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a b s t r a c t

In recent years, major advances in genomics, proteomics, macromolecular structure determination, and
the computational resources capable of processing and disseminating the large volumes of data gener-
ated by each have played major roles in advancing a more systems-oriented appreciation of biological
organization. One product of systems biology has been the delineation of graph models for describing
genome-wide protein–protein interaction networks. The network organization and topology which
emerges in such models may be used to address fundamental questions in an array of cellular processes,
as well as biological features intrinsic to the constituent proteins (or ‘‘nodes’’) themselves. However,
graph models alone constitute an abstraction which neglects the underlying biological and physical real-
ity that the network’s nodes and edges are highly heterogeneous entities. Here, we explore some of the
advantages of introducing a protein structural dimension to such models, as the marriage of conventional
network representations with macromolecular structural data helps to place static node and edge con-
structs in a biologically more meaningful context. We emphasize that 3D protein structures constitute
a valuable conceptual and predictive framework by discussing examples of the insights provided, such
as enabling in silico predictions of protein–protein interactions, providing rational and compelling classi-
fication schemes for network elements, as well as revealing interesting intrinsic differences between dis-
tinct node types, such as disorder and evolutionary features, which may then be rationalized in light of
their respective functions within networks.

� 2012 Elsevier Inc. All rights reserved.
1. Background

Biological networks are conventionally represented as maps of
nodes and edges, wherein nodes represent biological entities (such
as a gene, protein, or miRNA), and edges represent interactions be-
tween these entities (such as regulation or physical association). In
the case of protein–protein interactions, non-directed edges typi-
cally denote physical interactions between pairs of proteins. While
many proteins engage in only a small number of interactions, oth-
ers are highly connected, in that they directly interact with many
other proteins. The distinction between nodes with many connec-
tions and those with few provides a simple basis for the classifica-
tion of nodes into two types: hubs and non-hubs, with hubs
associating with many binding partners, and non-hubs with few.

In recent years, networks have been studied in greater detail.
Early investigations have suggested that many networks (such as
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the World Wide Web) obey a power law distribution, wherein a
node’s probability of being associated with k other nodes is propor-
tional to k�c (Barabási and Albert, 1999), resulting in many nodes
having low connectivity, and very few nodes connected to many
others. Such networks are described as scale-free, as the connectiv-
ity distribution does not scale with the total number of nodes
(Albert, 2005; Barabási and Albert, 1999). It was later suggested
that protein–protein interaction networks obey such power-law
distributions (Han et al., 2005; Tanaka et al., 2005; Khanin and
Wit, 2006). However, though popular, it must be acknowledged
that there is no universal consensus with respect to this conclusion
(Khanin and Wit, 2006). Lima-Mendez and van Helden challenge
the idea by pointing to statistical and sampling limitations in
approaches which have been used to support this concept, and
even highlight how this idea has sometimes been supported by
flawed practices in plotting degree distribution data (Lima-Mendez
and van Helden, 2009).

Nevertheless, the functional roles of network architectures
which do exhibit power law distributions may be to confer such
networks with a measure of robustness, in that it would render
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their overall integrity more resistant to the random removal of
nodes (Barabási and Albert, 1999). Highly-connected nodes and
essential genes (i.e., those genes for which knockout results in cell
death) have been shown to be correlated (Albert et al., 2000; Jeong
et al., 2001; Hahn and Kern, 2005; Maslov and Sneppen, 2002). As
an aside, though this observation alone is perhaps not very surpris-
ing, it is this very agreement with expectation which suggests that
the networks studied may be sufficiently comprehensive to reca-
pitulate intuitive biological phenomena.

