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Tens of thousands of biomedical journals exist, and the deluge of new articles in the biomedical 
sciences is leading to information overload. Hence, there is much interest in text mining, the use 
of computational tools to enhance the human ability to parse and understand complex text.
Imagine that a graduate student enters 
the U.S. Library of Congress with the goal 
of retrieving all texts relevant to protein 
glycosylation. Her problem is straightfor-
ward, known among text miners as infor-
mation retrieval (IR). If the student must 
not only find the books but also flag the 
most important concepts she encounters 
in each, she is performing named entity 
recognition (NER). Undaunted by her 
workload, imagine she decides to iden-
tify relations between concepts, such as 
“protein BAD binds to protein BAX” (called 
information extraction or IE). Then she 
takes on additional tasks such as ques-
tion/answer (QA) and text summarization 
(TS). Computational IR, NER, IE, QA, and 
TS are all part of text mining and belong 
to the larger field of natural language pro-
cessing (NLP), which itself is a part of arti-
ficial intelligence (AI) that aims to recreate 
or surpass the computational ability of 
the human brain. Although multiple defini-
tions exist, text mining is typically associ-
ated with information retrieval, extraction, 
and synthesis, with a special emphasis 
on gaining new knowledge (Table 1).

The Elements of Text Mining
Bringing the Modules Together
Text mining has an established formula 
for joining the computational and linguis-
tics modules together (IR + NER + IE + 
QA + TS). The first step is identification 
and retrieval of relevant documents (IR) 

(although this step is optional and is 
sometimes substituted with indiscrimi-
nate analysis of documents regardless 
of their relevance). Once documents are 
available for computational analysis, an 
NER module is put to work, followed 
by an IE module to extract relations 
between entities. The extracted nuggets 
of information can then be used for TS, 
QA, and a higher-order analysis capable 
of proposing new conclusions.

To retrieve information properly, an 
application has to “know” the relations 
and entities mentioned in the documents 
it is searching. Therefore, the boundary 
between NER, IR, and IE is fuzzy and 
can be encapsulated in an application 
that attempts to do all three tasks jointly. 
Here, we present some of the key con-
siderations common to any text-mining 
approach, discuss how these relate to 
the changing landscape of scientific 
information, and give an overview of cur-
rent and future applications of text min-
ing to the scientific literature.
Information Retrieval (IR). Every scientist 
is familiar with IR: we use various incar-
nations of IR when we conduct comput-
er-aided searches for articles, books, 
and Internet sites. Indeed, PubMed 
and Library of Congress searches and 
Google Scholar are among the most vis-
ible IR instantiations. The ideal IR sys-
tem should be able to deduce what we 
are looking for, even if we are somewhat 

fuzzy in the question we pose. It should 
retrieve and rank the results by their rel-
evance to our question. It should also 
extract text-encoded facts and com-
pactly summarize them, as a capable 
and tireless assistant would do.

It is difficult to benchmark the efficiency 
of IR engines, especially their recall, 
because the complete set of documents 
relevant to almost any search is inherently 
ill defined. Nevertheless, estimates show 
that the most popular search engines, 
such as Google, have both precision 
and recall below 0.3 (Shafi and Rather, 
2005). In other words, every time we do a 
search, more than 70% of the documents 
in the output are irrelevant, whereas more 
than 70% of all relevant documents never 
appear in the engine’s output.
Information Extraction (IE). To “compre-
hend” text, a computer program has to 
map words and phrases to objects, con-
cepts, and symbols. For example, if the 
program encounters the phrase “pray 
for elves,” it must decide if these words 
refer to separate entities (e.g., a gene 
named “elves”), an English directive, a 
single gene with a three-word name (the 
eponymous gene does exist in the fruit 
fly Drosophila melanogaster), or some-
thing entirely different. Similarly, when it 
encounters the sequence of characters 
“Alzheimer,” it needs to “decide” if the 
word refers to Dr. Alois Alzheimer who 
first described Alzheimer’s disease or 
Table 1. Text Mining Web Resources

BLIMP (Biomedical Literature-Mining Publications) http://blimp.cs.queensu.ca/

Alexander Morgan’s compilation of BioNLP resources and references http://compbio.uchsc.edu/corpora/bcresources.html

