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Traditional microarrays use probes complementary to 
known genes to quantitate the differential gene expression 
between two or more conditions. Genomic tiling microarray 
experiments differ in that probes that span a genomic region 
at regular intervals are used to detect the presence or 
absence of transcription. This difference means the same 
sets of biases and the methods for addressing them are 
unlikely to be relevant to both types of experiment. We 
introduce the informatics challenges arising in the analysis 
of tiling microarray experiments as open problems to the 
scientific community and present initial approaches for the 
analysis of this nascent technology. 

Introduction 
Genomic tiling microarray construction involves the 
generation of nucleic acid probes that represent a target 
genomic region and their immobilization on a glass slide 
(Figure 1a). These probes can either overlap, lay end-to-
end, or be spaced at a predefined average distance in 
genomic space (Figure 1b). A sequence of probes spanning 
a genomic region is called a ‘tile path', or a ‘tiling’, and the 
average distance, in nucleotides, between the centers of 
neighboring probes is termed the ‘step’ or ‘resolution' of 
the tiling. Each probe on a tiling array interrogates the 
presence of a sequence in a nucleic acid population via 
hybridization. There are two types of tiling array 
construction. One type is the oligonucleotide tiling array 
[1–10]. Such arrays comprise 25–60 bp probes (the choice 
depending on the manufacturer and/or genome tiling), 
which are synthesized directly on the slides or prepared in 
solution and then deposited. Arrays of high density (up to 
6.6 million features in <2 cm2) can currently be prepared. 
The second type of tiling array is constructed using PCR 
products typically of ~1-kb in length, or bacterial artificial 
chromosome (BAC) arrays – typically at 1-Mb resolution 
[11–13]. 

One caveat of the PCR and BAC tiling arrays is that 
both the target sequence and its reverse complement 
sequence are present at each spot, rendering strand 
specificity impossible without additional experiments. In 

addition, the ~1-kb PCR fragment microarrays are labor 
intensive to create and are thus not readily scalable to the 
study of large genomes at a high resolution. For example, 
a recent study tiling human chromosome 22 (roughly 1% of 
the human genome) with PCR products required >20 000 
PCR reactions to achieve a 1-kb resolution [13]. A PCR 
tiling of the entire human genome would require 
approximately two million PCR reactions at the same 
resolution and necessitate extensive informatics 
infrastructure to support the effort. Analytical techniques 
for such arrays typically follow that of other PCR product-
based microarrays and are reviewed elsewhere [14,15]. For 
these reasons, attention in this manuscript is devoted to 
discussion of oligonucleotide-based tiling arrays. To focus 
the discussion further, we will limit our discussion to the 
application of these arrays to the identification of RNA 
transcripts. Tiling arrays have several other utilities, 
including interrogating sequences enriched in chromatin 
immunoprecipitation DNA (ChIP-chip, reviewed in Refs 
[16,17]), DNA copy-number alterations (arrayCGH, 
reviewed in Ref. [18]) and protein-binding motifs (PBMs) 
[19]. The analyses of these experiments will probably have 
some common aspects, but their proper study has 
specialized aspects that cannot be considered here owing 
to lack of space. 

Recent reviews by Johnson et al. [20] and by Mockler 
and Ecker [21] provide a good general overview of the 
tiling array technology and its applications. In particular, 
Johnson et al. raise concerns about low levels of 
concordance between transcriptional experiments 
performed in different laboratories. Differences among 
data sets can arise from several factors, including 
experimental design, tissues assayed, technological 
platforms used, and so on. For tiling arrays to reach 
widespread acceptance, these differences must be 
identified and resolved. Towards this end, we provide an 
initial perspective on the tiling microarray experiment 
from the analytic point of view. In so doing, we provide an 
introduction to the characteristics of data generated by 
tiling microarrays, introduce some challenging questions, 



and give initial views on the analysis of these relatively 
new types of microarray experiments. 

Distribution of signal intensities 
For tiling microarrays, a probe representing some genomic 
sequence is the unit of investigation, and an intensity 
measurement after hybridization to labeled target is its 
recorded datum. In theory, this measurement correlates 
with the number of target nucleic acid molecules that 
hybridized to that probe during the experiment. 