Over the past decade, investigators have gained much from
newly available data at varying levels of biological organization,
including gene expression profiles in different conditions, whole-
genome sequences, as well as protein–protein interaction and
structural data. Increasingly, this enables the integration of varying
forms of information into biological networks, which can help to
elucidate known as well as uncover novel features. Our purpose
here is to survey some of the ways in which this integration has
provided novel insights. Such forms of data include expression cor-
relation, sequence information, and especially the 3D coordinates
of the macromolecules and complexes themselves, as provided
by X-ray crystallography and NMR. Of course, the structures of
the interfaces through which proteins associate constitute essen-
tial information about interactions (Keskin et al., 2008a,b). Thus,
in particular, we highlight the value of combining 3D structural
information with protein interaction data, as evident by providing
investigators with powerful means of making predictions about
protein–protein interactions, informing the party/date contro-
versy, as well as uncovering properties which are specific to vari-
ous network node types.
2. Employing structure in the prediction and analysis of
network interactions

The importance of how investigators construct high-confidence
networks in the first place cannot be overstated, as any subsequent
analyses are, of course, contingent on the completeness and accu-
racy of the map constructed. Many experimental procedures have
been devised to detect interactions (Williamson and Sutcliffe,
2010), including yeast two-hybrid assays (Ito et al., 2001) and mass
spectrometry coupled with tandem affinity purification (Gavin
et al., 2002). Though proven to be of immense value, empirical
methods alone can suffer from large numbers of false positive
interactions (Deane et al., 2002).

Just as protein structure prediction has received much attention
and enthusiasm in the past, an exciting and flourishing discipline
in protein interaction network prediction has more recently begun
to emerge. The efforts aimed at predicting interactions (and, by
extension, entire networks) have taken on a multitude of forms. Gi-
ven the increasing availability of known monomeric and complex
crystal structures, structure-based strategies offer a promising ave-
nue for investigating macromolecular associations, and structural
data is increasingly recruited as one of the richest sources of infor-
mation in the endeavor to taking in silico approaches to predicting
and understanding the features of nodes and their respective
edges.

Toward inferring protein–protein interactions, support vector
machines (SVMs) are often adopted, as they have been shown to
be extremely powerful in the predicted classification of objects
(Boser et al., 1992; Noble, 2006; Ban et al., 2010). For an introduc-
tion to SVMs, see the primer by Noble, (2006).

Hue et al. describe an application of SVMs to the protein inter-
action problem, whereby two known domain structures may be
classified as interacting or non-interacting, with the SVM having
been trained on pairs of proteins for which interactions are known
to exist or known not to exist (Hue et al., 2010). Indeed, this
approach is more suitable, in terms of processing power, than pre-
dictions based strictly on protein interface docking (Smith and
Sternberg, 2002; Inbar et al., 2005), which is far more difficult to
apply to the large number of candidates and orientations possible
(Grünberg et al., 2006). Machine learning-based approaches may
not only provide a means of predicting interactions, but the opti-
mization of SVM-based techniques themselves may shed light on
the relative contributions of those physical variables which are
most important and conducive to interactions.

The use of SVMs in studying networks has been extended to inte-
gral membrane proteins. Miller et al. employ SVMs to assign confi-
dence values to experimentally derived interactions in yeast
(Miller et al., 2005), and remark that these results are also notewor-
thy in that the interactions themselves, of course, better enable biol-
ogists to identify the specific functions of membrane proteins, which
has been more difficult to accomplish than it is for soluble proteins.

Though the 3D structures of complexes and their constituent
proteins continue to be solved at an increasing pace, and despite
the more promising prediction capability of using structural data
to predict interactions, structural determination has lagged far be-
hind the growing repertoire of genomic sequence data with respect
to both volume and rate of production. In addition, the precise 3D
characterization of protein interaction pairs is often difficult to ob-
tain experimentally, often because such interactions are transient
and unstable to standard experimental procedures. Thus, given
the large number of interactions which remain to be structurally
defined, increasing attention has been devoted to homology-based
approaches for understanding the structural features of those
interactions for which X-ray crystallographic data is not yet avail-
able (Kiel et al., 2008; Lance et al., 2010; Aloy and Russell, 2002a).
Resources based on structural alignment promise to offer even
more value as high-throughput structural determination adds to
the repertoire of data upon which many of these alignment meth-
ods rely (Šali, 1998; Marti-Renom et al., 2000).

