
HANS G R I M M E R  271 

and the form of 7r given in Table 3 then show that 

P1 = [27r2311 °'12 + 277"23230"31] Ha 

P2 = [ 7r23i 1 (0"11 - 0"22) + 2 7"/'23230"23 ]/-/3 

P3 = [ a33 + 7r33,,(0",, + 0"22) "It- or33330"33] H3, 

i.e. only the piezomagnetoelectric effect contributes 
to PI and P2. Also U2N2P, U2NES, Nb2C0409 and 
Nb2Mn409 have symmetry 3'm' according to Ole~ et 
al. (1976). 

The author is indebted to Professor H. Schmid for 
his suggestion to investigate the form of the piezomag- 
netoelectric effect and for stimulating discussions. 
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Abstract 

Resolution is a crucial parameter to consider in mak- 
ing surface comparisons. A method is presented here 
for the rapid, objective and automatic comparison of 
selected parts of protein surfaces as a function 
of resolution using differences and correlations of 
Fourier coefficients. A test-case application of this 
procedure to the surfaces of five immunoglobulin 
antigen-combining sites allowed them to be parti- 
tioned into two categories. 

I. Introduction 

Knowledge of the topography of protein surfaces is 
essential to understanding molecular recognition. A 
solved X-ray crystal structure contains a wealth of 
information about these surfaces and using modern 
graphics technology it is relatively easy to examine 
and compare them in all their detail (e.g. Max, 1984; 
Connolly, 1983a). However, comparisons based on 
human observation are subjective, qualitative and 
time-consuming. The number of solved structures is 
continually increasing and so are the methods for 
generating new conformations and surface descrip- 
tions from these structures - e.g. C O N G E N  (Bruc- 

0108-7673 / 92/03 0271-06503.00 

coleri & Karplus, 1987) and the molecular surface 
(Richards, 1977). The time necessary to look through 
a comprehensive sample of surfaces can be prohibi- 
tive. Consequently, it is expedient to develop an 
objective and quantitative procedure for comparing 
protein surfaces rapidly and automatically. 

An essential parameter to consider in any surface- 
shape comparison method is resolution. Surfaces - 
such as those of two human faces - that are different 
in medium-resolution detail may have similar low- 
resolution features and high-resolution texture. By 
comparing surfaces in terms of Fourier coefficients, 
one naturally obtains information ordered in terms 
of increasing resolution. 

We are specifically interested in immunoglobulin 
recognition and have tested our approach by compar- 
ing the surfaces of antigen-combining sites. The prob- 
lem of surface comparisons is particularly evident for 
these molecules, since recombination of a small num- 
ber of genes can produce an estimated 108 different 
antigen-combining sites, each with distinctly different 
surface-recognition properties (Milstein, 1990). 
However, before the results of the procedure on this 
specific case is described, it is presented in a more 
general context. 

© 1992 International Union of Crystallography 
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2. Method 

The procedure consists of four steps: 
1. generating molecular envelopes; 
2. superimposing the envelopes; 
3. Fourier transforming them; 
4. comparing the transforms at various resolutions. 
The surface of a protein is represented here by a 

selected section of its molecular envelope, which is 
prepared in such a way so as to remove as much 
detail as possible that is not directly related to the 
protein surface. An initial density map po(r) is gener- 
ated using a Gaussian approximation for atomic 
shapes (Diamond, 1971). It is assumed to be represen- 
ted on a finely spaced grid and the following oper- 
ations are to be performed simultaneously at every 
point on this grid. First the map is thresholded at a 
suitable value r. The technique of simple region grow- 
ing with expansion and contraction operations is used 
to fill cavities inside the envelope [see Rosenfeld & 
Kak (1982) for a general discussion of this technique]. 
The expansion operation, denoted by E, fills an empty 
grid point (value 0) if it is adjacent to a filled one 
(value 1) and the contraction operation, Q, empties 
a filled grid point if it is next to an empty one. The 
operations are constructed so that m expansions, 
denoted E", followed by the same number of contrac- 
tions, Q",  returns the original shape unless one or 
more holes or cavities are completely filled during 
the expansion. Holes and cavities of arbitrary size 
can be filled by choosing large enough values of m. 
To arrive at a final envelope p(r), the filled envelope 
is clipped by a cubic boundary B(ro, l) of side l 
centered at ro on the area of interest. 

p ( r )=  B(r0,/)QmEmT[p0(r)] (1) 

where 

{01 i f P < r  
T(p) = otherwise, 

~'1 if p = 1 for a grid point in G(r) 
E(p )= 

t 0 otherwise, 

j'0 if p =0  for a grid point in G(r) Q ( p ) =  
tl otherwise 

and G(r) is a set of 27 grid points, which comprises 
a central point nearest r and the 26 points neighboring 
it. 

