
When it was realized in the late 1960s1 how much of the 
genome does not code for proteins, non-coding regions 
were thought to be non-functional and were labelled as 
‘junk DNA’2. When discussions began about sequenc-
ing the human genome, there was vigorous debate 
about whether to avoid repeat regions and focus only 
on protein-coding regions. Some thought that sequenc-
ing ‘junk DNA’ would be a waste of time and money3,4 

— a question we face again with the advent of targeted 
exome sequencing5–7. In the era of personal genomics, is 
it important to sequence whole human genomes, or can 
we focus only on protein-coding exons, which comprise  
less than 2% of the genome sequence8,9?

One way to address this question is to consider 
the functions attributed to the non-coding genome. 
In particular, a growing number of non-coding tran-
scripts have been assigned roles in gene regulation and 
RNA processing10. Cross-species sequence compari-
sons have identified conserved non-coding elements 
(NCEs) that are candidates for function11–13. SNPs in 
many non-coding regions have been linked to disease 
in genome-wide association (GWA) studies14–16, as 
might be expected from the preponderance of non-
coding SNPs assayed on genotyping chips. Studies 
of structural variants in the genome have shown that 
many large blocks in non-coding regions vary among 
individuals, and some of these structural variants have 
been linked to disease17,18. Copy-number variants that 
contain genes often have their origin in recombination  
between non-coding repeat regions17,19. In addition, 
non-coding DNA provides a historical record of 

genome evolution, as it contains ‘fossils’ of molecules 
that were historically active. These fossils, which are 
often well-known repetitive elements, can mediate 
genome evolution itself, causing mistakes in recom-
bination that lead to duplication or the deletion of 
functional sequences.

Where do we stand in the effort to annotate the 
non-coding genome? In part to address the role 
of non-coding DNA, in 2005 the National Human 
Genome Research Institute (NHGRI) launched the 
Encyclopedia of DNA Elements (ENCODE) Project 
with the aim of annotating all elements in the human 
genome. A pilot phase examining a representative 1% 
of the genome with a wide array of functional genom-
ics experiments was completed in 2007 (Ref. 20). The 
scope of ENCODE has now expanded to the whole-
genome scale, and the NHGRI has launched a paral-
lel project, modENCODE, to annotate the genomes 
of the model organisms Drosophila melanogaster and 
Caenorhabditis elegans21 and to relate these annota-
tions to the human genome.

How should we think about annotating the non-
coding genome? As an analogy, consider how we might 
annotate a written document22–24. A first step would be 
to notate words, phrases and longer blocks repeated 
at different levels of similarity in the document. Next, 
we might highlight certain functional elements of the 
document, such as the title, block quotes or subhead-
ings, in a distinct font. Finally, we might try to inter-
relate the functions of these highlighted elements to the 
patterning of repeated words and phrases.
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Targeted exome sequencing
A technique that involves 
filtering genomic DNA by 
capturing regions of interest 
(often protein-coding exons) on 
a microarray, then sequencing 
the captured DNA using 
next-generation techniques.
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Abstract | Most of the human genome consists of non-protein-coding DNA. Recently, 
progress has been made in annotating these non-coding regions through the 
interpretation of functional genomics experiments and comparative sequence analysis. 
One can conceptualize functional genomics analysis as involving a sequence of steps: 
turning the output of an experiment into a ‘signal’ at each base pair of the genome; 
smoothing this signal and segmenting it into small blocks of initial annotation; and then 
clustering these small blocks into larger derived annotations and networks. Finally, one 
can relate functional genomics annotations to conserved units and measures of 
conservation derived from comparative sequence analysis.
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Structural variants
Chromosomal rearrangements 
(deletions, duplications,  
novel sequence insertions or 
inversions) that are inherited 
and polymorphic across the 
human population. Structural 
variants are by definition  
longer than SNPs and can be 
hundreds of thousands of base 
pairs long.

Copy-number variants
Structural variants that arise 
from deletion or duplication 
and thus lead to a change in 
copy number of the underlying 
region of the genome.

Segmental duplication
The operational definition of a 
segmental duplication rests on 
finding two regions in the same 
genome ranging in length from 
a thousand to several million 
nucleotides with at least 90% 
sequence identity. Segmental 
duplications are inherited but 
not necessarily polymorphic 
across the human population.

Pseudogenes
Copies of protein-coding genes 
with mutations that disrupt 
their coding sequence and 
demolish their original 
protein-coding function.

Syntenic blocks
Segments that align between 
genome sequences from two 
species and that are believed 
to define an orthologous 
relationship.

Here, we describe how a similar process can be 
applied to genome annotation: we can do large-scale 
similarity comparisons on the genome sequence, taking 
note of repeated regions at different scales, and then look 
for function in the genome by mapping the ‘read-out’ 
from experiments onto sequence elements. The pro-
cess for annotating the human genome can be separated 
into the two broad categories of comparative sequence 
analysis (comparative analysis) and functional genom-
ics analysis (functional analysis), which correspond to 
analysing DNA sequences and analysing the output from 
functional genomics experiments, respectively (fIG. 1). In 
this Review we will focus mainly on functional analysis 
and will provide only a brief overview of comparative 
analysis simply as a framework for showing how it can 
be integrated with functional analysis.

Comparative analysis
The field of DNA sequence analysis is in the middle of 
a paradigm shift caused by the exponential reduction 
in the cost of obtaining genome sequence data. The 
traditional scope of comparative genomics is the com-
parison of reference genome sequences from different 
species; however, the recent explosion in sequencing has 
made it possible to sequence populations of a species 
and, in cancer genomics, the genomes of normal and 
diseased cells within an individual. Similar concepts  
and sequence analysis tools apply whether one is com-
paring one human genome sequence to itself, to that 

of another human or to that of another species. Here, 
we use ‘comparative analysis’ to encompass all of these 
activities, as a more specific term is lacking in the field.

