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Measuring in a quantitative, statistical sense the degree to which struc-
tural and functional information can be “transferred” between pairs of
related protein sequences at various levels of similarity is an essential
prerequisite for robust genome annotation. To this end, we performed
pairwise sequence, structure and function comparisons on ~30,000 pairs
of protein domains with known structure and function. Our domain
pairs, which are constructed according to the SCOP fold classification,
range in similarity from just sharing a fold, to being nearly identical. Our
results show that traditional scores for sequence and structure similarity
have the same basic exponential relationship as observed previously,
with structural divergence, measured in RMS, being exponentially related
to sequence divergence, measured in percent identity. However, as the
scale of our survey is much larger than any previous investigations, our
results have greater statistical weight and precision. We have been able
to express the relationship of sequence and structure similarity using
more “modern scores,” such as Smith-Waterman alignment scores and
probabilistic P-values for both sequence and structure comparison. These
modern scores address some of the problems with traditional scores,
such as determining a conserved core and correcting for length depen-
dency; they enable us to phrase the sequence-structure relationship in
more precise and accurate terms. We found that the basic exponential
sequence-structure relationship is very general: the same essential
relationship is found in the different secondary-structure classes and is
evident in all the scoring schemes. To relate function to sequence and
structure we assigned various levels of functional similarity to the
domain pairs, based on a simple functional classification scheme. This
scheme was constructed by combining and augmenting annotations in
the enzyme and fly functional classifications and comparing subsets of
these to the Escherichia coli and yeast classifications. We found sigmoidal
relationships between similarity in function and sequence, with clear
thresholds for different levels of functional conservation. For pairs of
domains that share the same fold, precise function appears to be con-
served down to ~40 % sequence identity, whereas broad functional class
is conserved to ~25 %. Interestingly, percent identity is more effective at
quantifying functional conservation than the more modern scores (e.g. P-
values). Results of all the pairwise comparisons and our combined func-
tional classification scheme for protein structures can be accessed from a
web database at http:/ /bioinfo.mbb.yale.edu/align
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Introduction
The problem of genome annotation

Perhaps the most valuable information to be
gained from a genome analysis is functional anno-
tation of all the gene products. Unfortunately, of
all the proteins whose sequences are known, func-
tions have been experimentally determined for
only a very small number (Andrade & Sander,
1997). Given the current size and accessibility of
sequence and structure data, homologs of a newly
sequenced gene’s product can be identified via
database searches, and probable structure and
function assigned to the gene product (Bork et al.,
1998). This is based on the concept that sequence
similarity implies structural and functional simi-
larity. However, structural and functional annota-
tions should be transferred with caution. If a
protein is assigned an incorrect function in a data-
base, the error could carry over to other proteins
for which structure or function is inferred by hom-
ology to the errant protein (Brenner, 1999; Karp,
1996, 1998a). In large databases such an error can
propagate out of control, presenting a serious qual-
ity control issue as we move to larger genomes
from multicellular organisms.

Benchmarking fold and function recognition

Here, we used manually curated structural and
functional classifications as standards in analyzing
to what degree annotations of a protein’s structure
and function can be transferred to a similar
sequence. The knowledge gained from the study
can be used to establish confidence levels for struc-
ture and function prediction, improving our under-
standing of how long it will take to annotate
accurately an entire genome.

Our simultaneous analysis of relationships
between sequence and structure, sequence and
function, and structure and function (Figure 1)
may provide insight into paradigms for functional
prediction other than that based alone on sequence
similarity (Enright et al., 1999).

Past results
Sequence-structure

The transfer of structural annotation is well
characterized. Chothia & Lesk (1986, 1987) found
that structural divergence, when expressed in
terms of the RMS separation of matching alpha
carbon atoms, was an exponential function of
sequence divergence, expressed in terms of the
fraction of residues that differed between
sequences. The reliability of structural annotation
transferred by homology, then, depends on the
sequence identity of the homologous proteins
(Chothia & Lesk, 1986). Flores et al. (1993), Russell
& Barton (1994), and Russell et al. (1997) observed
the same general trend, and also characterized the
conservation of structural features other than the

C* backbone, such as secondary structure, accessi-
bility and torsion angles. A paper by Wood &
Pearson (1999) re-expressed the sequence-structure
relationship in terms of statistically based “Z-
scores” and found that this relationship had a
simple linear form in terms of these scores. They
also noted that protein families differed in detail in
the slope of this linear relationship.

Others have focused on the limits of sequence
comparison, specifically around the “twilight
zone,” the region of sequence similarity that does
not reliably imply structural homology (Doolittle,
1987), and on establishing cut-offs for significant
sequence similarity. Using the SCOP structural
classification (Murzin et al., 1995), Brenner et al.
(1998) benchmarked the effectiveness of the popu-
lar FASTA and BLASTP programs and their prob-
abilistic scoring schemes (i.e. the e-value) (Pearson
& Lipman, 1988; Pearson, 1996; Altschul et al.,
1990, 1994; Karlin & Altschul, 1993). They found
that in making fold assignments, the FASTA
e-value closely tracked the number of false posi-
tives, i.e. the error rate, and that at a conservative
e-value cut-off of 0.001, the FASTA program could
detect nearly all the relationships that would be
detected by a full Smith-Waterman comparison
(Smith & Waterman, 1981). Specifically, they found
that FASTA with a 0.001 threshold would find
16 % more of the structural relationships in SCOP
than would be found by standard sequence com-
parison with a 40 % identity threshold. This rigor-
ous benchmarking approach has been extended to
assess transitive sequence comparison, through a
third intermediate sequence and multiple-sequence
matching programs such as PSI-blast (Park et al.,
1997, 1998; Gerstein, 1998a; Salamov et al., 1999). In
a related study Rost (1999) worked on characteriz-
ing the region after the twilight zone, which he
called the “midnight zone”. In a sense these bench-
marking studies have culminated in the CASP fold
recognition experiments (Moult et al, 1997;
Sternberg et al., 1999).