Though the strategies by which this may be accomplished vary
(Aloy and Russell, 2002a; Lu et al., 2003), many share a similar
principle in their general application: generate predicted interac-
tions between a given pair of proteins, domains, or interfaces on
the basis of their respective homology to a complex for which 3D
experimental data is already available, and then score the fit of
the target with the template complex (Aloy and Russell, 2002a).
This approach is becoming increasingly promising, given the im-
proved processing resources, more efficient dissemination of se-
quence data, and the growing pool of structural data available for
protein complexes (Aloy and Russell, 2004).

Using structurally defined templates of interacting interfaces,
Ogmen et al. have applied structural alignment in order to predict
interactions on a target set of proteins, and applied their structural
similarity algorithm to build PRISM, a set of publically available
analytical tools for prediction, as well as corresponding datasets
of putative interactions built from their algorithm’s implementa-
tion (Ogmen et al., 2005; Aytuna, 2004). Using scores calculated
from both structural and evolutionary similarity to the template,
an overall confidence score may be assigned to each candidate
interaction. In addition, the user may supply their own set of target
proteins to exhaustively search for potential interactions.

The confidence of a predicted interaction, as well as the accu-
racy of the modeled complex structure, are contingent on many
factors, including the resolution of the known 3D template struc-
ture(s), the degree of sequence homology between the target and
the template pairs, the degree of disorder in the interfaces them-
selves, and the force field used in refining the final modeled com-
plex (Kiel et al., 2008). In addition, the rotamer library (Mendes
et al., 1999) used to properly configure the orientations of amino
acids belonging to the targets is important in generating a reason-
able model of the interaction (Kiel et al., 2008).



322 D. Clarke et al. / Journal of Structural Biology 179 (2012) 320–326
Though promising as a means of probing networks at the level
of structure, homology-based interaction modeling is not without
limitations. A major challenge will be achieving the accuracy de-
manded by the specificity of many interactions. That is, even if
the general features of a protein’s architecture can be hammered
down, it may yet prove difficult to achieve interface complementa-
rily for the many interactions for which even slight changes in
interface geometry and chemistry result in ablated interactions.
It is also difficult to estimate the thermodynamic properties of
the resulting modeled structure (such as affinity), as such proper-
ties are contingent on the specific amino acids and their respective
orientations within the interface (Kiel et al., 2008), as well as more
global physical properties of the constituent proteins. In addition,
homologous pairs of proteins may interact in different ways (Aloy
and Russell, 2002b; Aloy et al., 2003; Kim et al., 2006b), and homol-
ogy in the protein fold itself may not always reliably be used to
predict interactions (Aloy et al., 2003).

Along these same lines, although homology-based approaches
have achieved some success, it is far more difficult to model the ac-
tual contributions of single amino acids to binding energies. Pro-
tein interfacial hotspots are amino acids or clusters of amino
acids which contribute disproportionately large values to interac-
tion energies, and are thus critical for binding and specificity
(Bogan and Thorn, 1998). Although determining the contributions
of single amino acids to interaction binding affinities may be per-
formed experimentally (often by measuring the effects on binding
through single residue mutagenesis of individual residues to ala-
nine), computational approaches to this problem may provide
the same information with significantly less time and effort. This
is facilitated by the fact that hotspots are generally characterized
by unique sequential and biophysical properties. Solvent accessi-
bility and inter-residue potentials have been used to predict hot
spots with considerable reliability (Tuncbag et al., 2009a). Of
course, the successful prediction of hot spots not only holds rele-
vance for protein interaction networks, but also for drug develop-
ment (Bogan and Thorn, 1998), wherein the design of therapeutic
agents may be motivated and guided by knowledge of the residues
most responsible for interactions. Targeting such residues with
high-affinity binding compounds provides a direct way to interfere
with those protein interactions which constitute pathways that are
most responsible for the progression of disease states.
3. The party/date hub dilemma: A case study of insights through
structure