Repeated sequences that can be identified in the ref-
erence human genome include segmental duplications 
(also known as low-copy-number repeats (lCRs)), sim-
ple and tandem repeats, transposons and pseudogenes. 
We emphasize that here the term ‘repeated sequence’ 
refers to a wider set of elements than the term ‘repeat ele-
ment’, which typically refers to a short, highly repetitive 
sequence. Structural variants are revealed by comparing 
genome sequences across the human population, and 
conserved NCEs, large syntenic blocks and orthologous 
genes are revealed by comparing the human genome 
to those of other species (BOX 1; TABle 1). There are two 
main methods for discovering repeated sequences: 
first, scanning for sequence similarity, which involves 
grouping together sequences that fall above a minimum 
threshold of sequence conservation over some length 
scale; and second, model-based discovery, in which 
curated sets of known elements form the basis of statis-
tical models which are then used to scan the genome for 
additional elements that fit the model25. Note that these 
two approaches can be used to compare the sequences of 
different organisms (in the traditional sense of compara-
tive genomics), to compare the sequences of organisms 
within a population (in the sense of personal genomics) 
or to compare sequences within an individual (when 
comparing cancerous to normal cells).

Figure 1 | Annotation process for non-coding regions: an overview. The annotation process includes two parallel 
pipelines for comparative sequence analysis (comparative analysis) and functional genomics analysis (functional 
analysis) of experimental data. Comparative analysis includes analysis of repeated sequences in the reference human 
genome, structural variation across the human population and sequence elements conserved across multiple species. 
The annotation process for functional genomics data involves smoothing the raw signal (step 1), thresholding and 
segmentation of the smoothed signal (step 2), clustering of discrete segments (step 3), functional annotation of 
clusters (step 4) and connecting clusters into networks (step 5).
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Gene transcription start site

DNA-based transposons
Transposable DNA elements 
that rely on a transposase 
enzyme to excise themselves 
from one region of the genome 
and insert themselves into a 
different region, without 
increasing in copy number.

Scanning for sequence similarity. looking for regions 
of sequence similarity consists of grouping sequences 
that share some minimum sequence similarity over a 
specified minimum length. The main problem with this 
approach is that it invariably leaves out related regions 
that have degraded over time, so their similarity is 
below the threshold. moreover, the thresholds chosen 

to group elements together often have no connection to 
evolutionary history and the underlying mechanisms  
of formation. For example, the operational definition of 
segmental duplications (BOX 1; TABle 1) excludes ancient 
duplications that were formed by the same mechanisms 
long ago but that have since degraded below 90% 
sequence identity.

Box 1 | Catalogue of non-coding elements

Non-coding elements are found at all scales within the genome:  
short repeats, regulatory factor binding regions and small RNAs at small 
scales; broad histone marks, transcripts, transposable elements and 
pseudogenes at medium scale; and regulatory forests and deserts, 
segmental duplications and structural variants at larger scales (right to left 
in the figure). Insertions and deletions in the human genome range in scale 
from SNPs to chromosome-scale abnormalities.

simple and tandem repeats
Simple repeats are duplications 1–5 bp in length that are probably 
generated by polymerase slippage errors100. Tandem repeats are 100–200 bp 
duplications and are often found at the centromeres and telomeres of 
chromosomes, where they have a structural role101; variation in their 
number in gene promoters can affect nucleosome positioning and  
gene expression102.

transposable elements
Transposable elements are divided into DNA-based transposons and 
RNA-based retrotransposons. Some are still active in genomes today, 
whereas others have become inactive103. Long interspersed elements (LINEs) 
are retrotransposons that themselves encode reverse transcriptase. Active 
LINEs increase genome size by copying themselves into new locations. 
Short interspersed repeats (SINEs) like the human Alu element are 
fragments of RNA polymerase III-transcribed genes that rely on LINE 
elements for propagation. Long terminal repeat (LTR) retrotransposons are 
flanked on both ends by direct LTRs. They become inactive when 
homologous recombination between the LTRs deletes the intervening gag 
and pol genes8,9.

Pseudogenes
Several categories of pseudogenes have been annotated, including 
duplicated pseudogenes , processed pseudogenes  and unitary 
pseudogenes73,104.

segmental duplications
About 45% of human segmental duplications occur in tandem runs spaced 
less than 1 Mb apart on the same chromosome71.

structural variants
These can be generated by insertion, deletion, reciprocal translocation or 
inversion17,18. Duplications and deletions cause copy-number variation 
across the population.

conserved and ultraconserved non-coding elements
Comparative genomics has found non-coding elements (NCEs) that are 
conserved to varying degrees across mammalian or vertebrate genomes, 
which suggests some function conserved by natural selection94,12,13. Lengths 
of conserved NCEs range from one to thousands of base pairs. Lack of 
function for some ultraconserved elements casts doubt on the assumption 
that sequence conservation implies function11,12,78.

Functional non-coding RnAs
Recent years have seen a revolution in our understanding of the role of small 
regulatory RNAs10; new classes continue to be discovered. MicroRNAs 
(miRNAs) are 22 nucleotide (nt) RNAs that bind predominantly to the 3′ UTRs 
of mRNA, causing gene silencing105–107. Small interfering RNAs (siRNAs) are 
21 nt long and also function in the degradation of complementary mRNAs10. 
Piwi-interacting RNAs (piRNAs) are 27–28 nt RNAs that repress transcription 
of transposons in the germ line of fruitflies108 and vertebrates109. Large 
intergenic non-coding RNAs (lincRNAs) are spliced like protein-coding 
genes that function in several central cellular processes81,82. Small RNAs, 
such as small nucleolar RNAs (snoRNAs), generated by RNA polymerases I 
and III help to synthesize the translational apparatus and make up 90% of the 
RNA in the cell.

Regulatory elements
The human genome contains 1,700–1,900 transcription factors110. Binding 
sites of some 100 transcription factors have been characterized at genome 
scale by chromatin immunoprecipitation followed by microarray (ChIP–
chip)20,33,34 or by sequencing (ChIP–seq)36,37. Classes of regulatory elements 
to which transcription factors bind include promoters, enhancers, silencers, 
insulators and locus-control regions (LCRs)20,111. Promoters are regulatory 
sites that alter the expression of the nearest gene, whereas the other 
elements act on more distant genomic locations.
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RNA-based 
retrotransposons
Transposable elements 
generated when reverse 
transcriptase enzymes copy 
RNA elements into DNA and 
insert the DNA copies back 
into the genome.

