
Microarray experiments are provid-
ing a huge amount of genome-wide
data on gene expression. Many prior
expression analyses have focused on
inferring functional relationships (1–7);
however, the quality control and nor-
malization of the raw data that result
from microarrays have received less at-
tention. Here we address a systematic
error that arises from microarrays and
discuss current methods to resolve the
problem.

It is well known that the data from
high-throughput experiments embody a
significant component of measurement
error that must be removed before any
analysis can be applied to the data. An
intuitive idea is to repeat the experi-
ments and decrease the noise by aver-
aging the measurements from repli-
cates (8). Unfortunately, microarrays
are still difficult to repeat; in most cas-
es, researchers do not have many repli-
cates for analysis. A Bayesian proba-
bilistic approach has been proposed to
address the problem of the small repeti-
tion number for microarray experi-
ments (9). While random error can be
canceled by replicate experiments, sys-
tematic error will not diminish by aver-
aging replicates. For example, a notori-
ous systematic error in microarray
experiments is that the expression ratio
of a particular gene at different condi-
tions is a function of its absolute ex-
pression levels. If one uses a simple
fold-change cut off, the genes with low
expression levels tend to numerically
meet the given cut off, even though
they are not truly differentially ex-
pressed. Different methods have been
proposed to deal with this problem
(10–15).

In this review, we want to direct at-
tention toward a type of systematic er-

ror that is manifested by the strong in-
teraction between neighboring spots on
the array. If the replicate experiments
are performed on the arrays with same-
chip geometry, then these interactions
will not be canceled by the replicates.
We will first demonstrate this noise via
a case study, and then we will discuss
the possible source of these artifacts.
Finally, we will discuss current meth-
ods to solve the problem; in particular,
a local averaging approach called stan-
dardization and normalization of mi-
croarray data (SNOMAD) (16). We
examined several different yeast mi-
croarray data sets: diauxic shift, α-fac-
tor-arrested cell cycle, cdc15-arrested
cell cycle, and cdc28-arrested cell cycle
(17–19).

To demonstrate the artifact in the
microarray data, we offer the following

evidence. The relationship between
gene expression and physical chip dis-
tance can be revealed by comparing the
chip distance map (Figure 1A) to an ex-
pression correlation coefficient map
(Figure 1B). The horizontal and verti-
cal axes of these two maps represent
the positions of the genes along a chro-
mosome. The colors on the distance
and correlation maps represent the chip
distance and expression correlation co-
efficient between gene pairs, respec-
tively. Interestingly, the highly correlat-
ed gene expression regions (Figure 1B,
red blocks) always correspond to the
short chip distance regions (Figure 1A,
red blocks), which suggests that the
major reason why two genes are detect-
ed to be co-expressed is that these
genes are located near each other on the
chip. 

We also calculated the average cor-
relation coefficient of gene expression
profiles as a function of the physical
chip distance between two genes. Fig-
ure 2 shows the result for a microarray
data set of the yeast α-arrested cell cy-
cle. Without an artifact, the average
correlation coefficient should be inde-
pendent of the chip distance. However,
Figure 2 shows that the closer two
genes are on the chip, the higher their
average correlation coefficient is. This
indicates that this data set contains a
large proportion of artifacts. Actually,

BENCHMARKS

8 BioTechniques Vol. 35, No. 1 (2003)

Identification and correction of spurious 
spatial correlations in microarray data

Jiang Qian, Yuval Kluger, Haiyuan Yu, and Mark Gerstein
Yale University, New Haven, CT, USA

BioTechniques 35:__-__ (July 2003)

Figure 1. Distance map and expression correlation coefficient map [adapted from Yu et al. (21)].
Both maps are produced using the yeast α-factor-arrested cell-cycle data set, whose x-axis and y-axis
represent the first 100 open reading frames on chromosome IV. (A) Distance map. The color on each spot
represents the distance between the gene on the x-axis and the gene on the y-axis. (B) Expression corre-
lation coefficient map. The color represents the correlation coefficient between the gene pair. The color
codes are to the right of the maps.
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this phenomenon is not unique to mi-
croarrays; we performed the same cal-
culation on cell-cycle data from the
Gene Chip® (Affymetrix, Santa Clara,
CA, USA) (1) and obtained the same
results with respect to the artifact.

For microarray experiments, there is
yet additional evidence for an artifact.
In the cell-cycle experiments, re-
searchers measured the gene expres-
sion ratio between the different cell-cy-
cle stages, using asynchronous cultures
of the same cells as a control sample.
This control sample is labeled by
Cy3 (“green”). Ideally, the expres-
sion profile for the green signal for
each gene should follow a uniform dis-
tribution. Thus, the average correlation
coefficient for the green signal should
be 1. However, according to Figure 3,
we found a pattern similar to that of
Figure 2. This is a clear manifestation
of an artifact.