Sequence-function

Although the exact dependence of functional
similarity on sequence and structural similarity is
not completely clear, initial indications of a gene
product’s function are most often based on simple
sequence similarity (Bork et al. 1994, 1998). Often
these are merely based on the best hit in database
comparisons; see, for example, the annotation of
some of the early genomes (Fraser et al., 1995,
1998). However, possibilities for more robust anno-
tation transfer are increasingly available. One looks
at the pattern of hits amongst different phylo-
genetic groups (Tatusov et al., 1997). Often these
focus on the existence of key motifs and patterns
associated with function (Zhang ef al., 1998; Bork &
Koonin, 1996; Attwood et al., 1999).
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Figure 1. This Figure schematically depicts certain aspects of our comparison methodology. (a) The paradigm relat-
ing sequence to structure to function. There has not been as much assessment of functional annotation transfer based
on structure as there has been with sequence-based structural and functional annotation transfer. (b) How we concep-
tualized our analysis in terms of pairs. A few examples of SCOP domains (identified on the left and bottom) are
included from our comparison. In the Figure the shape represents fold, and the pattern represents function. We have
highlighted some example categories of pairs: a pair that shares fold and function, a pair that shares fold but not
function and a pair that shares neither fold nor function. The latter category of pairs is not considered in our investi-
gation; we looked only at paired domains with the same fold. In constructing our pairs, we used only a representa-
tive set of SCOP domains. This is illustrated in the Figure by the domains flagged with asterisks. Note, in particular,
that the SCOP domain d4tima_ is not paired with anything because it is represented by d5tima_, which is the same
species and protein. For each level of pairs (fold, superfamily, family), cluster representatives were chosen for the
level below: (i) for family pairs, one representative was selected from each species/protein, the level below, and then
paired with all the other representatives within its family; (ii) for superfamily pairs, one representative was chosen
from each family, unless there were domains in the family that shared less than 40 % sequence identity, in which case
additional representatives were included, each not more than 40 % identical with the other representatives from the
family (this occurs, for instance, for the globins); and (iii) likewise for fold pairs, one representative was chosen from
each superfamily, more if there were domains with less than 40 % sequence identity. (c) Subdivides the pairs into the
four SCOP classes from which they were composed: (i) all-o;, domains consisting of a-helices; (ii) all-p, domains con-
sisting of B-sheets; (iii) o/ B, domains with integrated ao-helices and B-strands; and (iv) o + , domains with segregated
o-helices and B-strands. We initially set apart the immunoglobulins from the rest of the all-B pairs because we rea-
lized that their large number biases our data. However, we compared the results for the immunoglobulin pairs to all
other pairs and found that they generally exhibit the same behavior as the other pairs. Therefore we decided to leave
them in the comparison.

Sequence-structure-function predicting protein function. In a comprehensive
study, Hegyi & Gerstein (1999) investigated to
what degree folds were associated with functions.
They found that most folds were associated with
one or two functions with the exception of a few
special folds, such as the TIM barrel, that could

One way that the better-defined sequence-struc-
ture relationship can assist in function prediction is
initially to predict the structure of an uncharacter-
ized sequence and then predict the function based

on the limited repertoire of functions known to t functi Furth th
occur with that structure. To some degree this was STy OUt numerous IUnctions. rurthermore, they

achieved by Fetrow and co-workers (Fetrow et al., f(?ur.‘d that particula.r folds were often <.:(.)nﬁned to
1998; Fetrow & Skolnick, 1998). They predicted  distinct phylogenetic groups, an additional fact
structural profiles based on threading and ab initio ~ that can feed into an integrated sequence-structure-
methods, and then searched with these against function analysis (Gerstein & Hegyi, 1998;
profiles of known structures in order to predict  Gerstein, 1997, 1998b,c).
function. Here, we look at pairwise comparisons of
In related work, Russell et al. (1998) discussed  protein sequence, structure and function among
using identification of structural binding sites in  proteins that share the same fold. We assess the
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trends relating sequence, structure and function
and consider the implications for structural and
functional annotation transfer.

New developments: probabilistic scoring and
growth of the databank

The past studies regarding sequence, structure
and function relationships often used RMS separ-
ation and percent sequence identity (or a linear
variant of it, such as the fraction of mutated resi-
dues) to express similarities in structure and in
sequence, respectively. However, it has become
increasingly common to use probabilistic scoring
schemes (P-values) to express the quality of a
match in terms of statistical significance rather
than an arbitrary raw score such as percent iden-
tity (Pearson, 1998; Karlin & Altschul, 1990, 1993;
Karlin et al. 1991; Altschul et al. 1994; Bryant &
Altschul, 1995; Abagyan & Batalyov, 1997). With
P-values, scores from different investigations can
be compared in a common framework. Recently, it
was found that sequence and structure similarity
significance can be expressed as P-values in the
same unified statistical framework (Levitt &
Gerstein, 1998). Here, we use such probabilistic
scoring methods to overcome the limitations of the
more traditional scores.

Another recent development is the tremendous
growth in the number of solved structures. The
RCSB Protein Data Bank (Bernstein et al. 1977) now
contains more than 10,000 protein structures. These
structures are broken into more than 18,000
domains, and then domains that share a fold are
paired up with each other for comparison
(Figure 1(b)). Here, we survey ~30,000 pairs of
protein domains that are known to have the same
fold, approximately 1000 times the number com-
pared by Chothia & Lesk (1986). The large scale of
this comparison affords greater statistical weight to
the results.

Alignment of 30,000 pairs from SCOP

The basic unit of comparison: a pair of
protein domains

The protein domains that we studied were classi-
fied by SCOP, a Structural Classification of Pro-
teins (Murzin ef al. 1995, Brenner et al. 1996;
Hubbard et al. 1997), a hierarchy of five levels:
(i) class, domains that have the same secondary
structural content (all-o, all-B, a/B, or o+ PB);
(ii) fold, domains that geometrically share the same
tertiary fold; (iii) superfamily, domains descended
from the same ancestor (but which lack measurable
sequence similarity); (iv) family, domains in the
same protein sequence family (which have appreci-
able sequence similarity); and (v) species and
protein.

Pairs of protein domains that are grouped
together at the fold, superfamily or family level
form the basic unit of our comparisons.

Selection of pairs

There is potentially a huge number of pairs of
domains that can be constructed out of the
relationships in SCOP. For instance, in the current
version of SCOP there are ~3.9 million potential
pairs between domains sharing the same fold.
Most of these are between nearly identical struc-
tures. In order to keep the number of pairs man-
ageable, we used a straightforward clustering
scheme, described in the legend to Figure 1. We
selected 29,454 representative pairs from the total
in SCOP. To achieve a wide range of similarities,
we constructed the pairs on three levels of the
SCOP hierarchy: (i) family pairs, 19,542 pairs of
domains in the same family; (ii) superfamily pairs,
4220 pairs of domains in the same superfamily
but different families; and (iii) fold pairs, 5692
pairs of domains in the same fold but different
superfamilies.

All the selected domains were at least 50 resi-
dues in length and were drawn from the four
major SCOP secondary-structural classes: all-o, all-
B, oo/PB, and o + B (Figure 1(c)).

We automatically aligned each of our selected
domain pairs twice, once by global Needleman-
Wunsch sequence comparison (Needleman &
Wunsch, 1971, Myers & Miller, 1998) and then
by structure (Gerstein & Levitt, 1996, 1998), cal-
culating scores for sequence and structural simi-
larity.