Tiling microarrays built using Affymetrix technology 
contain a paired ‘mismatch’ probe for each genomic tile 
probe (http://www.affymetrix.com/). (For convenience, the 
genomic tile probe that perfectly matches genomic 
sequence is typically denoted PM and the mismatch probe 
is similarly denoted MM.) The MM probe is intended to 
provide a measurement of nonspecific nucleic acid binding 
to the PM probe and thus the quantity PM – MM typically 
serves as the intensity measurement for Affymetrix tiling 
arrays. 

In a tiling experiment, as is the case for most 
microarray experiments, the goal is to identify outliers 
from the predominant background or noise distribution. It 
is tempting first to approach this task visually. A priori 
one might expect that in a transcript-detection 
experiment, the desired raw intensity distribution might 
appear bimodal wherein a small peak at higher intensity 
bins of the histogram contains the transcribed signal 
distribution and the adjacent, dominant peak comprises 
the background distribution. Unfortunately, such 
separation is not realized (Figure 2a) because the majority 
of transcribed sequences are probably present at levels 
just above background, in accordance with a 
transcriptional power-law distribution [22]. This coupled 
with inherent noise in the background and signal 
distributions makes a separation between signal and 
background difficult at the probe level without expensive 
replicate experiments. Adding to these problems in higher 
eukaryotes is that the percentage of coding DNA relative 
to total genomic DNA is very small; this renders 
distribution fitting procedures, which allow for the 
separation of mixed distributions, useless without large 
degrees of separation and/or well-defined functional forms 
for both background and signal distributions (Figure 2b). 

Within-gene variability 
Without a clear separation of distributions, identifying 
transcribed sequences by scanning for stretches of 
consecutive probes in genomic space exhibiting intensities 
significantly above those of some background distribution 
seems reasonable. In fact, this is the approach typically 
taken in the analysis of tiling array data. Before 
discussing such methods, an important aspect of tiling 
array data is worth noting, because it has a major impact 
on the development of tiling array algorithms. Within a 
gene present as a single splice variant, we expect that the 
raw signal intensities measured by its multiple 
corresponding probes will be equivalent throughout. As 
exemplified in Figure 3a, in practice, this might not be the 
case. Intensities measured from probes within different 
exons of the same gene can vary greatly, and even 

intensities of genomic nearest neighbor probes (i.e. probes 
measuring the same annotated exon) can differ by orders 
of magnitude. Such intergene intensity fluctuations have 
also been observed with GeneChips® brand arrays, but 
with these arrays the researcher is typically looking for 
differences between two or more biological samples so such 
systematic effects can be avoided by using the ratio of 
intensity of one sample to intensity of the others. To 
quantify the intergene fluctuations with tiling arrays on a 
genomic scale, we looked at the intensity of each probe, p, 
in a large, human DNA experiment tiling the genome with 
36-bp probes with a resolution of 46 bp [1], and compared 
it with the average intensity for the two neighboring 
probes of p. We found that for probes lying completely 
within annotated exons, ~20% of these probes exhibit at 
least a twofold change in intensity from the average 
intensity of their two neighboring probes (Figure 3b). 
Many lesser intensity fluctuations exist. Such fluctuations 
could potentially be due to complicated populations of 
splice variants from the same gene, sequence-based probe 
effects (due to varying binding affinities based on sequence 
[23]), labeling biases, or from cross-hybridization from 
sequence-similar transcribed sequences located elsewhere 
in the genome. As noted earlier, similar problems exist on 
Affymetrix® GeneChips® brand arrays. The problem is 
exacerbated, however, on tiling arrays. On GeneChip® 
brand arrays, exon boundaries of genes are known so 
outlier detection is straightforward, but on tiling arrays it 
is difficult to discern outliers because it is unclear which 
probes to include in outlier detection. For example, should 
one include a cluster of apparently transcribed probes 20-
kb downstream of a transcript? Are they from the same 
gene, or not? Is a low-intensity probe between other high-
intensity probes an outlier, or perhaps an intron? Such 
questions make tiling-array outlier detection non-
straightforward, or worse, impossible. 