From this analysis, we can see that
the artifact phenomenon is significant
and exists in many chips. Thus, the ar-
tifact must be taken into account before
any conclusion can be drawn based on
the raw, uncorrected expression data.
The following is an example of what
we just stated. A naïve analysis of α-
factor-arrested yeast cell-cycle data
suggests that chromosomal spatial or-
ganization affects gene expression in a

systematic way, as displayed in the dis-
tribution of highly correlated gene pairs
as a function of the relative pair chro-
mosomal distance. The figure shows
that (i) adjacent gene pairs tend to have
high correlation coefficients, which is
consistent with findings by Cohen et al.
(20), and (ii) genes that are not in the
same vicinity on the chromosome are
more likely to be co-expressed if their
spacing is a multiple of 22 open read-
ing frames (ORFs) in microarray ex-
periments. Given the fact that many
chips, including this particular microar-
ray, are printed according to a simple
transformation of the gene order on the
chromosome, the observed long-range
correlation could be associated with an
inherent chip artifact. 

The source of the artifact is un-
known, but it might be related to the
following processes or their combina-
tions: the spotting of DNA probes on
the chips; plate effects; the washing of
cDNA after hybridization; cross hy-
bridization; or image scanning. The ef-
fect of spotting of DNA probes on the
chip is also called print tip effect. A
systematic difference may exist be-
tween the print tips and lead to spatial
bias between the sectors on the chip.
The analysis of variance (ANOVA)
method (11) or MA-plot (19) allows for
the detection of this spatial bias, and a

lowess normaliza-
tion approach was
proposed to cor-

rect the systematic bias (15). The plate
effect originates from PCR amplifica-
tion bias between different plates. This
effect would also introduce further
variability in the measurement of gene
expression. Nonspecific probes were
used to correct the effect, based on the
assumption that DNA concentration re-
sults in this bias. All these effects are
not easy to separate. Furthermore,
some of assumptions, such as equal
variance between different sectors, may
be invalid. This makes the detection
and correction of these effects even
more difficult. 

It would be, of course, most desir-
able to completely correct for the arti-
fact after determining its source. How-
ever, in practice, it is difficult to correct
for all the spatial bias. For example,
Yang’s normalization method is able to
correct the spatial artifact due to print
tips (15). However, the unit corrected
here is the chip “sector” (or block), and
this is a rather coarse division; the spa-
tial bias from other sources may still
exist within sectors after Yang’s sector-
based normalization. We believe that
even without fully understanding the
source of the problem, researchers are
still able to resolve it, if not completely. 

Here we discuss a popular method
of “spatial lowess” in detail (16). This
local normalization method allows for
the detection and/or correction of spa-
tially systematic artifacts in microarray
data without exactly attributing the arti-
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Figure 2. Average correlation coefficient distribution as a function of the
distance of gene pairs on the chip. The distance between genes is measured
in terms of the number of spots on the chip. This distribution is calculated
using the α-factor-arrested cell-cycle data set. The black line is the distribu-
tion for the raw data. The red line is the distribution for the data after the
standardization and normalization of microarray data (SNOMAD). The
green line is the distribution for the data after deconvolution.

Figure 3. Average correlation coefficient distribution for green signals. The
black line is the distribution for the raw data. The red line is the distribution for
the data after the standardization and normalization of microarray data
(SNOMAD).
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facts to certain sources. We applied the
method from Colantuoni et al. (also
called SNOMAD) (16) to the α-factor-
arrested yeast cell-cycle data and found
that their method reduced the artifact
effect but failed to remove it complete-
ly. The red line in Figure 2 shows the
average correlation coefficient as a
function of the chip distance after local
normalization. Apparently, the problem
is diminished when we compare the sit-
uation before the normalization, as
shown by the black line in Figure 2.
Figure 4 shows the self-correlation of
genes that were printed twice on the
chip. Without the normalization proce-
dure, the mode of the distribution of all
self-correlations is approximately 0.1,
whereas, in an ideal situation, it should
be 1. The application of SNOMAD dri-
ves this distribution to the right, with a
slightly higher mode at 0.15, which is
evidence that SNOMAD improves data
quality. The red line in Figure 3 shows
that after local normalization, the pair
correlation function of the green sig-
nals is still not homogeneous, which
means the method cannot remove the
artifact completely. Surprisingly, it
even produces correlation coefficients
between green signals close to 0. These
correlations should ideally be 1 be-
cause we only use local normalization
when we processed the green signals
using SNOMAD. The results are simi-
lar for several normalization methods

(data not shown). An important as-
sumption in with SNOMAD is that the
artifact is isotropic on the chip, which
is actually untrue in most cases. For ex-
ample, we calculated the distribution of
the average correlation coefficient for
all the gene pairs in the same rows and
a similar distribution for those pairs in
the same columns. Figure 5 shows the
results for α-factor-arrested yeast cell
cycle, and it is clear that the artifact
along the x-axis is quite different from
that along the y-axis. 