Resource links compiled by Dietrich Rebholz-Schuhmann http://www.ebi.ac.uk/Rebholz/resources.html

Text-mining resources compiled by Robert Futrelle http://www.ccs.neu.edu/home/futrelle/bionlp/

A list of links to current NER, IR, and IE engines http://www.bork.embl.de/Docu/literature_mining/

Marti Hearst’s What Is Text Mining? http://people.ischool.berkeley.edu/~hearst/text-mining.html
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to the disease itself. This problem in text 
analysis is typically referred to as named 
entity recognition (NER) and has proved 
particularly challenging for biomedical 
prose. Although NER engines that mine 
news articles regularly achieve accuracy 
above 90%, their biomedical counter-
parts are more likely to perform at 80% 
or below (text miners typically compute 
the F-measure rather than accuracy) 
(Cohen and Hersh, 2005; see Table S1 
available online). This is because biol-
ogy and medicine are unusually rich 
in terminology: the collective vocabu-
lary used by biomedicine incorporates 
many millions of terms. The exact num-
ber is unknown and constantly in flux. 
Because this vocabulary is large and 
dynamic, new terms emerge rapidly and 
erratically. As a result, the same real-
world object may have numerous names 
(synonyms), whereas distinct objects 
can be identified with the same name 
(homonyms). The terms that most noto-
riously suffer from synonym and hom-
onym abundance are gene and protein 
names (Hirschman et al., 2002; Wilbur et 
al., 1999). A given gene may be denoted 
by several dozen synonymous names—
for example, the Drosophila genes br 
and mod(mdg4) have 82 and 64 aliases, 
respectively. Even worse, vastly differ-
ent and incompatible naming systems 
are used in different species, and gene 
aliases themselves merge into intricate 
semantic networks that connect gene 
names, pop-culture catch phrases, idi-
oms, and common everyday utterances 
borrowed from multiple languages.
From Co-occurrence to Deep Parsing. 
Imagine that you have to find out as much 
as possible about processes involving 
glycosylation—the enzymatic attachment 
of sugars to proteins and lipids. Spotting 
and listing most mentions of glycosylation 
in the literature is an unbearably tedious 
task for a human, not because any single 
mention is hard to find or understand, but 
because there are millions of biomedical 
articles, many of which describe glycosy-
lation. Imagine now that you seek only four 
pieces of information for each glycosyla-
tion description: which molecule is being 
glycosylated, at which position, by which 
enzyme, and what kind of sugar is being 
added. Thus, the automated extraction of 
the following quartet is a perfect job for a 
typical IE engine.

Glycosylate (What, at Which Position, 
by Which Enzyme, with Which Sugar)? 
Unlike a human curator, an IE engine 
would not capture the nuances of indi-
vidual articles, such as an out-of-date 
experimental procedure or a question-
able connection between experimental 
results and article conclusions. How-
ever, an IE engine could process enor-
mous volumes of texts without suc-
cumbing to fatigue or ennui. To perform 
tasks like this, simple IE engines use 
only the co-occurrence of terms in the 
same sentence, paragraph, or article 
(with a statistical filter superimposed to 
distinguish coincidence from significant 
hits). Such co-occurrence IE engines 
are typically fast but not very precise. 
Increasing sophistication (and precision) 
in IE engines usually involves borrowing 
methods from computational linguistics. 
For example, so-called chunking (shal-
low parsing) can help us to identify syn-
tactically related groups of words (such 
as noun and verb phrases) and subse-
quently improve downstream processes, 
such as NER.

The more challenging slice of the IE 
engine spectrum (deep parsing) is built 
on formal mathematical models describ-
ing how text is generated in the human 
mind, the so-called formal grammars. 
The most popular formal grammars are 
deterministic or probabilistic context-
free grammars (Ananiadou et al., 2006; 
Table S1). Grammar-based IE is compu-
tationally expensive because it requires 
the evaluation and ranking of a large 
number of alternative ways to generate 
the same sentence (alternative parses); 
it is therefore considerably slower but 
potentially much more precise.
Synthesizing and Finding New Con-
nections. Moving beyond information 
retrieval and extraction, some proportion 
of published assertions can be repack-
aged to form “synthetic ideas,” that is, 
new compound concepts that are sig-
nificantly more valuable to the scientific 
community than the sum of their original 
assertions.