Duplicated pseudogenes
Pseudogenes that result from 
whole-genome or segmental 
duplications, in which one copy 
maintains its ancestral function 
and the other copy degrades 
into a pseudogene.

Processed pseudogenes
Pseudogenes that arise when 
the mRNA of a parent gene is 
retrotranscribed back into DNA 
and inserted into the genome.

Unitary pseudogenes
A rare class of pseudogene in 
which a single-copy parent 
gene becomes non-functional.

Chromatin 
immunoprecipitation
(ChIP.) A technique for 
identifying potential regulatory 
sequences that are bound by 
the protein of interest. Soluble 
DNA–chromatin extracts 
(complexes of DNA and 
protein) are isolated by using 
antibodies that recognize 
specific DNA-binding proteins. 
In ChIP–chip, the ChIP step is 
followed by microarray 
analysis, whereas in ChIP–seq, 
it is followed by sequencing.

Tiling arrays
A class of microarray in which 
probes of a specific length and 
spacing provide uniform 
coverage of an entire genome 
or portion of a genome to a 
desired resolution.

RNA sequencing
The use of high-throughput 
sequencing of RNA that has 
been reverse-transcribed into 
DNA to characterize the set  
of RNA transcripts produced 
by a cell.

Model-based discovery of non-coding elements. Some 
classes of element can be identified by using more sensi-
tive, model-based comparison techniques. In particular, 
in situations in which more detailed information about 
the structure or mechanism of formation of a specific ele-
ment is available, we can use it to discover more diverged 
class members25. We can also search for elements based 
on their tendency to fold into stable structures26.

Transposable elements and pseudogenes are exam-
ples of non-coding sequences that can be identified by 
using models based on the descent of these sequences 
from protein-coding elements. For instance, the same 
powerful tools used to identify protein-coding genes 
can be used to identify active transposable elements 
that still code for (retro)transposase enzymes. Inactive 
transposable elements can be identified by their simi-
larity to active transposable element profiles and by the 
stereotypical structure of short repeats at their margins 
that mark excision scars. likewise, protein sequence 
similarity to parent genes is the main feature used to 
detect pseudogenes27–29 and is a much more sensitive 
indicator than raw nucleotide identity.

Where previous work has identified a set of genes 
that are all regulated by the same regulatory factor, 

statistical tools, such as Gibbs sampling30, can reveal 
subtle motifs that are common to the promoter and 
enhancer regions of all of the genes to which the regula-
tory factor binds. Scanning the genome with a model of 
such a sequence motif can identify a more complete set 
of binding regions.

This brief overview of comparative analysis is 
intended simply to provide a context for the following 
functional analysis section. Readers who wish more 
detail are referred to several excellent reviews30–32. In the 
remainder of this Review, we focus on functional analysis  
and its integration with comparative analysis.

Functional analysis
In functional genomics, experimental techniques that 
characterize the biological role of genetic sequences are 
expanded to generate data at genome scale in a high-
throughput way. For instance, chromatin immunoprecipitation  
followed by microarray (ChIP–chip)33–35 or by sequenc-
ing (ChIP–seq)36–38 can be used to identify regulatory-
factor-binding regions (RFBRs), and transcription 
tiling arrays39,40 and RNA sequencing (RNA–seq)41–44 can 
be used to identify transcriptionally active regions 
(TARs). Here, we give an overview of a standardized 

Table 1 | Length, number and genome coverage of a representative collection of non-coding features

classification Property Length (nucleotides) number 
of items

Genome 
coverage (Mb)

Genome 
coverage (%)Average Longest

From comparative analysis

Short and tandem 
repeats

Simple repeat 63 2,961 415,917 26.1 0.84

Satellite 1,444 160,602 8,997 13.0 0.42

Low complexity 46 2,023 370,102 17.0 0.55

DNA transposons 215 3,625 459,524 98.6 3.17

Retrotransposons LINEs 426 8,505 1,490,241 634.6 20.4

Alu SINE element 261 614 1,186,885 309.7 9.97

Pseudogenes Duplicated 6,607 181,882 2413 15.9 0.51

Processed 723 15,732 8303 6.0 0.19

Segmental duplications 5,740 630 kb 26,469 151.9 4.89

Structural variants 8,761 3.3 Mb 96,874 848.8 27.3

From functional analysis

Punctate binding sites STAT1 446 9,079 ~2,300 1.0 0.03

CTCF 1,181 79,200 ~35,000 41.4 1.33

H3K4me3 1,759 71,025 ~62,000 110.2 3.55

Broad binding sites H3K36me3 4,518 380,076 ~130,000 589 19.0

MicroRNA 89 150 718 0.063 0.00

TARs 72 1,854 644,200 46.7 1.50

Regulatory forests 3,890 35,165 68,900 268 8.62

Regulatory deserts 27,107 203,691 72,500 1,970 63.4

Pseudogene counts are taken from build 53 at Pseudogene.org29. MicroRNA counts are from miRBase121. Counts of structural 
variants are from the Database of Genomic Variants122. Data on transcriptionally active regions (TARs) and regulatory forests 
and deserts are extrapolated to whole-genome scale from the 1% of the genome covered by the ENCODE pilot project20.  
The extrapolation is biased by the high fraction of genic regions in the ENCODE pilot regions. All other data were collected 
from the University of California-Santa Cruz (UCSC) Table Browser45 using the March 2006 build of the human genome (UCSC 
hg18, NCBI build 36). CTCF, CCCTC-binding factor; H3K4me3, histone 3 lysine 4 trimethylation; H3K36me3, histone 3 lysine 36 
trimethylation; LINE, long interspersed element; SINE, short interspersed element; STAT1, signal transducer and activator of 
transcription 1; TAR, transcriptionally active region.
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Called TARs

XIAP STAG2

ChIP–seq

ChIP–chip

Relaxed 
threshold

Stringent 
threshold

Tiling array 
signal

b

a IFNAR2 IL10RB IFNAR1

Smoothing
The process of filtering noise 
from a signal by removing 
fine-scale variation.