If the intensity fluctuations come from differences in 
binding energies between probe sequences, there are 
models for correcting this type of effect in GeneChips® 
brand arrays, but they are still debated [24] and are as yet 
untested for tiling microarrays. Another approach for 
addressing these biases is to deal with them during the 
probe design procedure. In many designs, the designer is 
allowed to select probes by shifting their genomic 
positioning slightly so that the variance of melting 
temperatures of probes across the whole array is 
minimized. Probe sets on GeneChips® brand arrays also 
attempt this. The shifting allowed on tiling arrays is much 
more constrained because the design must conform to the 
bounds (or limits) set by the predetermined span of the 
array. Similar considerations apply in other situations 
where the probe location is highly constrained, for 
example, single nucleotide polymorphism (SNP) arrays 
[25] or arrays with probes spanning splice junctions [7]. 

Another solution to sequence biases could be to design 
the arrays with varying probe lengths so as to correct for 
differences in the melting temperatures of sequences. 
Such ‘isothermal’ arrays are feasible with the recently 
developed maskless, photolithography-array synthesis 
technique [26,27] and are currently under development. 



Such approaches potentially aid in reducing sequence 
biases but the likely complicated problem of cross-
hybridization remains. 

Another design feature is the option to include MM 
probes on the array. Theoretically, MM probes measure 
the amount of cross-hybridization to the PM probe from 
unintended targets. We find that the inclusion of such MM 
probes reduces within-gene intensity variability somewhat 
but does not eliminate the effect (Figure 3a). A recent 
study of GeneChips® brand arrays indicates that ~10% of 
probes cross-hybridize to multiple genes [28] so it is an 
interesting question as to how much utility MM probes 
have for tiling experiments. For a tiling array built for 
human chromosome 22 [2] on which PM and MM probes 
are present, we find that PM probe intensities within 
RefSeq genes significantly correlate with PM probe 
intensities of the preceding neighboring tile (Spearman ρ = 
0.156, P < 10−15) but that PM-MM intensities correlate 
better (Spearman ρ = 0.175, P < 10−15). It is clear that MM 
probes help, but there is still much room for improvement. 

Tiling microarray normalization 
For many applications of tiling arrays, slide-to-slide 
normalization is not required because there are no 
technical replicates and we typically are not interested in 
comparing absolute intensities of genes present on one 
array with those found on another. However, if technical 
replicates with the same array design are performed, or if 
we wish to compare abundances of different genes across 
the experiment, the measurements of the arrays will have 
to be scaled to one another before downstream analysis 
can take place. 

For traditional (i.e. nontiling arrays using probes to 
annotated genes) microarray experiments, it is known that 
adjustments to the signal distributions can be essential 
before proper statistical analysis can be undertaken 
[14,15]. This is partly because there are several 
experimental parameters that commonly vary from one 
microarray hybridization to another in the same data set. 
These variables include, among others, laser strength used 
to obtain fluorescence measurements, concentration of 
nucleic acid allowed to hybridize to the array and 
hybridization times and temperatures. Equally important 
are so-called intraslide spatial artifacts such as 
nonuniform hybridization efficiency [29,30] and/or 
nonuniform background intensities across the microarray 
surface [31]. 

A simple adjustment for correcting bias due to differing 
hybridization concentrations or conditions between 
microarrays in these conventional gene-based experiments 
has been to divide each intensity measurement by the 
median intensity present on the microarray on which it 
resides [14]. More rigorous approaches that also account 
for intraslide variability include fitting a loess surface 
(similar to a sliding window median) to the intensities 
measured as a function of their physical positioning on the 
microarray and then using this surface as a normalizing 
function [32]. These normalization practices assume that 
at least half of all probes on each microarray produce 
measured signal due to the presence of hybridized nucleic 
acid. This is a valid assumption for most conventional 

microarray studies because typically only annotated genes 
are represented. However, for most tiling microarray 
experiments involving large, complex genomes and where 
poly-A selected RNA is the target, we expect a relatively 
small number of probes to emit measurable signal due to 
hybridization. Thus, the median intensity of the 
microarray is likely to be a background measurement and 
cannot be used to correct for hybridization-type effects. 
One might also be tempted to use the uppermost tenth 
percentile or some other quantile intensity for 
normalization. Doing so is paramount to ‘guessing’ at how 
much transcriptional activity there is across the genome, 
and thus makes the approach less rigorous. This type of 
median or other quantile correction can, however, still be 
useful for correcting differing scanning voltages used from 
array scan to array scan. 