Even with current text-mining capa-
bilities, such synthetic ideas can be 
discovered automatically. A more dis-
tant but nonetheless realistic aim of the 
field is to trace and map more sophis-
ticated ideas (idea isomorphisms) that 
are expressed differently in different 

scientific fields yet represent identical 
problems or their solutions. If such idea 
mappings were made instantly avail-
able through an Internet interface, the 
result could be truly impressive. The 
diffusion of innovations across science 
could be markedly increased by making 
solutions developed in one area visible 
to specialists still searching for them in 
a different field. Computationally pair-
ing problems and solutions generated 
by different fields is a type of auto-
mated creativity (systematic search for 
synthetic ideas) that computers almost 
certainly will do for us in the not too 
distant future.
Question Answering (QA). Information 
retrieval/extraction and summarization 
are often married in a single applica-
tion, a question-answer system. Per-
haps the first operational question-
answer system was START, designed 
and launched at the Massachusetts 
Institute of Technology in 1993 (http://
start.csail.mit.edu/). START remains 
operational today and serves as a gen-
eral encyclopedia (try it!). But there 
are limitations with current question-
answer systems. You can ask START to 
list all cities within a 250 mile radius of 
Chicago (or another city), which it does 
promptly, listing the actual distance 
between Chicago and every city in the 
list. START, however, has only limited 
knowledge about molecular biology. 
With current tools, given a large collec-
tion of molecular interactions, it would 
be relatively easy to write a similar 
engine that answers biological ques-
tions like “list all molecular interactors 
of protein X with property Y.” Such a 
question-answer system would sur-
pass abilities of both human experts 
and currently available encyclopedias.

Text Mining and the Structure of 
Scientific Information
Evaluating Tools: Benchmarking
Technological advances demand quality 
control. In text mining, we can ask: how 
effective are the tools that are currently 
available? Text miners typically evaluate 
their own methods, but it is difficult to 
evaluate rival methods applied to dif-
ferent test data (Krallinger and Valen-
cia, 2005; Jensen et al., 2006). These 
considerations have spurred competi-
tions where researchers can pit differ-
10  Cell 134, July 11, 2008 ©2008 Elsevier Inc.



ent methods against one another while 
processing identical data sets. The KDD 
Cup (Knowledge Discovery and Data 
mining), TREC Genomics (Text Retrieval 
Conference – Genomics track), and Bio-
CreAtIvE (Critical Assessment of Infor-
mation Extraction systems in Biology) 
are examples of such contests (see Table 
S2). These competitions share a similar 
underlying design. Organizers choose a 
well-defined technical task, such as the 
identification of a gene or protein name 
embedded within a collection of text 
snippets. The competitors—research 
groups around the globe—receive the 
same challenge, test data, and infor-
mation. To evaluate the participants’ 
success, the organizers recruit a group 
of experts that judge the participants’ 
individual submissions or perform the 
competition task themselves to manu-
ally generate a gold standard against 
which to compare the computational 
submissions.

Aside from their obvious value in 
advancing text-mining techniques, these 
competitions have an important ancil-
lary outcome: they offer the community 
a glimpse of the uneven complexity of 
various test-annotation tasks for human 
experts. Even well-defined tasks like 
normalizing gene and protein names are 
easier in some model organisms (e.g., 
yeast) than others (e.g., fly, mouse, and 
human) (Colosimo et al., 2005). Agree-
ment among expert annotators varies 
from 90% to 70% depending upon the 
species considered. Thus, the perceived 
performance of automated tools strongly 
depends upon the test data selected, 
and when really tough tasks are consid-
ered, even human experts sometimes 
cannot agree.
The Changing Landscape of 
Journals and Databases
Text mining has important implications 
for the structure of scientific publish-
ing itself. In the past decade, electronic 
databases have revolutionized the way 
that scientists access information. 
Today, digital repositories accommodate 
vast amounts of data, storing primary 
and ancillary records, functional anno-
tation, and conservation information. 
Equally important, they allow updates 
to stored information, a luxury routinely 
exercised as sequences are corrected 
and revised.