We propose an inversion approach
to address the artifact problem in chip
experiments. This is actually more of a
general approach than local normaliza-
tion and may be able to take into ac-
count anisotropic effects. We assume
that for each sample indexed by the let-
ter t, the measured signal φt at a chip lo-
cation xr ≡ (x,y) can be expressed as a
convolution of the true signals 

ψt: φt(xr) = Σ
ur

c(ur)ψt (xr - ur), 

where the deviation of c from a δ func-
tion represents the extent of the chip ar-
tifact. (Note that ψ t is the ratio of the
red and green channels.) Thus, neigh-
boring and non-neighboring spots af-
fect the signal measured at the point xr.
According to the convolution theorem,
the Fourier transform of φt(xr) is given
by φt(kr) = c(kr)ψ t(kr). Because the true
signals ψ t and the envelope c(kr) that
represent the artifact are unknown, we

inspect the arti-
fact-free ratios

Rt(kr) ≡ φt(kr)/φ*(kr) = ψ t(kr)/ψ*(kr) for all
samples t, where φ*(kr) is some refer-
ence measurement, such as the average
of φ*(kr) across all samples. A prelimi-
nary result from this idea is illustrated
in Figure 2, where we show average
correlation coefficients as a function of
the physical distance of gene pairs on
the chip. These distributions were cal-
culated using an α-factor-arrested cell-
cycle data set. Clearly, SNOMAD fails
to remove all the artificial components
in the expression profiles. On the con-
trary, the distribution after our pro-
posed deconvolution method is no
longer distance-dependent. The inverse
Fourier transforms of these ratios, de-
noted by Rt(xr), have no straightforward
biological interpretation. Nevertheless,
under the assumption that the convolu-
tion model is adequate, substitution of
φt(xr) for these ratios and application of
the above three pieces of evidence (de-
signed to reveal the artifact) allow us to
filter out chip artifact effects. 

To understand the effect of the chip
artifact, we propose printing a unique
sequence in each spot of the array. Hy-
bridization with the corresponding
cDNA will allow us to study the spatial
variations of the red and green signals
and their ratios, where the dyes repre-
sent two distinct or equivalent cDNA
samples. Replicating this experiment
using different spot spacing will allow
us to study the spot-to-spot interaction
effect and the associated correlation
length. To remove the spatial variation
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Figure 4. Distribution of correlation coefficient for the duplicated genes.
The x-axis represents the correlation coefficient between a duplicated gene
pair. The y-axis represents the number of duplicated gene pairs. The black
line is the distribution for the raw data, and the red line is the distribution for
the data after the standardization and normalization of microarray data
(SNOMAD).

Figure 5. Average correlation coefficient distributions along the x-axis and
y-axis on the chip. The distributions are calculated using the raw α-factor-ar-
rested cell-cycle data set. The black line is the distribution along the y-axis, and
the red line is the distribution along the x-axis. C.C., correlation coefficient.
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effect, we propose a variant of this ap-
proach. Instead of printing a unique se-
quence at each spot, one can link it to
each of the DNA targets. The red chan-
nel can then be assigned to the mRNA
samples, and the green channel can be
assigned to the unique sequence. By
applying the same amounts of the sin-
gle-sequence cDNA (green dye) and
sample cDNA (red dye) and normaliz-
ing the signal of the red channel by the
green channel signal, one can partially
remove the chip artifact (because this
normalization also transforms the green
signal to a constant value at all spots).
Moreover, these ratios are proportional
to mRNA concentration. Thus, one can
compare expression levels between dif-
ferent genes, as with the GeneChips,
and not simply compare the relative
variation of the expression of a gene
across experimental conditions. Note
that placing the different probes that
correspond to a single gene in random
locations on the chip [as is done in the
new U133 Affymetrix chips (1)] and
estimating their average intensity does
not wipe out this artifact.

In summary, we demonstrate a sys-
tematic spatial artifact that arises from
microarray experiments. The source of
the artifact is not fully understood. We
show that a local mean normalization
method is useful but cannot completely
solve the problem. Finally, we propose
experimental and analytical procedures
to quantify and manage this artifact.
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