Spatial normalizations can be conducted if control 
probes of identical oligonucleotide sequence are placed 
uniformly across the surface of the slide because these are 
all expected to emit the same significant intensity in an 
ideal experiment. In an Escherichia coli tiling experiment, 
Selinger et al. [5] printed positive control probes 
throughout the array and multiplied the intensity of each 
experimental probe by a correction factor that is a function 
of the intensities of the four closest control features and 
their physical distances to the experimental probe. This 
factor was calculated using Equation 1, 
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 (Eqn 1) 
where di is the physical distance of control probe i to the 
experimental probe to be normalized, ci is the intensity of 
the ith control, and E(c) is the average intensity of all 
control probes on the array. 

An additional point to consider when designing 
normalization procedures for tiling microarrays is that a 
single experiment can consist of hundreds of individual 
microarrays, each containing a distinct set of probes. For 
instance, one microarray might tile human chromosome 21 
and another might tile chromosome 22. An assumption for 
most standard microarray normalization procedures is 
that the intensity distributions from array to array are 
identical. It might be that one chromosome, which is 
printed on a single slide, is more gene dense than another 
chromosome, which is printed on a different slide, and the 
underlying distributions are thus not identical. A clear 
example of this is seen when contrasting the gene-dense 
human chromosome 22 with the gene-sparse human 
chromosome 21. To remedy this issue, all probes can be 
printed in a random fashion with respect to their 
chromosomes, strands and locations within their 
chromosomes. Because the number of probes on each 
microarray is large, the distributions to be considered 
should be close to identical. Then, it could be more 
reasonable to perform slide-to-slide quantile 
normalization. 



Algorithms for tiling microarray analysis 
As examples of algorithms for detecting transcription from 
tiling array data, we review algorithms from three recent 
human tiling microarray experiments, two of which allow 
small gaps in genomic space between probes, and one that 
overlaps the genomic positions. The three examples were 
taken from studies using three array construction 
technologies, and therefore represent a good cross-section 
of the field. The first methods we review were developed 
for a large-scale experiment using the Affymetrix 
technology to construct probes spaced, on average, every 
35 bp along chromosomes 21 and 22 [2,3]. The second set 
of methods reviewed were implemented on tiling 
microarrays built with Nimblegen™ maskless 
photolithography technology [1] and consisted of 36-bp 
probes with a resolution of 46 bp 
(http://www.nimblegen.com/). In both examples, the 
algorithms presented are independent of data 
normalizations (i.e. they do not assume any 
normalizations have been performed) and do not 
necessarily require replicate hybridizations and are, 
therefore, general in nature. The third analysis approach 
we summarize was used in a recent study of human 
chromosomes 20 and 22 using the Agilent™ technology to 
deposit 60-bp probes, on average, every 30 bp along those 
chromosomes [4]. This algorithm requires multiple 
replicates and is therefore useful when hybridizations are 
conducted for several tissues [4,6,33]. 

Analysis of Kampa et al. 
In an in-depth analysis of human chromosomes 21 and 22 
[3], a probe was deemed ‘positive’ using the following 
procedure. For a given probe, i, all PM-MM pairs are 
collected within a window, w, of 100 nucleotides, centered 
at i. For each of these pairs, the difference between PM 
and MM intensities is calculated. The Hodges–Lehman 
estimator, or ‘pseudo-median’, is then computed for these 
PM – MM differences (Figure 4). This estimator is simply 
the median of pairwise averages amongst the PM minus 
MM scores within the window and has close ties with 
rank-sum statistics. Any probe having a Hodges–Lehman 
estimator above a threshold (defined using bacterial 
oligonucleotides present on the array but not homologous 
to any sequences in the human genome) is considered 
‘positive’, or transcribed. Using this estimator partly 
alleviates concerns discussed earlier about within-gene 
variability because it is notably robust to outliers. 
Transcribed fragments, or ‘transfrags’, were then 
constructed from lists of positive probes by merging those 
that lie in close genomic proximity (within 40 bp – this 
variable is called ‘maxgap’ in the original publication) to 
each other and filtering out transfrags <90 bp (this 
threshold is termed ‘minrun’) in length. This merging of 
neighboring probes further diminishes the effect of within-
gene variability because confidence in measured 
intensities is increased with increasing amounts of 
evidence. 