Note that the final 'envelope' p is a binary function 
on a three-dimensional volume and not on a two- 
dimensional surface. It, nevertheless, only contains 
information about the protein surface. It could have 
been generated by a number of other procedures - 
in particular, simply filling in the region enclosed by 
a Connolly surface (Connolly, 1983b). A simple 
binary envelope and clipping boundary provide 
enough surface detail for the comparisons discussed 

here. It is, however, straightforward to generalize the 
envelope to a potential that takes on a continuum of 
values outside the protein surface, e.g. to represent 
fully the electrostatic potential from a program such 
as DELPHI  (Sharp & Honig, 1990). 

In making a number of surface comparisons, it was 
found best to compare the envelope of a particular 
surface p with a common reference taR. These 
envelopes must first be aligned. Superimposing 
density maps involves a time- and memory- 
consuming multidimensional search (e.g. Bricogne, 
1976; Muirhead, Cox, Mazzarella & Perutz, 1967). 
To sidestep this issue, it is convenient to assume that 
envelope volumes will be optimally aligned when the 
protein coordinates from which they are derived are 
intelligently superimposed. Superimposing coordi- 
nate sets is a straightforward and relatively rapid 
calculation (McLachlan 1972, 1979; Diamond, 1976, 
1989; Lesk, 1986; Kearsley, 1989). To perform the 
superposition, one set of coordinates was chosen as 
the reference and the others were fit to it. A number 
of recently developed procedures (Diamond, 1988, 
1992; Kearsley, 1990) may make it possible to perform 
this coordinate superposition without choosing a 
reference, but it will still be necessary to decide which 
atoms are equivalent for structures without sequence 
identity. 

The superimposed envelopes are then convolved 
with a three-dimensional Gaussian of half-width o- 
to smooth the sharp edges introduced by the 
thresholding and clipping. They are embedded in a 
suitable cell and Fourier transformed to get the com- 
plex Fourier coefficients F(s) for the surface and R(s) 
for the reference. In practice the convolution is per- 
formed by reciprocal-space multiplication, 

F(s)=exp[-2(1rso ' )  2] ~ p(r) exp(27rir-s)d3r. (2) 
cell 

Of the many possible statistics for comparing Four- 
ier coefficients, two were found to be particularly 
useful. The first is the mean square of the difference 
in the coefficients as a function of resolution S = Isl 

D(S) = ( ( F -  R) (F-  R)*). (3) 

Note this is a vector difference involving both ampli- 
tude and phase. It is defined at a constant magnitude 
of s, at which averaging is performed over all 
reciprocal-lattice directions. In practice, one con- 
structs a spherical shell of radius S and thickness As 
centered on the origin in reciprocal space and 
averages over the N(S)  Fourier coefficients contained 
in the shell. The difference D differs from the conven- 
tional X 2 statistic [§ 14.1 in Press, Flannery, Teukolsky 
& Vetterling (1988)] that would be computed to fit 
the molecular envelopes, i.e. X 2 ( S ) = N ( S ) D ( S ) .  
Since N(S)oz  S 2, D gives more weight to the low- 
resolution terms, which are of particular interest. 
Notice that, if the envelope p is dimensionless, the 
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Fourier coefficients F and R have the dimension of 
volume with the first coefficient equal to the volume 
of  the envelope: F(0) = j" p d3r = V. Consequently, the 
difference D is measured in units of volume squared. 
It incorporates the most straightforward measure of 
shape difference, the difference in volume with respect 
to the reference: D(O) = ( V -  VR) 2. 