Web-accessible database

The results of all the pairwise comparisons are
available via a searchable database on the web at
http:/ /bioinfo.mbb.yale.edu/align =~ The  query
engine allows searches of individual SCOP pairs,
all pairs that include a given SCOP domain, or all
pairs containing any SCOP domain contained in a
given PDB entry.

Traditional scores: RMS and percent identity

The sequence-structure relation, as expressed by
the root-mean-square (RMS) of the aligned C* dis-
tances and percent sequence identity, has been pre-
viously characterized as an exponential function by
Chothia & Lesk (1986) and others (Flores et al.
1993; Russell & Barton, 1994; Russell et al. 1997).
As Figure 2 illustrates, our data display a similar
trend. (Exact equations are given in the legend to
Figure 2.) However, we have one thousand times
as many data points as in Chothia and Lesk’s orig-
inal study (30,000 as opposed to 30).

The main difference between our results and
the previous studies is due to differences in
RMS “trimming” methods. By trimming we refer
to the process of removing the worst-fitting
aligned atoms from the RMS calculation, to
arrive at a structural “core.” This was first
developed in Lesk’s sieve-fit procedure (Lesk &
Chothia, 1984) and has been refined in numer-
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ous studies (e.g. Gerstein & Altman (1995)). This
is done because the small distances between
well-matched alpha carbon atoms have much
less of an effect on the RMS than do the very
large distances between poorly matched atoms.
The untrimmed score of divergent protein
domains is then concerned primarily with the
poorly matched residues instead of the con-
served core. Trimming alleviates this effect by
restricting the RMS calculation to include only
those residues believed to be in the conserved
core. However, the degree of trimming is to
some extent arbitrary, and this choice affects the
baseline of the reported RMS scores. Here we
considered only the better half (50 %) of matched
residues in a given pair of protein domains.
Chothia & Lesk (1986) chose a somewhat differ-
ent threshold. Figure 2(c) and (d) demonstrate
the effect of trimming.

Analogous alignment similarity scores: Smith-
Waterman score and structural
comparison score

The dependence of the RMS separation on trim-
ming method restricts its usefulness in comparing
data. Likewise, there are many problems with
using percent identity as a measure of sequence
similarity. For instance, a match of non-identical
but still similar residues (e.g. Arg versus Lys) scores
the same as one between completely different resi-
dues (e.g. Arg versus Val), and gaps do not enter in
the score calculation. Consequently, we now turn
to alignment similarity scores, which eliminate
some of the problems with traditional scores.

For sequence alignments, an alignment score is
defined as the sum of the similarity matrix values
for the alignment, minus the total gap penalty.
This is sometimes called the Smith-Waterman score
(Smith & Waterman, 1981). An analogous align-
ment score for structure is the structural compari-
son score, described by Levitt & Gerstein (1998).
We will refer to these two similarity scores as S.q
and S, respectively. Note that they both increase
for more similar pairs, whereas RMS increases for
more divergent pairs. Specifically, S, is the score
maximized by the structural alignment program
we used (Gerstein & Levitt, 1998). It can be calcu-
lated from any pair of aligned structures according
to the function:

1 _ Neap

A
14 (2
i <d0)
M and d, are constants, usually set to 10 and 5 A,
N,,, is the number of gaps in the alignment, d; is
the distance between each aligned pair of C*

atoms, and the sum is carried over all aligned
pairs, i.

M

Sstr :MZ

The main advantage of S, over RMS in describ-
ing structural similarity is that the C* to C*
distance, d;, appears in the denominator of the cal-
culation. This means that the smallest distances,
corresponding to the best matches in the conserved
core, are most significant in determining the score.
Hence, the need for trimming is eliminated. S, is
also advantageous because it takes gaps into
account and because of the fundamental analogy
between this score and S,

Figure 3(a) displays the relationship between
structural and sequence similarity as expressed by
Ser and Sg.q. Figure 3(c) and (d) show calibration
curves relating each of these scores back to
approximate RMS separation and percent identity,
respectively. Calibration curves help one get an
intuitive feel for the degree of relationship in terms
of the more traditional scores. Figure 3(b) adds a
third axis, alignment length, and demonstrates that
S, depends greatly on this quantity. Although S,
and S, are “better”” scores than RMS and percent
sequence identity, the heavy dependence of both of
these on length limits their usefulness in many
situations. In other words, two pairs of similar
domains with equal percent sequence identities but
different lengths can have drastically different S
scores.

seq

Probabilistic scores: P-values expressing the
significance of sequence and
structure similarity

Probabilistic scores can, to a great degree, over-
come the length-dependence problems associated
with the alignment scores. Probabilistic measures
are advantageous because they express similarity
not by an arbitrary “score” but by a statistical sig-
nificance: the likelihood that such a similarity
could be achieved by chance. This likelihood is
also called the “P-value.”” We used calculations
(described in detail in the legend to Figure 4)
based on those given by Levitt & Gerstein (1998) to
obtain P-values based directly on Sy, and S,.g; we
refer to these calculated P-values as P, and P,
respectively. For P, we could equally well have
used the numbers from one of the popular
sequence search programs (i.e. BLAST or FASTA)
as all these values have been shown to be perfectly
proportional to each other (Levitt & Gerstein, 1998;
Brenner et al. 1998).

P4 and Pg, can be used to express the relation-
ship between structure and sequence similarity on
a more fundamental level. Figure 4(a) shows a log-
log (base 10) plot of P, against P.. Because it is
log-log, trends can be visualized as straight lines.
Two straight lines are necessary to fit the points
well, with the discontinuous boundary between
the lines located at the beginning of the twilight
zone. The different slope of the line at low
sequence similarity reveals that in the twilight
zone there is a different relationship between the
significance of structural similarity and that of
sequence similarity. In particular, for domain pairs
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Figure 2. RMS as a function of percent identity. (a) A simple scatter plot of our pairs, relating RMS separation to
percent sequence identity. This is similar to the presentation given by Chothia & Lesk (1986), but in this survey we
looked at 30,000 pairs, 1000 times the number they compared. Outliers (pairs with RMS scores further than two stan-
dard deviations from the mean for their percent identity) are excluded from this graph; they represent domains that
are very closely related with the exception of a conformational change. (b) A simplified graph with a number of fits
to the data. For each percent identity bin we show the median RMS value, indicated by (#) and the top and bottom
quartile RMS values, indicated by the bars. Two fits are drawn through the median RMS values. The thin line,
labeled SINGLE, is a simple exponential fit through the medians. It has the form:

R = 0.21e"713%H

where R is the RMS deviation after least-square fitting, H is the percent difference between the sequences (H for
Hamming distance), and H = 100 % — I, where I is the percent sequence identity. The thick line, labeled MULTI, is a
multigraph fit, which is described in the legend to Figure 4. The relation between RMS and percent identity according
to this fit is expressed by the equation:

R=0. 186040187H

The twilight zone of sequence identity and below is labeled TZ. In this region, sequence similarity is not significant
and not reliable for predicting structural similarity. This is why the median values in this area of the graph deviate
significantly from the fits, which consider only data above 20 % sequence identity. For reference we include the orig-
inal data points from Chothia and Lesk’s, 1986 paper (A.M. Lesk, personal communication), indicated by X. Their
data follow the form:

R = 0.40e0,0187H

The difference between the Chothia & Lesk trend and our relationship is due to the different trimming methods used
in calculating the RMS score. Chothia and Lesk imposed a 3 A cut-off in determining the conserved core residues; we
defined the core as the better matching (in terms of C* distances) half (50 %) of the residue pairs. (c) and (d) The
effect our trimming has on median RMS values. The RMS values in (c) are calculated from all the matched residues
in each pair; the values in (d) are calculated from the better matching 50 % of the residues.

in the twilight zone (according to the percent iden-
tity to P, calibration in Figure 4(b)), structural
similarity is more significant than sequence simi-
larity (having a smaller P-value or more negative
log P-value). In contrast, for pairs with more than
~30% identity, the situation is reversed, with a
given pair having more significant sequence simi-
larity than structural similarity. One possible
interpretation of this reversal is as follows. Struc-
ture is always more highly conserved than
sequence, so usually a given amount of structural
similarity is not as significant as a corresponding
amount of sequence similarity. However, this is
true only when meaningful sequence similarity

actually exists; thus, it does not apply in the twi-
light zone, where sequence similarity is by defi-
nition not significant. Note that all pairs in our
comparison share at least the same fold, implying
that they always have a significant amount of
structural similarity.

In other words, for closely related sequences,
differences in sequence similarity are more mean-
ingful, whereas for highly diverged sequences that
share the same fold, the differences in structural
similarity are more significant.

Fitting two lines to the Py, versus P, graph
suggests that the same might be done for other
scoring schemes. It is possible to some degree to fit
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Figure 3. Similarity scores: structural comparison score as a function of Smith-Waterman score. Alignment simi-
larity scores S, and S, have certain advantages over RMS and percent identity scores for expressing the sequence-
structure relation. S, is calculated according to equation (1) in the text (Gerstein & Levitt, 1998; Levitt & Gerstein,
1998). Seeq is calculated using the BLOSUMS50 matrix (Henikoff & Henikoff, 1992) with gap opening and extension
penalties of —12 and —2, respectively. (a) This is analogous to (b) in Figure 2. From the original 30,000 pairs we show
the median S, value for each S, bin, along with quartile bars above and below. Again the twilight zone and below
is labeled TZ. The thin line, marked SINGLE, is a simple fit to the median S, values in this graph; it has the form:

Sstr = 2144 — 1106 exp(—0.00544S5.)
The thick fit, marked MULT]I, is the multigraph fit, explained below. It follows the equation:
Ser = 2157 — 787 exp(—0.00285c)

The equations presented here provide an approximation of the observed trends; as (b) illustrates, they are nothing
more than simple approximations. The main disadvantage of S, as a measure of structural similarity is its heavy
length dependency for pairs of structurally similar protein domains. (b) Surface plot of the median S, as a function
of S..q and alignment length (the number of matched residue pairs). It is clear that the size of the aligned domains
plays a major role in the resulting S, even though our fits do not take length into account. (c) and (d) Relate S,
and S, to the more familiar percent identity and RMS measures. The fits were used to convert between scoring
schemes in constructing the multigraph fit. We derived the multigraph fit in order to create one set of equations and
parameters that would relate sequence and structural similarity using either the percent identity and RMS scheme or
the S, and S, scheme, and allow translation between them. We simultaneously performed least-squares fits to the
median values in four graphs: Figures 2(b) and 3(a) and the calibrations of S, to percent identity and S, to RMS,
(c) and (d), respectively. In all cases, we ignored data in and below the sequence identity twilight zone (labeled TZ).
The parameters in (a) are dependent on the parameters in Figure 2(b) via the mentioned calibrations.

the traditional RMS versus percent identity graph
(Figure 2) with two straight lines instead of an
exponential cruve. However, in this case, we opted
for the more conventional presentation.

Class differences

The division of SCOP into classes based on sec-
ondary-structural composition allows easy investi-
gation as to whether there are any deviations from
the common similarity relationships on account of
secondary-structure characteristics. Figure 5(a)
reveals that secondary structural composition does
not markedly affect the trends in sequence and
structure similarities. This is consistent with the

data given by Wood & Pearson (1999). However,
the larger average length of o/B domains com-
pared with domains in the other classes results in a
deviation in the length-dependent S, (Figure 5(b)).
The consistency among length-independent scores
applies for certain individual folds as well. The
immunoglobulin fold makes up an appreciable
fraction of all the PB-pairs (Figure 1(c)), yet the
results are not affected if these pairs are left out.

Linking sequence and structure to function

Difficulties of functional comparison

There is a clear, well-characterized relationship
between sequence and structure similarity, which
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Figure 4. Probabilistic scores: P-values. P, and P, are P-values calculated from S, and S, according to the
formalism given by Levitt & Gerstein (1998). Both quantities have the same overall functional form in terms of an

extreme value distribution:
P =1 — exp(—exp(—2))

where P is either Py or Pg,. For Py, Z=S../a—2 InM —b/a, where a=5.84, b= —26.3, and M is the geometric
mean of the lengths of the two sequences (i.e. M? = nm, where n and m are the two sequence lengths). For P, Z is a
function of S, and N, the number of matched residues: For N < 120:

Z = (S¢p —cIn? N —dInN —e)/(fInN +g)

For N > 120:
Z = (S —alnN —b)/(fIn120 + g)

At N = 120, continuity implies that:
aln120+b=cIn®>120+dIn120+¢ and a=2cIn120+4d

This, in turn, allows the calculation of the constants:
a=1718, b=-4194, c =184, d=—-450, e=2.64, f =214, g =-375

(a) of this Figure is analogous to Figures 3(a) and 2(b), with the exception of the fits. It is a log-log (base 10) plot
relating P, and P,,. We show the median log(P,) value for each log(P,.,) bin, along with quartile bars above and
below. We have added approximate percent identity and RMS values to the x and y axes to aid interpretation of the
graph in terms of more familiar scores. The values were calculated using the calibration curves in (b) and (c). The
straight-line nature of the log-log plot reveals distinct relations inside and outside the twilight zone, labeled TZ. (The
area of percent identity below the twilight zone does not appear in P, graphs, there is no significance for such low
sequence similarity; thus all data points in that zone appear at Py.q = 1 or log[P..] = 0.) The thick line in the figure is
fit to the median Py, values for P, values outside the twilight zone; its equation is:

Pstr — 107101)0‘05

seq
The thin line is fit to the data inside the twilight zone; it follows the relation:
Py = 107°P32*

For reference we include the dotted line, representing the function Py, = P, where sequence and structural simi-
larity are equally significant. See the text for a discussion of how the two trends might be interpreted with respect to

this line.

can be used to transfer precisely structural annota-  known proteins; yet the sequence-function and
tion based on the degree of sequence homology. In  structure-function relationships have not been as
genome analysis, however, one is usually more  explicitly characterized. The fundamental obstacle
interested in finding a functional annotation for an  to extending this and similar investigations to deal
open reading frame based on similarity to well-  with function is the absence of a clear measure of
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Figure 5. SCOP class differences. Previously it has
been observed that secondary structural composition
does not cause deviations from the trends in structure
and sequence similarity (Flores et al. 1993). To test this
observation we looked at the scores divided by SCOP
class. The following legend applies to the graphs: (—
W —), all alpha; (- & —), all beta; (-- A --), alpha/beta;
(—-x —-), alpha+beta. (a) Median RMS values for
each percent identity bin. The traditional scores reveal
no dependency on class. However, in (b) o/p pairs con-
sistently score higher S, scores than pairs in other
classes. This is a consequence of the dependence of S,
on length; domains in the o/ class are longer, on aver-
age, than in the other classes.

functional similarity. Although we were able to
present three different quantitative measures of
structural relatedness, an analogous situation for
function does not exist. How can one express
quantitatively the degree of similarity between a
triosephosphate isomerase and a glucose-6-phos-
phate isomerase? How do they compare to trp
repressor?

The absence of a clear measure of functional
similarity is not the only obstacle in transferring
the functional annotations between proteins with
different degrees of homology. The definition of
function itself is often vague. More specifically, at
present there is an absence of such important infor-
mation as a standardized vocabulary for protein
functional annotations with an associated number-
ing scheme, descriptions of monomer functions of
subunits of multisubunit proteins and hierarchical
functional assignments for proteins with multiple

functions. As a consequence of these difficulties
there is no functional equivalent to the hierarchical
fold classification for domains in PDB.

As signs of progress in this direction, several
functional classifications have been developed to
date. One is the ENZYME system developed by
the Enzyme Commission (EC) to classify enzymes
by reaction type (Webb, 1992). This system has the
advantage that it is “‘universal,” applicable to
proteins in many different organisms, and is in
wide use. However, it also has several drawbacks.
First of all, it does not consider catalytic reaction
mechanisms (Riley, 1998a), often ignoring obvious
similarities. Second, it presumes a 1:1:1 relationship
between gene, protein and reaction, although this
is often not the case (an enzyme can have
two functions, or two polypeptides from two
different genes can oligomerize to perform a single
function). Perhaps the most significant drawback
of the EC classification is that it applies to only
enzymes.

A number of more comprehensive schemes
have been developed, which classify non-
enzymes as well as enzymes. Most of these
focus on individual organisms. Several such
schemes exist, for instance, GenProtEC/EcoCyc
for E. coli (Karp et al., 1998b; Riley & Labedan,
1996; Riley, 1998b), MIPS for yeast (Mewes et al.,
1998), Ashburner’s functional classification for
Drosophila, which is connected to FLYBASE
(Ashburner & Drysdale, 1994), and EGAD for
human ESTs (Adams et al, 1995). These classifi-
cations possess some advantages. They have
additional levels of hierarchy that help present a
more comprehensive picture of genotype-pheno-
type relationships. On the other hand, these
classifications still leave much room for improve-
ment. For example, there is no standardized
vocabulary to allow for keyword searches
among multiple databases and across organisms,
and there are inconsistencies in category num-
bering style.

Finally, there has been some promising work
going beyond the ENZYME and organism-focused
classifications. There has been progress on comple-
tely automated functional classification (des Jardins
et al., 1997, Tamames et al., 1997), which has the
potential for putting function assignments on a
more objective basis. There are a number of data-
bases synthesizing the various enzyme functions
into coherent pathways and systems (e.g. KEGG
and WIT, Ogata et al., 1999; Selkov et al., 1998).
There also have been some very recent attempts to
develop cross-species classifications of non-enzyme
functions in the framework of the Gene Ontology
Project (GO, geneontology.org). GO is a joint pro-
ject between FlyBase, the Saccharomyces Genome
Database and Mouse Genome Informatics,
attempting to merge the fly, yeast and mouse
functional classification schemes. However, a truly
universal system for classifying all protein func-
tions in all organisms within the same framework
remains quite a challenge because of the
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sheer diversity of organisms and distinct protein
functions.

Our simple functional classification of SCOP
domains: FLY+ENZYME

Given the discussed limitations, we constructed
a simple functional classification for the SCOP
domains included in our comparison; our classifi-
cation is based on a merger of two of the existing
functional annotations and a cross-referencing of
subsets of this combination with some of the
organism-specific schemes. First, we used pairwise
comparison to cross-reference the PDB domains
against the Swissprot database (Bairoch &
Apweiler, 1998), as described by Hegyi & Gerstein
(1999). We chose to assign protein functions
according to Swissprot because it provides more
comprehensive functional annotations than SCOP.

We were initially able to divide all entries into
enzymes and non-enzymes, a division that rep-
resents the highest level of functional difference in
our classification scheme (Figure 6). For the
enzyme category, we transferred EC (Webb, 1992)
numbers to those SCOP domains with a one-to-one
match to a Swissprot enzyme. Only one-to-one
matching entries could be considered because
Swissprot assigns ENZYME numbers to entire pro-
teins, whereas SCOP is a domain-based classifi-
cation; therefore we could be confident about the
classification of only those domains which map to
an entire Swissprot entry.

In the absence of an EC-type classification for
non-enzymes, we assigned functions to non-enzy-
matic SCOP domains according to Ashburner’s
original classification of Drosophila protein func-
tions. This classification is derived from a con-
trolled vocabulary of fly terms. It is available on
the web and loosely connected with the FLYBASE
database (Ashburner & Drysdale, 1994). For clarity,
we precisely describe the specific files and version
(1.55, 1997) of the classification that we used in the
caption to Figure 6, and we will hereafter refer to
these data files as constituting the original FLY
classification.

The FLY classification is a dynamic object, chan-
ging as more is learned about the fly and other
organisms. This is particularly true of late with the
imminent completion of the Drosophila genome. In
fact, since the completion of our analysis, the FLY
classification has been superceded by the new GO
classification (see above).