3.1. Background

Within the hub category, it may be possible to further classify
and analyze nodes on the basis of features evident from gene
expression data (Han et al., 2004; Luscombe et al., 2004), subcellu-
lar localization (Han et al., 2004), or protein structural characteris-
tics (Kim et al., 2006a, 2008). On the basis of expression correlation
among the binding partners of hubs, Han et al. introduced the no-
tion that two fundamentally different hub types exist (Han et al.,
2004). Those hubs for which higher (lower) expression correlation
values exist between the hub’s binding partners were categorized
as ‘‘party’’ (‘‘date’’) hubs. Another line of evidence in support of this
distinction was the differing effects on network architecture upon
the deletion of party or date hubs, as well as the greater localiza-
tion entropy observed for date relative to party binding partners
(Han et al., 2004).

The concept of a biological module (a set or subsystem of clo-
sely interacting proteins which, together, function as a unit to carry
out a specific biological role; Hartwell et al., 1999) is central to the
different functionalities ascribed to these hub types; it is argued
that party hubs function within modules by interacting with sev-
eral partners, which are present simultaneously, in order to carry
out their biological roles, whereas date hubs function by intercon-
necting modules (Han et al., 2004), as the higher expression corre-
lation values and lower localization entropy for party hub partners
result if each partner, along with the hub, must be present simul-
taneously and in the same place to function as a module, whereas
date hubs would interact with modules which operate differently
in time and space. They note that such a model would also explain
the differing network integrity effects upon deleting party and date
hubs: the removal of party hubs would not have as much of an ef-
fect as the removal of core date hubs.

Batada et al. published work (Batada et al., 2006) questioning
the conclusions reached in the analyses described above. Their ex-
panded network was much more tolerant to hub deletion, and the
network integrity (as measured by the largest subnetwork remain-
ing upon hub deletion) was maintained for both party and date
hub deletion. Batada et al. also question the bimodality of the
expression patterns used to define party and date hubs. In addition,
Batada et al. reason that date hubs may have partners of higher
localization entropy as a consequence of the fact that nodes classi-
fied as date hubs generally have more binding partners. Finally,
Batada et al. find no significant differences in evolutionary rates
between party and date hubs.

3.2. The party/date debate in light of protein structure

Here, we discuss the party/date hub debate simply as an exam-
ple of how the consideration of distinct physical interfaces can
shed light on an existing problem in network biology. Kim et al.
introduced the structural interaction network (SIN), in which edges
are structurally annotated on the basis of sequence homology to
structurally defined complexes, and subsequently employed
three-dimensional structural exclusion to define distinct interfaces
on each protein (Kim et al., 2006a; Kim et al., 2008). The interac-
tions which constitute the SIN are considered mutually exclusive
if they involve a common interface of a particular protein, and
are otherwise classified as compatible. Hubs (i.e., those nodes with
at least five interaction partners) were classified as singlish- or mul-
ti-interface hubs (those with less than or at least three distinct
interfaces, respectively). Statistically significant disparities were
observed between these hub types in terms of essentiality, co-
expression, and evolutionary rate.

Multi-interface proteins, which are considered to be capable of
simultaneous interactions, are marked by higher expression correla-
tion with their binding partners, and the characterization of singlish
and multi-interface hubs helps to explain the party/date hub model,
with multi-interface hubs being more similar to party hubs, and sin-
glish–interface hubs more like date hubs (Kim et al., 2006a). Indeed,
singlish–interface hubs, with only one or two distinct interfaces,
would be unable to interact with a large number of partners simul-
taneously, and it would thus be intuitively reasonable if the proteins
which bind to singlish–interface hubs are expressed under different
cellular contexts, growth stages, or subcellular localizations–that is,
the proteins to which they bind would have higher entropy values
for these properties (Kim et al., 2006a). Many of the multi-interface
hubs likely evolved their interaction interfaces in order to meet the
need to simultaneously interact with many partners, and so it is
likely that such partners are expressed and localized in relative
unison (Kim et al., 2006a). Fig. 1 provides a schematic of this idea,
in which different colors denote different biological modules (as
adapted from Fig. 1a of Han et al., 2004), and the central white node
represents a singlish interface hub capable of mutually exclusive
interactions with these modules. Kim et al. point out that the expres-
sion correlation for singlish-interface hubs with their binding part-
ners is 0.17, whereas for multi-interface hubs, this value was 0.25,