The current format of scientific journals 
follows a model established long before 
the era of computers, cheap electronic 
storage space, and digital publishing. 
This arguably outdated format limits sci-
entific communication. Ideally, scientists 
should record and share all useful find-
ings, but in reality results sometimes do 
not coincide with the “standard ration” 
suitable for journal publication. Some 
facts are simply too trivial to merit a 
paper, and isolated findings or negative 
results are often withheld from the pub-
lished record. Conversely, some data 
sets are too large to include in the text-
based article format; for example, in two 
studies of whole-organism protein-pro-
tein interaction networks or regulatory 
pathways, the manuscripts presented 
highlights of the results and discussion 
whereas the data sets themselves are 
stored in databases or on laboratory 
websites.

By contrast, scientific databases are 
highly structured and machine readable. 
They require significant effort to estab-
lish and resist changes in focus because 
of the rigidity of their structure. More-
over, databases often lack true peer 
review, and because no uniform citation 
system exists to track the database con-
tributions of a given researcher, there are 
few incentives to populate, annotate, or 
revise information stored in databases. 
Also, databases have not yet been opti-
mized for discussion, to allow disagree-
ment, or to represent uncertainty.

Thus, journals and databases are his-
torically positioned to handle different 
types and amounts of data. Journal arti-
cles are optimized for human consump-
tion and incorporate authoritative peer 
review. However, they are not suited to 
handle very large or very small results, 
they lack the consistent and rigid data 
structure required for easy computa-
tional access, and third-party indexing 
of full-text material is difficult.
Structured Texts and the  
Semantic Web
The roles of journals and databases are 
blurring (Bourne, 2005) as articles are 
accessed increasingly through data-
base-type portals, and databases store 
article-like textual data (Hamosh et al., 
2000). Although it is still impossible to 
compute with unstructured text as eas-
ily as with structured databases, there 

is a possible combination of community 
efforts and computational advances that 
can help to bridge the gap called the 
semantic web (Berners-Lee and Hen-
dler, 2001). The semantic web is a new 
iteration of the World Wide Web in which 
a formal representation of the semantics 
(meaning) of each piece of information is 
provided along with the information itself, 
allowing computers to reason across text 
in human-like fashion. The semantic web 
can be particularly useful in connection 
with text mining, as it provides a way to 
mark up text with systematic and struc-
tured meta-information.

Text miners hope to convince pub-
lishers to enrich the plain text of manu-
scripts with computer-readable annota-
tions. For example, the authors could be 
required to annotate gene, protein, and 
disease names within the text with a set 
of journal-specified tags (in the same 
way as a new gene sequence needs to 
be submitted to a central database prior 
to manuscript publication). The text-min-
ing community could provide publishers 
with a set of tools that would automati-
cally pre-annotate manuscripts before 
publication, subject to approval of 
authors (Seringhaus and Gerstein, 2007). 
This change undoubtedly may be hard 
to implement but would benefit science 
because the resulting semantic-web-
enabled articles would be much easier 
to use both for information retrieval and 
extraction, as well as for the generation 
of knowledge. Researchers will be able 
to extract more value from a data set by 
analyzing experimental data jointly with 
textual information, for example, the 
analysis of full-text articles in combina-
tion with gene expression data (Natara-
jan et al., 2006) and the prediction of the 
subcellular localization of new proteins 
(Shatkay et al., 2007).