The hierarchical structure of the FLY classifi-
cation makes it well suited for classifying non-
enzymatic SCOP entries in a manner comparable
to the ENZYME assignments for the enzymes.
Another advantage of this classification is that it is
more compatible with the makeup of the PDB than
the E. coli and yeast classifications, as Drosophila is
a multi-cellular organism, and many of the known
structures come from animals. We were able to use
the original FLY classification as a framework to

which we added functional categories and individ-
ual proteins. For instance, we added “Hemo-
globin” to the “Physiological Processes -
Respiration”” category. Another example is the
“Physiological processes - Immunity” category
(Figure 6(b)), to which we added immune system
proteins. Many of the additions would not be
necessary in the context of the new cross-species
GO system. We also modified slightly the number-
ing scheme in the original FLY classification in
order to assign a unique hierarchical number to
each protein domain (Figure 6(b)). We will refer to
our augmented FLY classification as the FLY+
scheme, and our merged scheme as the FLY+
ENZYME classification.

As discussed earlier, the universal functional
classification of proteins is very challenging and
may not be possible with the current level of
knowledge about genes, proteins and genomes.
Consequently, the FLY +ENZYME classification
of SCOP proteins is somewhat incomplete and
inconsistent and retains many of the limitations
of its components (Hegyi & Gerstein, 1999;
Riley, 1998a). It is not yet broad enough to
include many plant, virus and bacterial proteins.
Nevertheless, it was sufficient for our analysis,
as we were able to classify a very large number
of the total 30,000 pairs.

Determining functional similarity

Using our compound functional classification,
we were able to assign a level of functional simi-
larity to each domain pair. According to our
scheme, a pair can have no functional similarity
(an enzyme paired with a non-enzyme) or it can
have one of three levels of similarity:

(i) General similarity. Both domains are
enzymes or both are non-enzymes.

(ii) Same functional class. Both domains share
the first component of their ENZYME or FLY +
numbers, e.g. 1.1.1.1 alcohol dehydrogenase and
1.3.1.1 cortisone beta-reductase (for enzymes), or
3.3.2.1.2 calcicyclin and 3.6.3.2.1 calmodulin (for
non-enzymes).

(iii) Same precise function. Both domains share
three components of their ENZYME or FLY +
number, e.g. 1.1.1.1 alcohol dehydrogenase and
1.1.1.3 homoserine dehydrogenase (for enzymes)
or 1.29.1.1.1 Arc repressor and 1.2.9.1.1.1 Cjun
(for non-enzymes; both are transcription factors).
A pair that shares precise function must also, by
definition, share functional class and general
similarity.

Based on those assignments we calculated the
percentage of total pairs at a given level of
sequence or structural similarity possessing each
level of functional similarity. The results appear in
Figure 7.
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Sequence and function

The relation between sequence similarity and
functional similarity behaves as one might expect,
with sigmoidal curves that drop off sharply at par-
ticular conservation thresholds, and with the three
levels of functional similarity (precise function,
functional class and general similarity) having pro-
gressively lower thresholds. Figure 7(a) shows that
precise function is not conserved below 30-40 %
sequence identity, whereas functional class is con-
served for sequence identities as low as 20-25%.
Below 20%, general similarity is no longer con-
served; among pairs of approximately 7%
sequence identity, about 40 % are enzymes paired
with non-enzymes. It is important to note that in
all the pairs considered here, the domains share
the same fold. Functional similarity at low percent
identities (e.g. 7 %) would be much less for all
possible pairs of domains rather than just for those
with the same fold. It is also important to remem-
ber that our thresholds for functional conservation
are statistical averages over many sequences; one
will, of course, be able to find individual cases that
diverge more or less rapidly.

There are differences between the functional con-
servation thresholds of enzymes and non-enzymes,
with enzymes appearing to more highly conserve
precise function than non-enzymes, but non-
enzymes conserving functional class more highly
than enzymes. This may reflect that in our classifi-
cation, the non-enzyme functional classes are
broader and hence easier to conserve than those of
the enzymes, while the non-enzymatic precise
functions are more specific.

When P, is used as the measure of sequence
similarity (Figure 7(b)) the results look somewhat
different, it appears that functional class is con-
served for the entire range of sequence similarities.
In this case, percent identity is actually more discri-
minating than P, because functional class
diverges only at sequence similarities that are low
enough that they have little or no statistical signifi-
cance, ie. for Py, the divergence is compressed
near the vertical axis of the graph.

Structure and function

The relation between similarity in structure and
function is somewhat less straightforward than
that between similarity in sequence and function.
Figure 7(c) shows the relationship between RMS
and functional similarity. Broadly, it appears simi-
lar to that for percent identity and functional simi-
larity; however, the thresholds for conservation of
the various types of functional similarity are less
sharp.

RMS is more revealing with respect to functional
similarity than the non-traditional structural scores,
S¢ and P, (Data for Sy, and P, are not shown
but are available from the website.) The reason is
that, while very structurally similar pairs all have
RMS scores clustered between 0 and 0.5 A, S_,. has

str

a large range of scores for similar pairs due to the
length dependency, and P, does not have any
limit for maximum similarity. The wide range of
possible Sy, and P, scores for similar structures
tends to blur the broad sigmoid curves so much so
that they are no longer apparent.

Alternative functional classifications: MIPS
and GenProtEC

To get some perspective on the degree to which
our results reflected the particularities of our com-
bined FLY 4+ ENZYME classification, we decided
to try the same comparisons based on the well-
known functional classifications for yeast and
E. coli, MIPS and GenProtEC (Mewes et al., 1998;
Riley & Labedan, 1996; Riley, 1998b). These classi-
fications have the advantage that they integrate
enzyme and non-enzyme functions from the start
and are widely used. However, as they are only
applicable to individual organisms, we could only
use them to classify a considerably smaller subset
of the known structures than the compound FLY +
ENZYME system.

The specific way we used the MIPS and Gen-
ProtEC classifications to assign function to struc-
tures and to calculate functional similarities is
described in the legend to Figure 7. Our results
in terms of functional conservation (precise and
class) at various levels of percent identity are
shown in Figure 7(d). We observe the same gen-
eral relationships as we did for our FLY -
+ ENZYME scheme. That is, the functional
conservation curves have a sigmoidal shape and
have cut-offs for precise functional similarity
after 40% and for functional class similarity at
lower values. However, because the MIPS and
GenProtEC classifications are restricted to indi-
vidual organisms, each curve represents con-
siderably fewer data points than do the curves
based on the FLY +ENZYME scheme; this
required us to “bin” the MIPS and GenProtEC
curves in a somewhat coarser fashion.