Analysis of Bertone et al. 
Another recent tiling microarray study focusing on the 
human transcriptome [1] employs an alternative approach 

for detecting transcription using the binomial theorem. In 
this work, two procedures are introduced: one algorithm 
for comparing tiling array data with existing annotation, 
and another algorithm for identifying transcriptionally 
active regions (TARs – equivalent but different 
terminology to the above defined transfrag). 

To check the tiling array data against a previously 
annotated gene, the probes that lie within the exons of 
that gene were first identified. The number of such probes 
was denoted as n. For each probe it was recorded whether 
or not its measured intensity was greater than the median 
intensity of the slide from which it was measured. By 
definition, half of the measured intensities of a slide are 
greater than the median and half are less than the 
median. To determine if the gene was transcribed, it was 
determined whether or not the number of intensities 
within the gene recorded above this median was more 
than expected by chance alone. The probability, p, of 
obtaining h probes with above-median intensities out of N 
probes within the gene is given by Equation 2. 
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 (Eqn 2) 
Then, it is a matter of choosing the desired false-positive 
rate and setting the p-value cutoff value accordingly. 

A similar approach was taken for finding novel regions 
of activity within the genome. However, when all stretches 
of, say, ten adjacent probes are tested for significance the 
number of hypotheses tested across a mammalian genome 
reaches into the millions and one would require a low p-
value cutoff to weed out the large number of expected 
false-positives. For example, in the human genome, if one 
wanted to identify unique stretches of ten probes (each 
probe a 50 bp oligonucleotide) there would be three million 
independent tests to perform and if we use a p-value cutoff 
of 0.01 this would result in an expected 30 000 false-
positive regions. To lower the number of false positives 
obtained, a low p-value cutoff is needed. To achieve such 
low p-values for novel regions with the above approach, 
large stretches of adjacent probes or replicate experiments 
would be required owing to the low statistical power of the 
test. Mammalian exons are significantly <500 bp on 
average, and if low p-values are required there will be a 
significant bias towards the largest transcribed sequences. 
However, if one is willing to be more stringent when 
identifying novel regions of interest, then such low p-
values can readily be obtained without the use of large 
stretches or costly replicate experiments. For example, 
instead of counting the number of probes in a stretch 
greater than the slide median, the number of probes, h, 
above the kth percentile (e.g. 80th) of the slide could be 
counted and this number could be checked for significance 
with the binomial equation (Equation 3). 
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 (Eqn 3) 
Regions identified by this method are then merged into a 
single transcribed region if their genomic coordinates 
overlap. 



The reader should note that the requirement of low P-
values is essentially a Bonferroni correction for multiple 
hypothesis testing. This correction is known to be overly 
conservative and therefore the above approach probably 
errs on the conservative side. Another issue with the 
Bonferroni correction is that it assumes statistical 
independence of the probes. This is certainly true under 
the null hypothesis of zero transcription but for probes 
within the same gene this assumption is probably violated 
and hence P-values obtained must be considered as merely 
nominal. To obtain more accurate estimates of false 
positives, a reasonable approach to take is first to score 
your data using the above, or any other algorithm, record 
your ‘hits’, and then randomize your data with respect to 
genomic location and re-score. The number of hits you 
obtain from the randomized scoring yields an empirical 
estimate of false positives. 

Another approach towards the multiple testing problem 
employs the false-discovery rate (FDR) statistic. The FDR 
technique first requires P-values to be calculated by some 
statistical method. Then the FDR at a given P-value 
threshold is simply the threshold multiplied by the 
number of tests performed, divided by the number of 
positives obtained at that threshold. This approach can be 
utilized in traditional microarray experiments as well [34]. 