Thresholding
The process of discretizing a 
continuous signal by choosing 
a signal value above which  
the signal is considered ‘on’  
or ‘active’ and below which  
the signal is considered  
‘off’ or ‘inactive’.

Segmenting
The result of thresholding in 
signal processing — that is, 
segments are those regions 
defined as ‘on’ or ‘active’ after 
discretization of the signal.

signal processing approach to analysing such functional 
genomics data sets. We do not review the long history 
of annotation of NCEs on an element-by-element basis 
(BOX 1; TABle 1).

A useful way to conceptualize the analysis of a 
generic functional genomics experiment is with a sig-
nal-processing paradigm. Each experiment generates 
a raw signal of some kind across the genome that can 
be analysed by smoothing it and then thresholding and 
segmenting it into discrete units of initial annotation. In 
practical terms, the ubiquity of this paradigm is appar-
ent from the fact that the university of California-Santa 
Cruz (uCSC) Genome Browser, a major clearing-house 
for genomic information45, treats each experiment as a 
separate ‘signal track’. A signal track usually represents 
a continuous-valued number across the genome, which 

we can transform into a set of discrete genomic regions, 
or ‘hits’, represented in another track. First, we explain 
a signal-processing pipeline that transforms raw signal 
tracks into processed annotation tracks. later, we high-
light how integrative analysis of multiple tracks can lead 
to larger, derived annotations.

Primary data processing: smoothing the raw signal. 
The raw signal of a functional genomics experiment 
gives the read-out of transcription, protein binding 
or some other biological process at discrete points in 
the genome. Depending on the technology used, sig-
nals are mapped to the reference genome with differ-
ent resolutions. High-throughput sequencing generates 
alignments at base-pair resolution, whereas tiling arrays 
provide resolutions from 5 to 50 bp, depending on probe 

Figure 2 | signal resolution and signal thresholding. a | Comparison of signal tracks obtained from chromatin immu-
noprecipitation followed by sequencing (ChIP–seq) and ChIP followed by microarray (ChIP–chip). The example shown 
focuses on the binding of the transcription factor signal transducer and activator of transcription 1 (STAT1) to the 
promoters of genes in the interleukin receptor cluster on chromosome 21. It is clear that following ChIP with short read 
DNA sequencing (ChIP–seq, top) generates a much cleaner signal than using a microarray (ChIP–chip, bottom). The 
ChIP–seq track clearly identifies three STAT1 binding sites, whereas the ChIP–chip track requires a more complex 
thresholding step. There is negative signal (red) in the ChIP–chip track because the microarray signal is a ratio of STAT1 
binding compared to a control state. Positive binding signals of the same magnitude should be treated as noise.  
b | Issues with signal thresholding. The genes stromal antigen 2 (STAG2) and X-linked inhibitor of apoptosis (XIAP) have 
different levels of exonic, intronic and intergenic transcription signals in a tiling array signal track. If the global 
threshold to differentiate signal from noise is set high (stringent threshold), exons and introns in highly expressed genes 
(here STAG2) will be correctly segregated, but even exons of weakly expressed genes (here XIAP) will not be flagged as 
expressed. Conversely, if the threshold is set low enough (relaxed threshold) to differentiate exons from introns in 
weakly expressed genes (XIAP), then both introns and exons of highly expressed genes (STAG2) will be flagged. These 
difficulties in thresholding can lead to intronic RNA from precursor mRNA being flagged as expressed transcriptionally 
active regions (TARs). IFNAR, interferon (alpha, beta and omega) receptor; IL10RB, interleukin 10 receptor, beta.
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density39,40 (fIG. 2a). The output is a noisy signal consist-
ing of many piled-up sequence reads or probe values. 
From this noisy data, the goal is to determine where a 
transcription factor actually binds36,37, where a particu-
lar DNA46 or histone47–49 modification is being made, or 
what sequence is being transcribed39–42.

Numerous technical issues that influence signal qual-
ity need to be addressed. In particular, because arrays 
rely on hybridization to measure the amount of target 
DNA present, the signal obtained for each oligonucle-
otide probe is modulated by its sequence composition. 
Probes with greater GC content, for example, show 
higher signal50. Another issue is cross-hybridization, 
in which regions of the genome with similar sequences 
bind to multiple probes on the array. Cross-hybridization 
often gives rise to spikes in the signal, causing problems 
for measuring the expression of multi-gene families and 
pseudogenes with tiling arrays. Sequencing technologies 
do not suffer from cross-hybridization; however, analo-
gous problems occur because short sequence reads can 
misalign to an incorrect location in the genome owing to 
sequencing and mapping errors51–54. In general, correct 
read mapping is one of the main technical challenges in 
next-generation sequencing (BOX 2).

Thresholding and segmenting to generate small initial 
annotations. After smoothing, it is necessary to set a 
threshold to differentiate regions with and without sig-
nal. Thresholding issues have been most thoroughly 
explored for ChIP–seq experiments, which we focus  
on here. We expect that approaches for thresholding 
RNA–seq signals will evolve along similar lines.

To correctly construct local thresholds, it is impor-
tant to model or simulate an appropriate null process 
for the background55,56. Because the background signal 
can be noisy (fIG. 2b), naive methods of thresholding  
using the assumption of a uniform background are  
not successful.

In ChIP–seq experiments, the signal from ‘input 
DNA’ is often used as the background. This signal is 
generated by sequencing genomic DNA without any 
enrichment step. The most commonly accepted expla-
nation for the non-uniformity of this control signal 
is that it reflects the chromatin state of the genome. 
Regions of open chromatin are more likely to shear 
and generate DNA fragments of an appropriate size to 
pass a sizing filter and be captured by sequencing57.  
using the input DNA signal as background also 
accounts for the differential ‘mappability’ of regions of 
the genome — that is, the fact that some regions, most 
obviously repeats, are underrepresented in the output 
of the experiment because they are less likely to pro-
duce reads that can be mapped uniquely back to the 
reference genome.

The initial output from thresholding and segment-
ing an experimental signal is a number of small anno-
tation blocks that are represented as a discrete ‘feature’ 
track45. The next step is to assign biological meaning to 
the blocks. The experimental read-out is interpreted dif-
ferently depending on whether the experiment involves 
transcription or immunoprecipitation.