Discussion and Conclusion

Here, we assessed the transfer of functional and
structural annotation by analyzing the relation-
ships between similarity in sequence, structure and
function. The ~30,000 protein domain pairs of
varying levels of similarity (at least the same fold)
that we constructed out of the SCOP classification
show quantitative sequence-structure relationships
consistent with previous research. The exponential
relationship is consistent across the secondary-
structural classes and holds for newer probabilistic
scoring methods.

The sequence-function and structure-function
relationships have not been studied as precisely
due to the lack of a robust functional classification
and measure of functional similarity. To overcome
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Figure 6. Functional classification of enzymes and non-enzymes. (a) Divides the pairs by general function. There
are three categories of pairs: (i) enzymes paired with non-enzymes (no general functional similarity), labeled ENZ/
~ ENZ; (ii) enzymes paired with enzymes (same general function), labeled ENZ/ENZ; and (iii) non-enzymes paired
with non-enzymes (same general function). Pairs for which one or both domains could not be identified as enzyme
or non-enzyme are not included in this chart. Enzymes are classified according to the EC system (Webb, 1992). The
first component of the number represents the nature of reaction and is called class. There are six classes: oxidoreduc-
tases, transferases, hydrolases, lyases, isomerases and ligases. The next level is subclass. It refers to the chemical
groups on which the enzyme acts. For example, the first class, oxidoreductases, has 19 subclasses that are arranged
according to the donor group that undergoes oxidation (CH-OH, aldehyde or oxo group, CH-CH group, etc). For
another group of enzymes (hydrolases) subclass is determined by the nature of the bond: ester bond, peptide bond,
etc. The next level is sub-subclass. For oxidoreductases this indicates the acceptor group: NAD(+) and NADP(+), or
cytochrome; for hydrolases the sub-subclass represents the nature of substrate (carboxylic ester hydrolases, thiolester
hydrolases, etc.). The fourth level represents a unique number for each individual enzyme, for example, 1.1.1.1: alco-
hol dehydrogenase. (b) Shows how we adapted the functional classification of Drosophila gene products developed
by M. Ashburner. This classification is loosely connected with FLYBASE (Ashburner & Drysdale, 1994). We used ver-
sion 1.55 (4 August 1997) that was available from Ashburner’s website:

http : //www.ebi.ac.uk/ ~ ashburn
The specific files that we used were taken from the ftp directory:

ftp.ebi.ac.uk/databases/edgp/misc/ashburner
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this we constructed our own classification by mer-
ging and extending the ENZYME and FLY
schemes and assigning levels of functional simi-
larity. Our measures of functional similarity pro-
vide curves relating function to sequence and
structure; when relating functional conservation to
sequence divergence, we find distinct thresholds at
~40% for precise function and ~25% for func-
tional class.

One of the interesting results that emerges from
this is that percent identity is more useful for quan-
tifying functional divergence than the newer prob-
abilistic scores. In general, modern probabilistic
scores, such as P, are better at discriminating
amongst highly diverged sequences (near the twi-
light zone) than percent identity, since they better
take into account gaps and conservative substi-
tutions (of similar amino acids). However, for very
similar pairs of sequences, percent identity is a
simpler and more direct measure of divergence
(essentially a Hamming distance). Since divergence
in precise function takes place before that in struc-
ture (well before the twilight zone), it is quite
reasonable that percent identity is more successful
at measuring the former than the latter and that

the converse is true for the probabilistic scores. In
other words, percent identity is better calibrated
for discriminating amongst very close, significant

relationships and P, for more distant ones.

Practical implications

The sequence-structure and sequence-function
relationships described here provide practical
information for genome annotation in terms of
folds and functions. Table 1 summarizes the rela-
tive advantages of the different scoring methods
we used. Using the trends in sequence and struc-
ture similarity, one can assess the degree to which
structural annotation can be transferred between
sequences at a given level of sequence similarity.
The sequence and function similarity thresholds
potentially establish minimum requirements of
sequence similarity for reliable function prediction.
Note that because the protein domain pairs con-
sidered here all share the same fold, the numbers
for all possible pairs will differ in the region of
very little sequence identity, in which the sequence
similarity is not enough to indicate the same fold.

We refer to these as constituting the original FLY classification. Recently, the FLY classification has been superceded
by the GO (Gene Ontology) Project classification, which merges fly, mouse and yeast annotation. Files related to the
GO classification are available from www.geneontology.org In the original FLY classification all members of the high-
est level are labeled 0, representatives of the next level are labeled 1, and all lower levels are labeled 2 through to 9.
We changed the numbering scheme so that it will reflect the hierarchical nature of the classification. This
Figure illustrates sections of the original and modified classification. The top level in the FLY classification scheme is
called “Function primitive”” (level 0) and includes five classes: “Metabolism,” “Intracellular protein traffic,” “Cell
structure,” “Developmental process,” “Physiological process,” and “Behavior.” The next level after “Function primi-
tive” is “Process” or ““Molecule” (level 1 in Ashburner’s classification). For “Function primitive - Metabolism” the
processes are “’Carbohydrate metabolism,” “Nucleotides and nucleic acids metabolism,” etc. For “Function primitive
- Cell Structure” the “Process” can be “Nucleus,” “Mitochondrion,” “Membrane,” etc. The next level is “Pathway”
or “Macromolecule” (level 2 in the original classification). “Pathway” can include “Metabolic pathway,” ““Signaling
pathway,” or “Developmental pathway.” The “Macromolecule” category includes “‘Protein” and “Nucleic Acid”. We
added categories to the original classification in order to classify some mammalian proteins that are widely rep-
resented in SCOP but are absent from the original FLY scheme. These categories include immune system proteins
(labeled “new” in (b) and respiratory proteins such as hemoglobin and myoglobin that we added to “Function primi-
tive - Physiological process - Respiration”. We call our adaptation of the original FLY scheme, FLY 4 . Further infor-
mation on this adaptation is available at:

http : //bioinfo.mbb.yale.edu/align/func

(c) The overall hierarchy of our final scheme and identification of the different levels of similarity. If two proteins are
both enzymes or both non-enzymes, then they possess general functional similarity. If they share the first component
of their classification numbers, then they are in the same functional class. If they share the first three components of
their enzyme numbers (or the equivalent for non-enzyme numbers, depending on category) then they have the same
precise function. A significant difference between the two main branches of the hierarchy is that the levels of the
ENZYME classification do not correspond exactly to those in the FLY+ system because the fly classification is more
extensive than the enzyme classification. For instance, the FLY classification takes into account aspects of cellular
(cytoskeleton, metabolic pathways, etc.) and phenotypic function (morphology, physiology, behavior) that are absent
from the ENZYME scheme. This makes our classification of SCOP proteins somewhat unbalanced, as non-enzymes
have much broader and more loosely defined functional classes. As a consequence, while each enzyme is assigned a
four-component number, the length of a non-enzyme number varies, depending on the functional category to which
it belongs. For example, myosin is assigned a number that happens to have the same length as EC numbers: 3.12.1.1.
However, transcription factors are numbered 1.12.9.1.1.1. We took into account this varying hierarchy depth in decid-
ing how many components are necessary to identify precise function in each category. Note that what we mean by
domains having the same precise function is not the same as the domains coming from the same essential protein.
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Figure 7. Linking sequence, structure and function. We express functional similarity as the fractional percentage of
pairs at a given level of sequence/structural similarity for which the paired domains share a precise function, func-
tional class, or general similarity (according to our classification, see Figure 6). The following legend applies to (a)
through (c): (—O—), general similarity; (— x —), non-enzymes with same functional class; (— A —), enzymes
with same functional calss; (--- x ---), non-enzymes with same precise function; and (---A---), enzymes with the
same precise function. (a) Relates functional similarity to sequence similarity in terms of percent identity. The func-
tional similarity appears as a sharp sigmoid, with distinct thresholds of divergence for precise function, functional
class, and general similarity. Enzymes are paired with non-enzymes only at very low percent identity, in and below
the twilight zone (labeled TZ). At slightly higher sequence identity, pairs diverge with respect to functional class, and
beyond 40 % identity with respect to precise function. Note that 50-100 % identity is not shown because almost all
domains that are that similar share function with their counterparts. (b) Shows the same data using P, as the
measure of sequence similarity. Only the divergence in precise function is visible because there is such little signifi-
cance for the low sequence similarity at which functional class and general similarity diverge, all data points in that
region appear near P, =1 or log[P.,] =0 (the y-axis). (c) llustrates that the structure-function relation is not as
clearly defined as that for sequence and function. Functional similarity expressed in terms of RMS separation appears
as a broad sigmoid curve; there are thresholds of divergence for precise function, but the divergences in functional
class and general similarity are more gradual. The thresholds are apparent only because RMS clusters the most struc-
turally similar pairs between scores of 0 and 0.5 A. For this reason, RMS is better at discerning functional similarity
than S, and P,,, which do not cluster the most similar pairs around a set limit. (d) Shows the same relationships
(functional conservation versus percent identity) as in (a), except that for this graph functional similarity is determined
in terms of the MIPS (Mewes et al,, 1998) and GenProtEC (Riley, 1998b) classifications rather than the FLY -
+ ENZYME scheme. The legend appears as the inset on the graph. We assigned MIPS and GenProtEC classifications
to SCOP domains based on sequence comparisons to classified yeast and E. coli open reading frames (ORFs), respect-
ively. The SCOP domain most closely matching each ORF classified in MIPS or GenProtEC was assigned the corre-
sponding MIPS or GenProtEC function number. Only matches of 80 % sequence identity or greater were considered.
We used this SCOP domain as a functional representative; when determining functional similarity, we assigned to
SCOP domains with no MIPS or GenProtEC functional designation the function of the closest representative with at
least 85 % sequence identity, if one existed. GenProtEC functional identifiers are three-component numbers. We con-
sider a pair of domains sharing the first component of their functional designation to be in the same functional class.
Domains that share all three components are said to have the same precise function. For MIPS the functional desig-
nation is not as straightforward, as one ORF can be assigned multiple functions. Therefore we consider domains
which have at least one function in common to share functional class. Domains with all functions in common, the
same combination of identifiers, share precise function. Because MIPS and GenProtEC each classify the proteins of a
single organism, yeast and E. coli, respectively, these classifications can determine the functional similarities of only a
small fraction of all our SCOP domain pairs. The data based on these classifications, appearing in (d), are therefore
very sparse compared to the data in (a)-(c). Despite the coarseness of the data, functional similarity based on the
MIPS and GenProtEC classifications follows the same general relation to sequence similarity as does functional simi-
larity based on the more comprehensive FLY + ENZYME scheme. Vertical line indicates an approximate threshold of
functional divergence at 40 % identity.
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Table 1. Summary of scoring methods

Sequence similarity

Structural similarity

Features Limitations

Traditional scores Per cent sequence

identity
Alignment similarity ~ S..q Seir
scores
Modern probabilistic  Pyq Py,

scores

RMS C* separation

Well understood, in use;
percent identity better for
looking at functional
similarity

RMS depends most highly on
worst matches, requiring
arbitrary trimming; percent
identity is insensitive to gaps
and conservative substitutions
Analogous similarity scores, Dependence on alignment

S.ir depends most highly length

on best matches

Not as familiar as RMS and
percent identity

Statistical significance,
unified framework for
different comparisons

The Table lists the schemes presented here for characterizing the sequence-structure relationship, along with their relative advan-

tages and disadvantages.

Practically, then, when one searches an unchar-
acterized open reading frame against known struc-
tures, if the open reading frame matches a
structure with a good e-value or percent identity,
then the curves presented here can be used to
check how the functional and detailed structure
annotation will transfer. For example, if an
unknown open reading frame matches a PDB
structure with an e-value of 0.001 and a percent
identity of 30 %, then one can be assured that it
has the same fold (Brenner et al., 1998) and accord-
ing to our analysis it has a two-thirds chance of
having the same exact function. Furthermore, it
has a ~99 % chance of having the same functional
class and its structure probably diverges from the
known structure by a trimmed RMS of less than
0.7 A.

Future directions

There are a number of directions in which we
might extend this analysis. With respect to the
sequence-structure relation, we can reduce the
overrepresentation of the immunoglobulins and
improve the calculation of Py, (by redoing the fit
to the extreme value distribution reported by
Levitt & Gerstein (1998) to eliminate residual
length-dependency.

In the functional realm, we can investigate if and
how the sequence-function and structure-function
relationships vary for different categories of pro-
teins. For example, although we found consistency
of the sequence-structure relationship among sec-
ondary structural classes, Hegyi & Gerstein (1999)
found that the distribution of enzymes and non-
enzymes varies with secondary structural class.
A related issue is that of conformational changes.
It is conceivable that among domains with very
similar sequences but structures that differ by a
conformational change, function is less conserved
than it is among similar sequences with more simi-
lar structures.

Perhaps the most important direction in which
to further this work is the augmentation of the
functional classification. With the growing

amount of fully sequenced genomes there is a
need for the development of a comprehensive
system for functionally classifying proteins, a
complete classification for the entire universe of
protein functions. It will be a difficult process,
as many existing organism-specific classifications
will have to be merged, but the end result will
have the advantage of not being biased towards
any one organism. Such a universal classification
will allow much more reliable transfer of func-
tional annotation.
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