Fig.1. Correspondence between singlish-interface (multi-interface) and date
(party) hubs. Simplified schematics of a network are shown. Top: a simple node-
and-edge network, as derived from binary protein–protein interaction data alone.
Bottom: The network which results when structural data on interfaces and
interactions is applied to the simple node-and-edge network above. In this
rendering, n-sided polygons represent nodes with n distinct interfaces, and circles
are generic representations of nodes. Different colors represent distinct biological
modules. The central white node is a singlish interface hub capable of interacting
with multiple different modules. Solid lines denote simultaneously possible
interactions, and dashed lines represent mutually exclusive interactions. Multi-
interface hubs make up the cores of each of the four modules shown. Thus, this
figure represents a correspondence between singlish- or multi-interface hubs and
date or party hubs, respectively.
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further supporting this relationship between the number of inter-
faces and party/date hub class.

Though the debate over the party/date distinction has not been
entirely resolved (Agarwal et al., 2010; Kahali et al., 2009; Cukuro-
glu et al., 2010; Vallabhajosyula et al., 2009; Patil et al., 2010), the
consideration of physical interfaces adds greater richness and
dimension to the story, and lends some support to the significance
of this distinction.

3.3. Disorder

Many proteins contain long sequences which fail to adopt well-
defined structures (Uversky, 2002), and these elements are fre-
quently described as intrinsically disordered (Dunker et al., 2002;
Linding et al., 2003; Iakoucheva et al., 2004; Radivojac et al.,
2007). It is now appreciated that intrinsically disordered elements
play essential roles in basic protein functionality, such as interac-
tion with other cellular species (Dyson and Wright, 2005). Phos-
phorylation sites, which are frequently the gate points in
signaling pathways, tend to be surrounded by disordered elements
(Iakoucheva et al., 2004). It is natural to ask what roles disorder
might play in the context of networks. Do hub proteins exhibit dif-
ferent levels of disorder than those with low degree? Do multi- and
singlish-interface hubs exhibit differing levels of disorder, and if so,
how might such differences be rationalized? For those categories of
network nodes which exhibit a greater degree of disorder, what
roles might disorder play for such node types?
Naturally, these and related questions have been difficult to ad-
dress by purely structure-based experimental means; by their very
nature, disordered elements do not lend themselves to crystalliza-
tion, for instance. As a result, many approaches aimed at identify-
ing disordered regions rely on sequence data instead (Romero
et al., 1997a; Obradovic et al., 2003).

In addition to disparities in the sequence complexity of ordered
and disordered segments (Romero et al., 2001), there are differ-
ences between some of the physical properties of their amino acids
(Dunker et al., 2001, 1998; Romero et al., 1997a,b, 1998). Disor-
dered sequences tend to be enriched in charged or polar residues
(Romero et al., 2001; Vucetic et al., 2003; Dunker et al., 2005). This
is intuitively reasonable if disordered sequences explore large
fields of conformational space in solution, and more ordered ele-
ments are buried by a tightly packed protein environment. These
and other differences enable one to use SVMs for predicting disor-
der (Hue et al., 2010; Noble, 2006).

With respect to protein interaction networks, the potential
functions of intrinsically disordered elements are discussed and
reviewed by Dunker et al. (Dunker et al., 2005). Here, the
authors describe several potential roles of disordered elements.
One may be the ability of disordered sequences to confer high-
degree nodes with a greater degree of binding promiscuity. Dis-
ordered sequences may constitute highly flexible links between
more structurally defined domains, thereby conferring such
linked domains with a much greater degree of mobility relative
to one another, which would enable binding to more geometri-
cally diverse species.