The second statistic is a linear correlation 
coefficient on both amplitude and phase, which can 
be generalized from Pearson's scalar correlation 
coefficient, 

C ( S ) = ( 6 F 6 R * + 6 F * 6 R ) / 2 t r F o ' R ,  (4) 

where the deviation from the mean 6F( s )=  F - ( F ) ,  
the standard deviation O'F = (6Ft~F*) 1/2, and 6R and 
O'R are defined analogously. The correlation coeffi- 
cient is a dimensionless number normalized to lie 
between -1  and 1. It is invariant under scaling, i.e. 
replacing F by c~ F+/3 for constant a and/3. 

This implicit scaling inherent in using the correla- 
tion coefficient has advantages in some circumstances, 
but it can often obscure large-scale differences in 
shapes. This fact is manifest by explicitly relating the 
correlation and the difference, 

D = ( ( F ) -  (R))2 + (err-o'R)2 + 2 ( 1 -  C)O'FO'R . (5) 

The first and second terms on the right-hand side of 
the equation are differences in the means and stan- 
dard deviations of coefficient distributions. D is more 
sensitive to these differences than C. That is, at a 
given resolution, it is more sensitive to the gross 
characteristics of the two surfaces. It is better suited 
for comparing surfaces different in size. The correla- 
tion C, in contrast, is best for comparisons of 
coefficient distributions at resolutions where their first 
and second moments are similar but their higher 
moments are different. That is, it is best for comparing 
surfaces at resolutions where they are similar in size 
but different in shape. In this case, its normalization 
makes it more readily interpretable than D. In terms 
of the analogy to facial recognition made earlier, D 
is better for comparing a bird's face with a human 
face, while C is better suited to comparing two human 
faces. 

3. Implementation and results 

The above procedure was implemented* and used to 
compare antigen-combining sites. Five crystal struc- 
tures were used: REI (Epp, Latham, Schiffer, Huber 
& Palm, 1975), D1.3 (Amit, Mariuzza, Phillips & 
Poljak, 1986), HyHEL-10 (Padlan et al., 1989), 
McPC603 (Satow, Cohen, Padlan & Davies, 1986) 

* The programs to perform the surface comparisons were written 
in ANSI C and Fortran77 and run under Unix on a Silicon Graphics 
Iris. Typically, comparing a new surface to the reference took 
about 220 s of CPU time, half of which was devoted to calculating 
the Fourier transform. 

and 17/9 (J. Rini & I. Wilson, personal communica- 
tion). Complete antibody molecules have six hyper- 
variable loops that form a binding site for an antigen. 
However, the comparisons here were restricted to the 
surface formed by the three loops that are part of the 
light chain. The main-chain conformations of the 
structures fall into two classes. Corresponding hyper- 
variable loops in REI, D1.3 and HyHEL-10 have the 
same canonical structure and roughly the same main- 
chain conformation (Chothia et al., 1989). In contrast, 
17/9 (Schulze-Gahmen et al., 1988) and McPC603 
have an eight-residue insertion in the L1 loop that 
gives them a very different main-chain conformation. 

REI was chosen as the reference and the other four 
structures were superposed onto it using the con- 
served atoms of the central /3-sheet framework in 
the VL domain (Chothia & Lesk, 1987). Density 
maps were generated on a grid with spacings of 

A, thresholded at r = 0.002 electrons A -3 and filled 
by region growing. A cube of  side 29/~, centered on the 
three loops was used to clip the molecular envelope 
p, as shown in Fig. 1 (a). Note that most of the atoms 

B( ro .s~,,,x~ ~ 

:"'',"~ J 

(a) 

(t) 

REI VL C . 

(b) 

......... McPC603 
- -  17/9 

m REI 
treterence) 

. . . . . . . . .  D1.3 
- -  HyHEL-10 

Fig. 1. (a) A view of principal constructions used in the surface 
comparisons. C ~ trace of V L domain of REI. The solid part of 
the trace was used for superpositions, while the dotted part was 
not. The box shows the clipping boundary B(ro, l) and the final 
envelope volume p(r). (b) A selected cross section through 
molecular envelopes p(r) of the five immunoglobins shows that 
McPC603 and 17/9 have significantly different surface shapes 
from REI, HyHEL-10 and D1.3. 
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used in the superposition were not contained within 
the clipping boundary. As a result of their different 
main-chain conformations, 17/9 and McPC603 have 
substantially larger differences in envelope shape 
from REI than have HyHEL-10 and D1.3 (Fig. lb). 