Interpreting the initial annotations: transcriptionally 
active regions. The result of thresholding RNA–seq or 
tiling array signals58,59 is a set of TARs (also known as 
transcription fragments (‘transfrags’)). Although most 
TARs stem from protein-coding genes, they can also 
mark non-coding RNAs. An unexpected result from the 
ENCODE pilot project was the discovery of pervasive 
transcription — that is, large numbers of novel TARs 
in unannotated portions of the genome20,60. There is 
much debate over whether these and other unannotated 
transcripts are functional or simply the result of cross-
hybridization or transcriptional noise61–63. Although the 
fraction of transcribed RNA sequences that map to inter-
genic and intronic regions is fairly low (~5–10%), that set 
of TARs covers a relatively large fraction of nucleotides 
in the genome. This finding is consistent with the fact 
that annotated genic regions are transcribed at higher 
levels. moreover, even though a large fraction of the 
human genome is transcribed as primary transcripts, 
which include introns, it remains a challenge to distin-
guish novel processed RNA products from remnants 
of primary transcription that can be associated with 
known genes63.

Interpreting the initial annotations: regulatory factor 
binding. Segmentation of ChIP–chip or ChIP–seq sig-
nals generates RFBRs64. This awkward abbreviation was 
chosen by the ENCODE consortium to refer to both 
transcription factor binding and histone modification 
experiments, as both are important for genome anno-
tation. (Other abbreviations considered include CHIRP 
(chip hit of regulatory potential) and EIGR (experimen-
tally identified genomic region).) Here, we use the sim-
pler term ‘binding sites’ for RFBRs and highlight several 
issues with transforming a set of raw binding sites into 
more developed annotations.

First, binding sites can be divided into two major 
classes: punctate and broad. For example, some histone 
modifications cluster in sharp peaks around transcript 
promoter regions (punctate binding sites), whereas oth-
ers mark the entire transcribed region with a broad peak 
(broad binding sites)49. Although punctate sites have, 
for a long time, been identified by scoring algorithms, 
methods for identifying signals across broad regions of 
the genome have been less thoroughly developed65,66.

Second, binding sites differ in the degree to which 
they have a clear sequence motif connecting them to 
their associated transcription factor. A transcription 
factor with a weak motif may be present at very high 
concentration in a given tissue, binding more promis-
cuously and activating more genes than in another 
tissue in which it is present at lower concentration67. 
Even for transcription factors with a strong motif, chro-
matin accessibility often modulates binding in a cell-
type-specific manner47,48. A strong binding event may 
require both open chromatin and a matching motif. A 
complete picture of transcription factor binding thus 
needs to incorporate both sequence information about 
transcription-factor-binding-site motifs and func-
tional genomic information about chromatin state and  
transcription factor expression level.
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Heterochromatin
Highly compact and therefore 
inactive regions of the 
genome. largely composed  
of repetitive DNA, 
heterochromatin forms dark 
bands after Giemsa staining.

Euchromatin
The lightly staining regions of 
the genome that are generally 
decondensed during 
interphase and contain 
transcriptionally active regions.

Fosmid
A low-copy vector for  
the construction of stable  
genomic libraries that uses the 
Escherichia coli f-factor origin 
of replication. each fosmid 
clone can store ~40 kb of 
library DNA. Cloned sequences 
are more stable in fosmids  
than in high-copy vectors. 

Box 2 | Assembling and mapping repeat regions of the genome

When the human 
reference genome was 
finished in 2004, 340  
gaps containing an 
estimated 200 Mb of 
heterochromatin and 
25 Mb of euchromatin 
were still not sequenced 
because of the highly 
repetitive nature and 
difficulty of assembling 
those regions112. Current 
efforts focus not on 
completing the human 
reference genome but on 
supplementing it with 
data from individuals 
from diverse populations. 
The task of generating a 
human reference genome 
has transformed into one 
of thoroughly cataloguing 
structural variants in the 
human population.

For reasons of cost, 
human population 
genomics efforts, such as 
the 1000 Genomes 
Project, rely on 
short-read DNA 
sequencing113. Detecting 
repeat regions and 
structural variants from 
short reads is a key 
technical challenge 
because structural 
variants are enriched 
with repeated sequences 
that map to multiple 
locations in the genome 
when probed by short 
reads. In simulations, multiple algorithms designed to detect structural variants from short reads do not find  
up to half of the structural variants known from traditional capillary sequencing of Craig Venter’s genome114–117.  
A useful resource generated by the Human Genome Structural Variation Project to deal with this problem is a 
library, generated from multiple individuals, of 40-kb long fosmid clones, the ends of which have been sequenced 
by paired-end Sanger sequencing18,118. A subset of so-called discordant clones with spans that, when mapped 
onto the reference genome, are substantially longer or shorter than expected (owing to deletions and insertions, 
respectively) was probed by tiling arrays18. Several clones from this subset were also probed by Sanger 
sequencing of the whole clone116,118. It might be possible to do both the paired-end sequencing and clone 
assembly using short-read sequencing, resulting in a set of 40 kb contigs that could be easily mapped to the 
reference genome.

After the set of structural variants across the human population has been characterized in sufficient depth, it 
may be possible to identify and genotype structural variants in an individual genome using short-read sequences 
and a library of structural variant breakpoints from the whole population119. It was recently estimated that a set of 
human reference genomes covering repeat regions and structural variants for all major human populations might 
include 19–40 Mb of novel DNA sequence that is not present in the current reference genome120.

The figure shows the mapping of short reads onto the genome. Mappability is a problem for short read  
data sets (part a). Short reads (black horizontal lines) generated by repetitive elements of the genome can map  
to multiple locations, generating ambiguity in read counts for highly repetitive, poorly mappable regions. 
Features that contain repetitive sequence can suffer from mismapping of short reads to other genomic locations 
with high sequence similarity. Part b shows the way in which connectivity maps can be generated between  
widely spaced regions of the genome. In genes and long non-coding RNAs, split-read and paired-end read 
methods can identify exon junctions better than noisy single-end read data. These methods also enable the 
identification and quantification of alternative isoforms, in addition to being useful for identifying structural 
variants (not shown).
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Specificity
A measure of the proportion of 
true negatives correctly 
identified as such (for example, 
the percentage of healthy 
people who are identified as 
not having a disease).