Using proteome-wide data available from Homo sapiens (Rual
et al., 2005; Stelzl et al., 2005), Saccharomyces cerevisiae (Uetz
et al., 2000; Ito et al., 2001), Drosophila melanogaster (Giot et al.,
2003), and Caenorhabditis elegans (Li et al., 2004), Haynes et al.
examined the disorder in hubs relative to minimally connected
nodes (Haynes et al., 2006). Note that, in this study, hubs were
much more conservatively defined as those proteins which interact
with at least ten partners, and non-hubs were defined as those
with only one interaction. Using several sets of criteria for describ-
ing disorder, hubs were found to exhibit a much higher degree of
intrinsic disorder than did minimally connected nodes. The authors
also examined the potential relationship between disorder and
protein biological function using gene ontology categories in yeast,
and observed consistent disparities for different categories.

Building on their previous work in structural network analy-
sis, Kim et al. analyzed the relative disorder of different network
node types in greater detail (Kim et al., 2008). The sequence-
based prediction of disordered elements was performed by
applying DISOPRED (Ward et al., 2004) to nearly 7000 ORFs in
yeast. Consistent with the findings described above (Haynes
et al., 2006), hub proteins were found to be more disordered
than the proteome average. One interesting finding was the
observation that only singlish hubs were found to exhibit this
disparity; multi-interface hubs did not differ significantly from
the remainder of the proteome. The authors explain the greater
degree of disorder observed for singlish hubs by pointing out
that these nodes are more likely to bind to one another, as seen,
for instance, in cell signaling cascades, which generally tend to
constitute more disordered elements (Iakoucheva et al., 2002).
In addition, the set of binding interfaces for both hub types were
found to be well ordered. The authors report that the a typical
singlish hub’s interface binds to a greater number of domains
than does a multi-interface hub, and they explain this phenom-
enon by observing that the binding partners of singlish hubs are
disordered relative to the remainder of the proteome, and this
disorder is partially responsible for enabling binding to a more
physically diverse set of proteins.
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4. Evolutionary rates in the context of structural networks

Data obtained through genome-wide analyses employing
next-generation sequencing technology (Metzker, 2010) may be
used to learn about the evolutionary patterns that emerge in
networks, which grow primarily through a combination of gene
duplications, thereby adding nodes to the network, and nonsyn-
onymous single nucleotide polymorphisms, thereby potentially
rewiring the existing network by changing the specificity of pro-
tein interfaces (Berg et al., 2004). By combining duplications
with mutations responsible for changing interactions, networks
which reconstitute biological attributes may be generated in
silico (Berg et al., 2004; Wagner, 2003). This ability to recapitu-
late global statistical features characteristic of biological net-
works (such as connectivity distributions) lends support to the
notion that the evolution of network topology is largely driven
by duplications and interface mutations, and that sequence data
may tell much of the story not only of the evolution of the
nodes themselves, but also of network organization (Shou
et al., 2011; Xia et al., 2009; Fraser et al., 2002; Bloom and
Adami, 2003; Lemos et al., 2005; Wagner, 2001; Yu et al., 2004).

Evolutionary rates may be determined by examining the ratio
of nonsynonymous to synonymous base pair substitutions
(dN/dS). The structural interaction network built by Kim et al.
has shown a strong relationship between dN/dS ratios and the
number of interfaces (Kim et al., 2006a). Singlish-interface hubs
are generally faster-evolving than multi-interface hubs, which
evolve slower than the remainder of the proteome; more specif-
ically, this relationship is a consequence of the close correspon-
dence between dN/dS ratios and the proportion of a hub’s
surface area that is involved in interactions with other proteins
(Kim et al., 2006a, 2008). This relationship between evolutionary
rate and interaction surface area had also been reported previ-
ously (Fraser and Hirsh, 2004). Importantly, this trend puts the
evolutionary dynamics of network nodes in a more direct, struc-
turally meaningful context: the hub interfaces themselves (for
both singlish and multi-interface hubs) are slow-evolving, with
the greater number of interfaces in multi-interface hubs likely
contributing to their overall lower evolutionary rates (Kim
et al., 2006a).