The envelope volume p of each surface was embed- 
ded in the center of a cell, convolved with a Gaussian 
of half-width 3 A,, and Fourier transformed in space 
group P1 by standard crystallographic programs 
(CCP4, 1991). The differences D and the correlations 
C were computed as discussed above. Ideally, these 
statistics should not depend on the exact details of 
how the Fourier transform is made, i.e. on the size 
of the cell or its orientation and origin with respect 
to the envelope. On the one hand, they were found 
to vary slightly with different types of sampling. To 
eliminate this problem, a standard orientation was 
used. The envelope was centered in a much bigger 
cell (of side 60A,), which had its coordinate 
axes parallel to the axes of the clipping boundary 
B(ro, l). On the other hand, the difference and 
correlation were much less affected by the details of 
the transform than the standard crystallographic 
statistics on amplitudes. 

In practice, the computation of C using (4) is 
awkward. It is necessary to sum twice over reciprocal 
space and these sums must explicitly include a 
coefficient and its complex conjugate. Taking advan- 
tage of the fact that all the averages must be real, it 
can be rearranged into a more useful form: 

C ( S ) =  [ n ~ , ( a c + b d ) - ~ , a ~  c] 

×[n~, (a2+b 2) - (~ a)2] -'/2 

x [ n  y (c  ~ + d  ~) - (Y c)2] -'12 (6) 

where F(s)=a(s)+ib(s) and R(s)=c(s)+id(s). In 
this simplified expression, the summations need only 
include one of a conjugate pair and are made over 
the n = N(S)/2 unique coefficients in each shell. 

As is evident in Fig. 2(a), the difference D distin- 
guishes between two classes of surfaces at low resol- 
ution. In fact, the classification is clearer in reciprocal 
space than in real space from visual inspection of 
Fig. l(b). The analysis can be further simplified by 
just listing the overall low-resolution (500-12 A) D 
for each surface (in units of 10 000 A6). This is 26 for 
McPC603, 24 for 17/9, 5.1 for HyHEL-10 and 3.9 for 
D1.3. On the basis of these four numbers a person 
(or an algorithm) could classify 17/9 and McPC603 
differently from D1.3 and HyHEL-10. With regard to 
immunoglobulin structure, this sort of classification 
is useful insofar as it demonstrates that hypervariable 
regions with the same main-chain structure can also 
be classified as having similar overall surface shape. 

As shown in Fig. 2(b), the correlation C provides 
more detail at higher resolutions. McPC603 and 17/9, 
for instance, which are similar at low resolution, 

become progressively more different at resolutions 
higher than 10 A. However, the magnitude of this 
higher-resolution difference is much less than that of 
the low-resolution difference between the surface 
classes. This is why, referring to equation (5) relating 
D and C, it is better to use the correlation at the 
higher resolution and the difference at the lower one. 

4. Discussion 

A method for comparing protein surfaces in a resol- 
ution-sensitive fashion has been presented. Other 
approaches to surface comparison are possible. They 
differ from the method presented either in the way 
the surface is represented or in how the comparison 
statistic is determined. 

The conventional three-dimensional Fourier series 
in Cartesian space, exp [27ri(hx + ky+ Iz)], was used 
here to represent surface shape. There are, however, 
other resolution-dependent basis sets that could have 
been used. Representations in terms of spherical 
harmonics Y~(O,~), which are Fourier series 
in spherical coordinates, have been attempted 
(Leicester, Finney & Bywater, 1988; Max & Getzoff, 
1988). These do not require the choice of an origin, 
i.e. the surfaces to be compared need not be super- 
posed on their main chains. However, the representa- 
tion chosen in these papers is two-dimensional. Since 
real protein surfaces have a fractal dimension between 
2 and 3 (Lewis & Rees, 1985), this representation 
cannot describe all aspects of a protein surface - in 
particular, re-entrant surfaces, such as cavities and 
crevices, which are often most interesting. Nor can it 
be used on surface descriptions more complex than 
simple envelopes, such as complete electrostatic 
potentials. Furthermore, expansion in terms of 
spherical harmonics is much slower than a fast- 
Fourier transform (FFT) at present. 