Analysis of Schadt et al. 
In a tiling microarray experiment assessing transcription 
in six tissues across human chromosomes 20 and 22 [4], 
probes were first identified as being expressed using 
robust principal components analysis (PCA). Specifically, 
the authors used a sliding-window approach with windows 
of 500 probes (30 bp resolution tiling using 60-bp probes) 
wherein each window a PCA was performed and the first 
two dimensions were retained. The window size was 
selected to ensure that most windows included at least one 
transcribed sequence, on average. The first principal 
component was found to agreed closely with average probe 
intensity across tissues and the second dimension 
estimated variation across tissues. Next, windows with 
small values in the second principal component space were 
discarded. Of the remaining windows, the distance 
(Mahalanobis distance, MD) from each point in the two-
dimensional principal component space (PCS) was 
computed from the center of the data of the window. The 
use of the MD is important for controlling for probe-to-
probe intensity fluctuations and because it serves as a way 
of normalizing them all to the same scale. Outliers were 
identified by comparing these MDs with those obtained by 
performing the same analysis on a separate set of intron 
probes (which are thought not to exhibit signal due to the 
selection of polyA+ RNA by this experiment). MDs 
significantly larger than those found in the intron 
distribution (97.5th percentile) were subsequently deemed 
‘on’, and the sequences they represent as transcribed. The 
use of probe sequences not expected to be transcribed as 
negative controls to aid in identifying transcribed regions 
is common in tiling experiments. For example, recent 
reports of tiling the Arabidopsis genome used putative 
promoter regions to obtain an intensity threshold [8,10], 
and an E. coli experiment used intensities measured from 

Bacillus subtilis probes [5] (transcribed sequences were 
defined as stretches of contiguous probes in genomic space 
above these thresholds). 

The authors of this human tiling go one step further – 
that is, to group the transcribed segments into putative 
genes and gene structures. To do this, the authors 
performed one-dimensional hierarchical clustering of the 
MDs belonging to probes labeled as ‘on’. Probes that 
cluster together were grouped to form genes, the simple 
rationale being that probes from the same gene should 
exhibit similar intensities. 

Comparison of algorithms 
As discovered in Johnson et al. [20], tiling experiments 
probing the same genomic regions often do not produce the 
same results. There are several possible explanations for 
these discrepancies, and it is vital for the technology that 
the causes are identified. One possibility is the 
employment of different analysis algorithms. For a 
rigorous comparison, a gold-standard data set where we 
know exactly which bases are transcribed under some 
biological condition is required. Unfortunately, no 
standard exists over a large genomic region. In the 
absence of a gold standard, we sought to count the number 
of transcribed regions identified by the algorithms used in 
Bertone et al. [1] and in Kampa et al. [3] as a function of 
the respective input parameters (minrun, maxgap, and so 
on) of the algorithms. Although this does not directly 
address issues of experimental agreement, it is a step in 
that direction. In addition to counting the number of 
regions identified, we also calculated the number of 
transcribed regions identified in a randomized data set – 
thus providing an estimate of false positives as a function 
of algorithm parameterization. These calculations were 
performed on a single array representing human 
chromosome 22 from Kapranov et al. [2]. We did not 
include the analysis in Schadt et al. in our comparison 
because it requires multiple tissues and is therefore not 
directly comparable to the other two methods. The two 
methods we compare use only signal intensities, whereas 
Schadt et al. used correlations of signals to identify 
transcription. Clearly, this is an advantage of performing 
multiple tissue experiments. 

Figure 5 plots the number of identified regions versus 
the number of regions identified in the randomized data 
for varying parameterizations on a log-log scale. It is clear 
that both methods demonstrate the ability to find things 
at a rate significantly favoring the actual data (i.e. many 
more things are identified than would be expected by 
chance) and that, for a range of parameterizations, the 
method of Kampa et al. [3] outperforms that of Bertone 
et al. [1]. 