The findings described above are in agreement with the obser-
vation that singlish-interface hubs also tend to be less ordered, as
higher degrees of disorder may enable faster evolutionary changes
(Brown et al., 2002). The relationship between disorder and evolu-
tionary rates was noted by (Kim et al., 2008), and this phenomenon
is perhaps to be expected, largely because of the tolerance that dis-
ordered and loosely-packed elements would have to amino acid
changes.

In related work employing similar approaches, proteins within
the network periphery have been found to be under positive evo-
lutionary selection; in contrast, proteins more central to networks
are more evolutionarily constrained (Kim et al., 2007). The struc-
tural explanation for this relationship is much the same as that dis-
cussed above: sites within interfaces tend to be under negative
evolutionary selection, and given that protein interfaces have been
shown to be generally more conserved than other surface residues
(Teichmann, 2002), these results are to be expected. Indeed, inter-
faces are, in some respects, similar to protein cores in that strin-
gent geometric and biophysical constraints are usually imposed
by the need to closely interact with complementary sets of amino
acids. Future efforts may further be directed toward a more careful
examination of the disparity between the evolutionary rates of
interface and core residues, and more specifically, how these dis-
parities vary depending on hub and interaction types.
5. Conclusion and future directions

The networks constructed to represent biological activity in
yeast, humans, and other organisms are far from complete. The
information contained therein provides only a fraction of the true
interactomes of these organisms, though it has been difficult to
pin down the degree to which network representations capture
the full repertoire of associations. In terms of both graph network
renderings and 3D structural definitions of interactions, there is
much which remains to be added. The quality of these and future
analyses are, as discussed, contingent on how thoroughly the mod-
eled networks reflect the full complement of interactions present
in living cells. However, as noted, the trends and findings surveyed
here lend support to the integrity of current network models.

It is likely that, in building network representations, much will
be gained through a combination of the experimental and in silico
approaches. Some have already begun to move in this direction.
For instance, homology-based approaches have been combined
with empirical methods, such as high-resolution microscopy and
tandem affinity purification, to study multi-subunit complexes,
including the exosome and RNA polymerase II (Aloy et al., 2004).
In addition, degrees of redundancy in the interactions reported
by different approaches may be used to assign confidence mea-
sures to macromolecular associations (Kiel et al., 2008).

The insights gained through the recently added structural
dimension have taught us a great deal, and further work in the area
of structural networks will pave the way for the addition of yet
greater dimension to network organization and behavior. Tuncbag
et al. have analyzed networks with an eye toward time (Tuncbag
et al., 2009b). Here, the authors point out the need to model net-
works by referring to the mutually exclusive nature with which
multiple binding partners interact with a hub having only a finite
number of interfaces. They underscore that static representations
of networks can be made into more biologically realistic constructs
(specifically, as processes) with the introduction of time. Given
that this analysis is so dependent on defining the structures of
constituent nodes, follow-up work of a similar nature would
benefit greatly from an expanded structure network.

A more comprehensive structural definition of networks also
paves the way for yet another layer of information: that of molec-
ular motions. Bhardwaj et al. have taken advantage of solved struc-
tures of alternative conformations of nodes in the construction of a
type of dynamic structure interaction network, termed DynaSIN
(Bhardwaj et al., 2011). Here, network topology was combined
with structural information in order to elucidate the potential rela-
tionships between protein structural modularity and node type. It
was found that, in general, there is a positive relationships be-
tween the number of interfaces and potential degrees of conforma-
tional change, as measured by RMSD.

New forms of data are becoming increasingly recognized for
their value in gaining novel insights into basic network biology,
and the volume of this data (especially genomic sequence data)
continues to grow rapidly. Next-generation sequencing technology
greatly facilitates the measurement of gene expression across the
entire genome in a variety of conditions, and an understanding of
co-regulated genes better enables the investigator to infer interac-
tions. Though it fails to keep pace with sequence information,
available structural data in the PDB (Berman et al., 2000) is also
growing at a considerable pace. In addition, in silico approaches
have become better at inferring physical interactions. Over the
course of the next several years, the careful integration of these
and other forms of data should provide investigators with net-
works that are morebiologically meaningful, in both time and
space.
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