Spherical harmonics and trigonometric functions 
are ultimately geared toward the representation of 
continuous data, whereas the envelope p used here 
is discrete and, in fact, simply two-valued. Con- 
sequently, a number of schemes specially designed 
for resolution-dependent digital-image compression 
are especially appealing (Wintz, 1969). Hadamard 
transforms, which can be completely expressed in 
terms of binary operators, would be significantly 
faster than an FFT, and Karhunen-Lo~ve transforms, 
which have coefficients with statistically minimal cor- 
relation, would achieve better compression. 

All the surface representations discussed so far are 
tied to a choice of basis and consequently a coordinate 
system. An optimum representation scheme would 
represent the protein surface in a coordinate-free 
manner. Connolly (1986) has proposed such a 
measure based on determining the solid angle ,O when 
the molecular surface is intersected with a probe 
sphere. While one can vary the radius of the probe 
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sphere, the solid-angle method is not resolution 
dependent in the sense of the Fourier-series method 
presented here. It provides an intrinsic measure of 
protein shape rather than a hierarchically ordered set 
of numbers that can be used in a metric for surface 
comparison. 

Turning now to alternate comparison statistics, one 
finds that they fall into three categories. First are the 
real-space measures that only refer to the density p. 
These include a residual (Jones, Zou, Cowan & Kjeld- 
gaard, 1991) and a variety of differently normalized 

correlations (e .g.  Zhang & Main, 1990; Carbo, Leyda 
& Arnau, 1980; Hodgkin & Richards, 1987). These 
measures are straightforward to implement and inter- 
pret, but it is difficult to see how they vary with 
resolution. A second class of measures comprises the 
standard statistics used during crystallographic struc- 
ture determination: residuals and correlations on 
amplitudes and average changes in phases. These 
suffer (in the context of surface comparisons) because 
they discard much important information by not 
including both amplitude and phase on the same 
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Fig. 2. Plots of (a) the difference D and (b) the correlation C versus shell radius $. All differences are with respect to the REI reference 
surface. 
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footing. The third and final category includes non- 
parametric statistics such as rank correlations 
(Namasivayam & Dean, 1986). For the price of using 
less information from the initial distributions, these 
provide greater reliability in associating a significance 
with their particular value. However, this feature is 
not particularly relevant here, since the significance 
or insignificance of one comparison is determined by 
judging it in the context of the other comparisons 
with the reference structure. 

Irrespective of the details of the representation or 
comparison statistic chosen, there are many applica- 
tions for comparing surfaces in a resolution-sensitive 
fashion. As an illustration, consider some applica- 
tions to immunoglobulin structure. At present there 
are roughly 15 structures containing the three hyper- 
variable loops compared here. For each structure it 
is possible to generate surfaces representing Lennard- 
Jones and electrostatic potentials. Do two surfaces 
that have the same shape classification with respect 
to one potential have the same classification with 
respect to the other? The procedure presented could 
be used automatically to classify these 30 surfaces on 
the basis of their low-resolution differences D. A 
second low-resolution-classification application is 
assessing the hypothetical loop conformations gener- 
ated by a program such as C O N G E N  (Bruccoleri & 
Karplus, 1987), which has already been applied with 
some success in the prediction of hypervariable loop 
structure (Bruccoleri, Haber & Novotny, 1988; 
Martin, Cheetham & Rees, 1989). Surface com- 
parisons could be used to screen automatically gener- 
ated conformations for matching certain key surface 
features, such as a large central cavity. By simply 
inverting the envelopes p it would also be possible 
to make comparisons with the complement of a com- 
bining-site surface, an antigen. 

The surface-comparison methods presented here 
could also be useful for categorizing surfaces at higher 
resolutions. There has been considerable interest in 
measuring the local roughness of a protein surface 
since it may be related to substrate capture and anti- 
gen binding. Measurements and comparisons based 
on the fractal dimensionality have been tried (e.g. 
Pfeifer, Welz & Wipperman, 1985; Lewis & Rees, 
1985; Aqvist & TapiR, 1987). However, comparisons 
of surface texture could also be easily made by assess- 
ing the relative mix of low- and high-frequency 
Fourier coefficients in the methods presented here. 
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providing the 17/9 coordinates prior to publication. 
Comments on the manuscript from R. Diamond, 
A. M. Lesk, A. D. McLachlan and especially R. M. 
Lynden-Bell and C. Chothia are very much appreci- 
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suggestions from G. Bricogne and support from a 
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