In the context of Figure 5, the distance a point is above 
the 45° diagonal correlates with the ability of that 
parameterization to discriminate real transcription while 
minimizing the identification of spurious entities. A 
potentially revealing finding from our analysis is that the 
parameterization used for these data originally in Kampa 
et al. yields similar numbers of identified regions in the 
actual and randomized data. The original work reported a 
large number of identified regions, but it now seems likely 



that this number is an overestimate. This is somewhat 
surprising because the parameterization originally used 
had sound reasoning behind it based on the average 
lengths of exons in addition to obtaining an intensity 
threshold from well-selected bacterial negative controls. 
The parameterizations yielding significantly more 
positives than in the randomized set are those that have 
large windows and require high intensity thresholds. 

Concluding remarks 
Tiling microarray experiments are an exciting and 
relatively new application of microarray technology. 
Because the experiment is inherently different from its 
gene-centered counterparts, new statistical procedures 
need to be developed to account for the types of data tiling 
arrays can generate. We have presented aspects of tiling 
array data that can make their analysis difficult and have 
reviewed initial approaches to addressing these issues. 
The field of tiling array analysis is young and ripe for 
algorithmic discovery. We hope and expect to see research 
in this area flourish over the next few years. In particular, 
we hope to see careful multiplatform and multiprotocol 
studies where technical reproducibility and sensitivity 
versus specificity analyses can be carried out. Such studies 
will require generating a gold-standard genomic region 
where we understand transcription well – that is, where 
we know what is truly transcribed and what truly is not. 
With the advent of the ENCODE (encyclopedia of DNA 
elements) project [35], which plans to use tiling arrays as 
a major tool for human genome annotation, there is 
increasing need for such developments. Such progress will 
probably expand the robust application of tiling arrays to 
detailed exon-intron boundary discovery, detection of 
alternative splicing and single nucleotide polymorphism 
analysis. 
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Figure 1. Properties of tiling microarrays. (a) The design of a tiling microarray experiment. Each individual probe in the tiling is indicated by a different color and thick overbar. 
The probes making up the design constitute a ‘tile path’. Nucleotides not incorporated into probes are grayed. Most array designs randomize the position of the adjacent tiles on 
the array in an attempt to avoid systematic errors. (b) Tiling designs (tile paths) can be overlapping, end-to-end or spaced. 
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Figure 2. Intensity distributions. (a) Desired intensity distribution and typical distributions. Intensities are given in arbitrary units. The distribution on the right is from Kapranov 
et al. [2]. (b) Effect of small signal distributions. In the left plot, the black line marks the background distribution and red shows a hypothetical signal distribution. For the 
hypothetical signal distribution we have simulated a power-law distribution rather than a Gaussian distribution because it has been suggested that transcript abundances exhibit 
power-law behavior. Here, the number of measurements comprising the signal distribution is 10% (chosen arbitrarily) of the number of those in the background distribution. On 
the right is the sum of these two distributions, indicating the difficulty in separating the mixture. 
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TRENDS in Genetics  
Figure 3. Within-gene intensity fluctuation. (a) Gene exhibiting typical intensity fluctuations. Data shown are for RefSeq gene NM_001001479 from Kapranov et al. [2], using 35-
bp probes with a step size of 35 bp. Red bars illustrate probes that lie within introns, whereas blue bars demonstrate probes within exons. Plots for perfect match (PM) intensities, 



mismatch (MM) intensities and PM – MM differences in intensities are shown. (b) Empirical cumulative distribution function for nearest neighbor intensity fluctuations within 
RefSeq genes. The x-axis represents the fold difference on a log2 scale between observed intensity and expected intensity, based on the average intensities of neighboring 
probes. The cross indicates the point at which 20% of all probes show a twofold deviation from their expected intensities. Data are from Bertone et al. [1]. 
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Figure 4. Calculation of the pseudo-median at probe position two. Psuedo-medians are computed in sliding windows (window size three in this example, centered at probe 
position i). This psuedo-median is simply the median of pairwise averages amongst the PM minus MM scores within the window. See the main text for further details. 
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Figure 5. For various algorithm parameterizations, the number of regions identified within human chromosome 22 using the data of Kapranov et al. [2] is plotted against the 
number of things identified in a randomized data set using the same parameterization (log-log scale). Two algorithms are plotted – the algorithm of Kampa et al. [3] is plotted in 
red and the method in Bertone et al. [1] is plotted in blue. The arrow labeled ‘A’ points to the parameterization used in Kampa et al. [3]. 