Regulatory forests
Regions of the genome that are 
enriched with binding sites for 
regulatory factors, such as 
transcription factors.

Principal components 
analysis
A statistical method used  
to simplify data sets by 
transforming a series of 
correlated variables into  
a smaller number of 
uncorrelated factors.

One difficulty connected with determining transcrip-
tion factor binding motifs is the loss of information on 
binding specificity owing to crosslinking. Transcription 
initiation complexes often consist of a DNA element 
bound by multiple interacting transcription factors, 
some bound to distal enhancer regions that are adja-
cent in three-dimensional (3D) space because of chro-
mosomal looping. Thus, immunoprecipitation of one 
transcription factor in such a complex may elute DNA 
to which it binds only indirectly. The resulting set of  
target sequences will identify poorly the sequence motif 
to which the transcription factor actually binds68.

Third, determining the relationship between binding 
sites and their target genes is crucial to gaining a global 
picture of transcriptional regulation, including epigenetic 
mechanisms. moreover, this information is the starting 
point in building regulatory networks that connect tran-
scription factors with their targets. In compact genomes, 
such as those of yeast and C. elegans, associating binding 
regions with downstream targets is fairly straightforward. 
However, in the vast expanse of the human genome, this 
determination is less straightforward. Sites that are thou-
sands of bases apart are often brought into proximity by 
complex chromatin structures, including looping.

Integrating information
The types of data presented above can be displayed as a 
single track in a genome browser. This track can show 
either a continuous signal across the genome or a set of 
discrete ‘hit’ regions, such as binding sites. The next step 
is to group the information from a single track or from 
multiple tracks into larger annotation structures, such 
as entire transcripts, that have more biological meaning. 
Eventually, multiple classes of functional elements that 
are not proximally located on the genome can be wired 
together into networks.

Grouping small annotation units into larger structures 
with a genomic matrix. Track integration begins by gen-
erating a ‘genomic matrix’ in which each row corresponds 
to a different experiment and each column to a different 
genomic region (fIG. 3). Then each matrix cell represents 
the aggregated read-out of a particular experiment within 
a specific region — for example, the average transcriptional 
signal within a specific 1 kb region of the genome in the 
Hela cell line or the number of nucleotides in that region 
bound by a specific transcription factor. The genome can 
be decomposed naturally into regions of different scales 
(BOX 1; TABle 1); correspondingly, different matrices can 
bin genomic regions at different resolutions.

Simple statistical operations on genomic matrices 
can then provide useful information. In particular, for 
a set of tracks of experimental features binned at a fine 
resolution (for example, factor binding sites collected in 
small 1 kb bins), one can find larger blocks (for example, 
150 kb) that are statistically enriched or depleted in these 
features compared with a randomized null distribution.  
Enriched and depleted regions have been termed ‘regulatory  
forests’ and ‘regulatory deserts’69 (fIG. 3Aa).

Correlated genomic regions can be identified by clus-
tering columns of the matrix70. For example, to identify 

groups of co-regulated TARs, one can build a matrix in 
which the rows correspond to different cell lines or tis-
sues with transcriptional information and the columns 
correspond to transcribed regions (including exons) that 
have been identified in any of the experiments. We can 
compute correlations of the column vectors of expression 
signals between novel TARs and nearby known exons. 
Novel TARs co-expressed with exons of neighbouring 
genes are likely to be part of the same larger transcrip-
tional unit70. In addition, novel TARs distant from any 
known gene can be clustered into groups with strongly 
correlated expression signals, which can help in piecing 
together larger non-coding transcript structures. (This 
operation can be compared with the connectivity pro-
vided by paired-end reads, which are described below.)

Clustering at a higher level naturally gives rise to 
networks of transcripts that are co-expressed across cell 
lines or other conditions. The same kind of column clus-
tering applied to transcription factor binding sites, for 
example, would form a network of co-regulated target 
genes (fIG. 3Ab).

Co-clustering approaches: biplot. The next step is to 
examine simultaneous clustering of columns and rows. 
For example, we can recognize pairs of factors that often 
bind together by the high correlation of their row vec-
tors in the genomic matrix. Computing the correlation 
of each factor against all others gives rise to another 
matrix, called the correlation matrix (fIG. 3Ac). likewise, 
we can also cluster regions of the genome (matrix col-
umns) together based on which factors bind them, 
which generates a second correlation matrix for regions 
(fIG. 3Ab). Principal components analyses of these two cor-
relation matrices give rise to ‘eigen-factors’ (which repre-
sent the typical behaviour of factors across the genome) 
and ‘eigen-regions’ (which represent the typical modes 
of binding of many factors across the genome).

Given a data matrix consisting of the number of times 
each factor binds each region, we can cluster regions 
with regions and factors with factors, and cross-correlate 
regions with factors. All three of these types of linkage 
can be visualized in a biplot69, which shows region and 
factor clustering simultaneously (fIG. 3Ad). Effectively, 
the biplot performs principal components analysis on 
each of the correlation matrices and shows the natural  
interrelationship of eigen-factors and eigen-regions.