Applying Text Mining to the 
Scientific Literature
Application 1: Knowledge Is Zipfean
Frequencies of word use in everyday 
English (and other languages) follow 
Zipf’s distribution, also known to econ-
omists as the Pareto distribution of 
wealth among people and to physicists 
as the power law. In a nutshell, Zipf’s 
law in linguistics states that there is a 
very small subset of words that occur 
very frequently (“rich words”) and a 
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large subset of words that are rare 
(“poor words”).The same Zipfean regu-
larity may operate over frequencies of 
statements and arguments that people 
use in everyday reasoning and in sci-
entific thinking. There is a tiny set of 
facts that is known to virtually everyone 
(think about the “rich” memes double 
helix and E = mc2), and there is a rap-
idly growing number of facts that are 
known to smaller and smaller groups of 
people.
Application 2: Consistency of Data
An experienced biologist can readily 
spot inconsistencies in a small map of 
molecular interactions. The biologist 
looks for logical inconsistency across 
multiple statements that are each per-
fectly reasonable when viewed in isola-
tion but that cannot all be true simul-
taneously. For example, consider the 
problem inherent in accepting as true 
the following three statements about 
genes A and B: “A inhibits B,” “B inhibits 
A,” and “A and B are both active simul-
taneously.” Such simple problems are 
easy to spot, but as a pathway model 
grows, tracking down inconsistencies 
becomes progressively more difficult. 
For that task, we will need an appropri-
ately trained pathway tool similar to the 
common spellchecker that tags conflict-
ing pieces of information with a different 
degree of certainty and then finds the 
most likely resolution of inconsisten-
cies. This approach would not replace 
data analysis by biologists but may save 
time in refining models (just as a good 
spellchecker does not replace a writer 
but allows us to produce prose free of 
typos faster).
Application 3: Charting the 
Development of Science
Now that essentially all of science is 
recorded in electronic journals and 
online data, a new type of historical 
analysis is possible. One can use text 
mining not only to look for new connec-
tions in different fields but also to study 
the structure of science itself. Most 
dramatically, one can watch the birth of 
a new field by observing time slices of 
databases. For instance, it is possible 
to see the birth of the field of RNA inter-
ference from its 1997 conception to the 
present. We can also study the over-
representation of certain fields relative 
to others, such as the preponderance 

of Nobel prizes in a particular field (e.g., 
crystallography) compared with the 
number of papers on the topic stored 
in public databases. Such approaches 
enable us to study the ways in which 
scientists develop and transmit ideas. 
We can also chart maps looking at the 
broad interconnections between differ-
ent scientific fields (Shiffrin and Borner, 
2004).

Through text mining, one can also 
study the different structures of scien-
tific collaborations, contrasting those 
that are close-knit with others that are 
more disparate. Eventually, such meta-
analysis of publication structure could 
help to determine how to structure 
large-scale collaborations. To some 
degree, this is already underway with 
citation analyses that look for publica-
tions and authors that are cited many 
times over.
Application 4: Is the Latest Word the 
Most Accurate?
Many handcrafted (as opposed to auto-
matically generated) knowledge bases 
operate under the assumption that the 
most recently published facts are the 
most reliable. Although this assump-
tion is reasonable in many (even most) 
cases, there are exceptions including 
errors made by leaders in the field and 
occasionally the publication of fabri-
cated facts. With automated text-min-
ing tools, we can keep in our analysis all 
instances of contradictory statements 
related to the same issue, ordered 
chronologically and linked to their tex-
tual sources.

Statements about the same problem 
published at different time points are 
by no means independent: research-
ers use prior publications in interpret-
ing their experiments, thus introduc-
ing unwilling bias. Once the published 
statements are unlocked from their 
textual shells and deposited into com-
puter-accessible media, they can be 
used for statistical analysis. Using a 
large collection of text-derived facts 
and a proper statistical model, we 
could potentially use computation to 
deconvolute errors associated with the 
subconscious bias that results in grad-
ual distortion of experimental results 
in publications. It should be possible, 
both in terms of modeling and compu-
tation, to assign a quality value (such 

as the probability that the statement is 
true) to every published statement in 
the scientific “bibliome.”

Conclusion
The process by which we acquire instru-
ments for our intellectual toolbox—the 
facts and beliefs that we use in making 
inferences about the world—resemble 
in a sense the maturation of our immune 
system, which early on learns to distin-
guish self from non-self. A similar pro-
cess of intellectual maturation allows 
us to streamline our thinking and avoid 
questioning every step of our mental 
process anew; the downside, however, 
is that, like the immune system, our early 
implanted antigens (or, beliefs) can later 
prove harmful by forming blind spots in 
our immune or mental landscape. Text-
mining tools, which merge the precision 
and data handling of the computer with 
nascent technologies to parse human 
language, can synthesize information 
across broad fields of inquiry and may 
one day provide a way to lift the veil from 
the blind spots in our thinking.

Supplemental Data
Supplemental Data include two tables and can be 
found with this article online at http://www.cell.
com/cgi/content/full/134/1/9/DC1/.
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