were counted on 887 indicated days. Results shown are representative of three independent experiments. (B) C127 888 cells stably transformed with the E5 protein or pTM36-4 were incubated for four days in medium 889 containing DMSO (top) or AG1295 (bottom), and photographed by phase contrast microscopy. 890 (C) PDGF β receptor was immunoprecipitated from lysates of C127 cells expressing empty

891 vector, BPV E5, pTM36-3, or pTM36-4. Blots were probed for the receptor (βR) or

892 phosphorylated tyrosine (PY). The mature (M) and precursor (P) forms of the PDGF β receptor

are indicated.

894

- 895 Figure 8. Dimerization of pTM36-4 peptide. Synthetic peptides corresponding to the
- transmembrane domains of pTM36-4 and BPV E5 were solubilized in 10 mM SDS, subjected to
- 897 crosslinking with BS₃, as indicated, and electrophoresed in bis-tris gels. The position of the
- 898 pTM36-4 peptide dimer is indicated by the arrowhead. The sizes of molecular weight markers
- 899 (in kDa) is shown on right.

900

KTS 4.	2
--------	---

901		
902	Table [·]	1
903		

	Foci/5,000 CFU ^a	% activity ^b	
Vector	0	0	
BPV E5	165	100	
HA/E5 ₃₃	2.6	1.6	
pTM32-1	0.3	0.2	
pTM36-3	20.2	12.2	
pTM36-4	52.2	31.6	
0.			

^aAverage number of foci from two dishes of infected cells, normalized to viral titer ^bPercent focus forming activity relative to wild-type BPV E5

JVI Accepts published online ahead of print

BPV E5	MPNLWFLLFLGLVAAMOLLLLLFLLLFFLVYWDHFECSCTGLPF
$HA/E5_{33}$	MGYPYDVPDYADLPNLWFLLFLGLVAAMQLLLLLFLLFFLVYWD
LFC5	MPNLWFLLFLGLV XXXXXXXXXXXXXXXXXXXXXX YW X HFECSCTGLPF
pTM32-1	MPNLWFLLFLGLVMMLVVEVLLVLVLVMTMYW
KTS1	MA <u>hhhhhh</u> WFllflGXXXXXXXXXXXXXXXXXXXXXX
pTM36-3	MA <u>hhhhhh</u> WFLLFLGIVNILILLAVLIFVIVVI YW
pTM36-4	MA <u>HHHHHH</u> WFLLFLGIINLLTLFLITLILIILVF YW

-17

-14

-6

-3

crosslinker

JVI Accepts published online ahead of print