Aggregation and saturation plots. Another type of 
analysis that can be done with the genomic matrix is 
the saturation plot. Here, one looks at the cumulative 
fraction of the genome ‘covered’ by adding more rows to 
the matrix to see how many different assays one needs  
to achieve ‘saturation’ of a particular type of element. 
This type of plot has been used extensively in the 
ENCODE and modENCODE projects to measure over-
all progress in annotating the genome. One complication 
with saturation plots is that the slope of the increase in 
cumulative fraction depends on the order in which the 
assays are chosen. To get around this problem, one can 
shuffle the assays and show a box plot resulting from all 
different possible orderings (fIG. 3B).
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Figure 3 | Matrix showing how to correlate genomic elements. A | Simple matrix operations. Each row in the matrix 
corresponds to a different experiment and each column to a different genomic region (Aa). The numerical value of each 
matrix element corresponds to an aggregated read-out of that experiment in that specific region of the genome. Simple 
statistical operations on the matrix can provide useful information. For example, correlations between columns (Ab) 
identify networks of co-regulated and co-expressed genome sites, whereas correlations between rows (Ac) identify 
related tissues and co-regulating factors. Simultaneous correlation of rows and columns (Ad) can associate 
co-regulating factors with the sites they regulate. Grouping columns into regions enriched or depleted for regulatory 
sites compared with the genome average identifies regulatory forests and deserts. B | This schematic saturation plot 
shows how genome coverage increases as related signal tracks are joined together. Here, signal track 3 covers a larger 
fraction of the genome than any other single track; signal tracks 2 and 3 together cover more of the genome than any 
other pair of tracks, and so on. Saturation plots present genomic summary statistics in a useful visual framework. c | This 
schematic aggregation plot shows how a class of genomic features from one annotation track can be used as anchor 
points to sum up the values in a related set of signal tracks. This plot could represent, for example, the average profile of 
short RNA sequencing reads around all transcription start sites in the genome.
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Non-allelic homologous 
recombination
Recombination between 
segmental duplications that 
leads to local duplication, 
deletion or inversion of 
genome sequence.

Ultraconserved elements
Operationally defined as 
non-coding elements that are 
hundreds of base pairs long and 
100% identical across human, 
mouse and rat genomes.

In addition to measuring saturation across tracks, 
one can analyse the statistical distribution within a sin-
gle track using an aggregation plot. Here, one sums the 
signal within a set distance around all instances of a set of 
genomic anchor points — for example, around transcrip-
tion start sites or within exons (fIG. 3C). In a sense, each 
aggregation plot builds a special coordinate system for 
the matrix in which matrix elements (or bins) are placed 
at predefined distances from each of the genomic anchor 
points, which can be expressed as another track.

Analysis of sequence features in a similar framework. The 
type of integrated analysis done for different classes of 
functional genomics tracks can also be done for tracks 
defined by sequence analysis. For example, we might 
expect some correlation between the occurrence of seg-
mental duplications and short repeat elements, as one 
of the formation mechanisms of segmental duplications 
is non-allelic homologous recombination (NAHR)71, and 
the presence of short repeats increases the likelihood 
of non-allelic crossing-over. This correlation uses the 
same genomic matrix approach described above, except 
bins represent the number of segmental duplications or 
short repeats (for example, Alus) in a genomic interval. 
In fact, one study that related segmental duplications to 
short repeats showed that segmental duplications tend 
to be associated with Alus and that the change in this 
association over time highlights the effect of the Alu burst  
~40 million years ago72.

Integrating comparative and functional tracks
In the previous section, we looked for correlations 
between regions of the genome that shared either 
sequence-based or experimental features. Here, we com-
bine information from both comparative and functional 
analysis. We can do this in two ways. First, we can meas-
ure the overlap between the two sets of features in terms 
of the number of base pairs. using the genomic matrix 
framework, we can compute a correlation between the 
rows of the matrix that represent sequence features and 
the rows of the matrix that represent functional features. 
Second, we can calculate a ‘sequence metric’, such as the 
degree of conservation or variability, for each function-
ally annotated feature or a ‘functional metric’, such as the 
amount of transcription, for each sequence feature.

When calculating such metrics, it is important to 
assess their values relative to an appropriate genomic 
null. For example, is a functional element more or less 
conserved than one would expect it to be by chance? 
One can determine this expectation trivially by ran-
domly shuffling elements in the genome. However, there 
are a number of better ways to construct an appropriate 
null, such as by using the genome structure correction  
(GSC) statistic20.

Below, we highlight these approaches to interrelating 
comparative and functional analysis using a number of 
representative case studies.

Detecting transcribed pseudogenes. An example that com-
bines comparative and functional evidence is the annota-
tion of transcribed pseudogenes. Pseudogenes identified 

by sequence similarity to parent genes — fundamentally 
a result of comparative analysis — can be examined for 
transcriptional activity by comparison with functional 
tracks derived from RNA–seq or tiling-array data. In fact, 
evidence from the ENCODE pilot project suggests that 
at least 20% of human pseudogenes are transcribed73. It 
has been suggested that some transcribed pseudogenes 
have been recruited into the RNA-interference pathway 
to control transcription of their parent genes. In these 
cases, the antisense transcript from the pseudogene binds 
to the mRNA of its parent, generating a natural endo-
genous small interfering RNA74,75. These observations 
suggest that pseudogenes can play a significant part in 
gene regulation76. However, in the ENCODE pilot no 
obvious sequence signature for transcribed pseudogenes 
could be found — that is, they were conserved no more 
and have no fewer SNPs than other pseudogenes73.

Sequence conservation versus function. This ambiguous 
finding about transcribed pseudogenes is an example of 
the broader result from the pilot ENCODE project that 
conserved elements identified by comparative analysis 
are not always functional, and vice versa20,77,78. Before 
the project, it was expected that, to some degree, all 
conserved blocks would have some function mapped to 
them. Somewhat surprisingly, many blocks were found 
to have no experimental evidence of function and, 
conversely, many experimentally identified functional 
elements were not conserved. We highlight the case of 
ultraconserved elements. Some of these elements are tis-
sue-specific enhancers11,13, whereas others have a role in 
mRNA degradation79. However, deletion of several ultra-
conserved elements in mice was not lethal and caused no 
problems in growth, longevity, fertility or metabolism77. 
If some function is not found for conserved non-coding  
regions even after an exhaustive array of functional 
assays, evolutionary models may need to be revised78,80.

Annotating lincRNAs. A final example of integrating 
comparative and functional analysis comes from the 
study of large intergenic non-coding RNAs (lincRNAs; 
also known as large intervening non-coding RNAs). 
‘K4-K36 domains’ are histone signatures that mark 
actively transcribed elements with a punctate histone 3  
lysine 4 trimethylation (H3K4me3) mark at the tran-
scription start site and a broad H3K36me3 mark across 
the transcribed region81. A large set of K4-K36 domains 
identified from functional genomics experiments in mice 
was screened against known protein-coding genes and 
regulatory RNAs to find domains without any known 
annotation81. A custom tiling array designed to map a 
subset of those unannotated regions showed transcrip-
tion in most of them. Sequence analysis showed that 
almost none of the transcribed elements was protein-
coding, so they represented a set of candidate lincRNAs. 
When clustered with protein-coding genes of known 
function by their shared expression level across several 
tissues, groups of lincRNAs involved in the DNA dam-
age response, immune signalling and maintenance of 
stem cell pluripotency were identified. Recent work has 
extended this analysis into humans82.
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Sensitivity
A measure of the proportion 
of true positives that are 
correctly identified as such 
(for example, the percentage 
of sick people who are 
identified as having a disease).

Paired-end sequencing
Determination of the sequence 
at both ends of a fragment of 
DNA of known size.

Chromosome conformation 
capture
A technique used to study the 
long-distance interactions 
between genomic regions, 
which in turn can be used to 
study the three-dimensional 
architecture of chromosomes 
within a cell nucleus.

Discussion and future directions 
We have provided an overview of the annotation process 
for non-coding regions of the genome. For a long time it 
has been a mystery why more than 98% of the genomic 
text seems to have no meaning, with less than 2% consist-
ing of protein-coding exons. The realization that much 
of the non-coding DNA in the genome is transcribed at 
low levels into RNA has compounded the mystery20. In 
the future the annotation effort will continue to evolve, 
driven by rapid improvement in sequencing technolo-
gies. Although second-generation platforms sacrifice 
read length to reduce cost and increase coverage, some 
third-generation platforms promise to generate very 
long reads that would span repetitive regions and make 
assembly much easier83,84. We highlight here two direc-
tions of future work. One area is a chronic problem that 
requires attention, and the other is a direction in which 
the field of functional genomics is already moving.

Validation. The chronic problem area is validation. 
validation of predictions from genome-scale experi-
ments using more established molecular biology tech-
niques is crucial. The goal of ENCODE is to make 
predictions with high accuracy (for example, 5% error 
rate and 95% sensitivity). A benefit of ENCODE is that 
researchers can compare different scoring algorithms 
applied to the same large data sets. However, if each 
algorithm makes 10,000 binding site predictions for an 
experiment, perhaps only 60 of them might be targeted 
for validation by high-quality, low-throughput methods. 
That number is simply not high enough to readily cali-
brate the error rates, so it is important that regions for 
validation are selected systematically to maximize statis-
tical power85. On the experimental side, new medium-
throughput techniques are under development to 
increase the number of predictions that can be validated 
(for example, the NanoString nCounter86).

Annotation of connectivity between elements. most 
genome-scale data sets discussed in this Review can be 
displayed in a browser as a single one-dimensional track, 
whereas new classes of functional genomic data cannot 
be as easily represented. The key difference is that tech-
niques such as paired-end sequencing18 and chromosome 
conformation capture87 generate connectivity maps that 

link widely spaced regions of the genome. Additional 
research is needed to find the most intuitive ways of  
analysing and visualizing this type of data88.

In particular, paired-end tag sequencing is beginning 
to replace conventional single-end sequencing owing to  
the additional information provided. For RNA–seq, 
paired-end reads add information about the connectivity 
of spliced transcripts, including trans-splicing events43,44. 
For mapping structural variation, paired reads enable the 
detection of inversions and translocations in addition to 
copy-number variation18 (BOX 2).

Chromosome conformation capture provides infor-
mation on interactions between DNA elements that are 
adjacent in the 3D space of the nucleus but located on 
different chromosomes or widely spaced on the same 
chromosome87. This method involves crosslinking of 
chromatin, then shearing and ligation to create a library 
of fused DNA fragments from two distant genomic loca-
tions. High-throughput methods, including chromatin 
interaction analysis by paired-end tag sequencing (ChIA-
PET)89, carbon-copy chromosome conformation cap-
ture90 and Hi-C91, use tiling arrays or deep sequencing 
to map these fusion products onto the genome. These 
techniques enable the systematic identification of dis-
tant targets of regulatory elements, such as enhancers, 
and the mapping of the 3D structure of chromatin in 
the nucleus91,92.

A paradox of the genomic era has been that the 
number of protein-coding genes is no higher in humans 
than in apparently simpler organisms93. Human com-
plexity may stem more from differences in regulation 
than from differences in protein-coding sequences94. 
The ENCODE pilot project showed that non-coding 
DNA tends to be functionalized mainly in new cell types: 
transcribed regions conserved across many cell lines 
were almost exclusively exonic, whereas intronic and 
intergenic TARs were mainly restricted to a single cell 
type20. So part of the increase in organismal complexity 
may be caused by the proliferation of cell types. Smaller 
organisms with fewer cell types have comparatively less 
non-coding DNA (TABle 2), although some deviate sub-
stantially from this trend95. Yeast has three cell types96; 
the nematode C. elegans has nearly 1,000 cells of about 
20 cell types97, and humans have perhaps thousands of 
cell types, not all of them enumerated98,99.

Table 2 | Percentage of non-coding DNA in selected sequenced genomes

species name Genome 
size (Mb)

Fraction of genome (%) source of gene annotations

common scientific Genic exonic non-coding

intronic intergenic

Yeast Saccharomyces 
cerevisiae

12.2 73.5 72.9 0.6 26.6 Saccharomyces Genome Database  
(June 2008 build)

Nematode 
worm

Caenorhabditis 
elegans

100.3 59.2 28.1 31.2 40.8 WormBase (WS190)

Fruitfly Drosophila 
melanogaster

168.7 48.2 18.3 30.0 51.8 FlyBase and Berkeley Drosophila 
Genome Project (BDGP; release no. 5)

Human Homo sapiens 3,107 45.1 2.8 42.3 54.9 UCSC Genome Browser Known 
Genes table (hg18) 

The genic fraction consists of both exonic and intronic sequence. The exonic fraction consists of both coding sequence (CDS) and 5′ and 3′ UTRs. Strictly speaking, 
UTRs are non-coding, so the exon fraction is a slight overestimate of the fraction of coding sequence in the genome.
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