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* 15 Mon. - hard done word doc (they'll do references) 
MG is on the call  
 
17 Wed. (late) [meet on Wed. morning, be prepared for doing fixes on Wed. day ] 
Due at NIH 10/24 
 
 

### ext notes 
# extra connnection 
 
** Alex 
 
We talked about it  
Note to Alex so you can just say this is per shot writing for Mark and Joe we talked about adding in a statistician 
and we think this is a great idea however it's just not gonna be possible at Yale according to the budget people 
since he there's no way to add an additional person that yeah or to modify the a budget at this point however 
were open to if Alex wants to get a statistician at Baylor and add and take that from the Ballard account but 
budget that's fine with us and we can make sure we pencil that into that's the that Alex thing 
 
We're aiming to get you rough text on Fri. but this coudl be late on fri night or early on Sat. mornigng 
 
* Joel G and Renato (CC me & Andrea) "DeBenedet-Murgo, Andrea" <andrea.debenedet@yale.edu> 
 
I Joel and Renato this is PE for Mark's lab I we discussed your section basically you don't have to do anything 
substantial for the writing of the DIAC grant are all we need you to do is in the but you might want to contact 
Alex M to help on the SOC  
We might contact on Fri or Sat. to read through some DIAC sections quickly  
 
* on the budget 
 
All their justified analysis is outreach analysis in SOC section of the grant on the G and your and at first for both 
Joel and Renato and Joel that the other requirement is that Joel has to have at least 15% effort on the grant 
 
After Joel's G effort is committed the rest of the division of the $200K tc budget is up Joel G & Renato to use as 
they see fit  
 
On the ​justifications​ you have to describe the work you're doing as outreach analysis that's part of that's SCO 
observe out and that's part of the outreach component and part of the SOC all your budget is gonna be 
contained in the  
 
Note that JOel G as MPI will need to certify the Yale subcontract packet over the weekend in IRES. This will 
need to be done in a timely fashion.  
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Specific Aims 
 
We propose to execute the Data Integration and Analysis Component (DIAC) of the Data              
Integration and Resource Center (DIRC) for the Common Fund Acute to Chronic Pain             
Signatures (A2CPS) Program for this consortium. This component will function in order to help              
the overall consortium with its data integration and analysis needs. We anticipate that these              
needs and the component's responses will be broken into three aims. 
 
Aim 1. Construction of high-throughput pipelines for the analysis of transcriptomic,           
proteomic, metabolomic and lipidomic data. In the first place, we will set up a number of                
high-throughput pipelines at the DCC to help the consortium process large scale data that will               
be generated. In particular, we will set up a number of pipelines to enable the processing of                 
transcriptomic and proteomic data, and we will also manage and develop additional large-scale             
pipelines for other -omics data types (e.g. metabolomics and lipidomics), as they become             
necessary. As we will demonstrate, we have substantial experience in setting up            
high-throughput pipelines in the context of other consortia. 
 
Aim 2. Development of analysis tools for visualization and identification of acute to             
chronic pain signatures. ​​We aim to build a number of tools that combine different data types                
from the output of the pipelines from aim 1 and determine initial candidate signatures of the                
transition from acute to chronic pain. We anticipate, given the multi-omics and multi-center             
nature of the A2CPS consortium, that making these tools available will be extremely useful to               
members of the consortium and the wider scientific community. We specifically foresee the need              
to combine the various -omics data types with neuroimaging data. This will enable discovery of               
brain-wide data-driven markers of chronic pain signatures, which can in turn be merged with              
other -omics datasets. ​We will leverage our experience in developing tools that can cluster the               
transcriptomics data in terms of a variety of simple phenotypic and genotypic changes. These              
tools will be constructed collaboratively with members of the consortium based on specific             
priorities as directed by the Analysis Working Group (AWG) (see aim 3). Such tools will enable                
the identification of signatures and potential biomarkers that distinguish acute from chronic pain             
individuals from the cohorts under investigation. We will also develop tools to integrate -omics              
data with available electronic health records (EHR) data. 

 



 
 
Aim 3. Perform and publish integrative analyses investigating acute to chronic pain. In             
the third aim, we will help lead large-scale integrative analysis efforts on the data from the                
A2CPS Consortium. These analyses would be based on our prior experience conducting            
integrative analyses for other consortia, both in more basic science (e.g. ENCODE and 1000              
Genomes Project​) and disease-oriented contexts, particularly in relation to psychiatric diseases           
(e.g. PsychENCODE). We anticipate that the integrative analyses will involve data integration of             
the large-scale omics data, imaging data and the HER data from the A2CPS Consortium, as               
well as connecting the Consortium’s data with complementary data types from external sources,             
including genomic variation data, functional genomic data, and phenotypic characterization.          
Particularly, we will apply advanced machine learning techniques such as interpretable           
deep-learning model for acute to chronic pain signatures analysis. We will describe our             
large-scale experience in integrative analyses for these types of data sets, with the expectation              
that such integration constitutes a major part of the DIRC DIAC endeavor. We will help organize                
the Analysis Working Group (AWG) and lead the Consortium in publishing integrative analyses             
using omics data to investigate the onset of acute to chronic pain. 
 
Overall, we will demonstrate that, as relevant to the mandate of the DIRC DIAC, we have                
extensive experience in performing integrative analyses and leading the publication of these            
results for several large genomics consortia. Furthermore, we aim to show that our response to               
the data challenges presented by the consortium will be both comprehensive and            
state-of-the-art. 
 
 

Introduction 
 
Acute pain caused by injury, surgery or disease may persist as chronic pain after the initial                
trauma. Such a transition of acute to chronic pain poses a major burden on pain care and                 
management, and is particularly crucial for post-injury interventions, but the mechanism of            
development of chronic pain is currently poorly understood. Consequently, the ​A2CPS Program            
aims to collect extensive data on the transition from acute to chronic pain. Such an endeavor                
demands a concurrent drive towards the integration of the data in a coherent, interpretational              
framework. In light of this, ​we propose to execute the ​Data Integration and Analysis Component               
(DIAC) of the Data Integration and Resource Center (DIRC) for the Common Fund A2CPS              
Program. This component will function in order to help the overall consortium with its data               
integration and analysis needs. 

The transition from acute pain to chronic pain 
The arousal of chronic pain may associate with neuroplastic changes in the central nervous              
system (CNS), and has little relevance to the nature of the original stimuli. The amplification of                

 



neural signalling in the nociceptive system within the CNS, namely central sensitization, leads to              
heightened pain sensitivity after being triggered by the initial injury or inflammation            
\cite{3220875, 3268359}. Specifically, central sensitization causes previously subthreshold        
synaptic inputs, which do not normally drive any output, to generate increased or augmented              
action potential output \cite{2750819}. In a broader sense, researchers have proposed that            
transition to chronic pain involves continuous neural reorganizations of the CNS           
\cite{18952143}. These changes may be detected and characterized by transcriptomic          
alterations in CNS tissues, peripheral extracellular contexts, as well as the circulating system. 
 
Altered transcriptional regulation related to chronic pain 
Transcriptome profiling has enabled the characterization of several differentially expressed          
genes associated with chronic pain in dorsal root ganglion and spinal cord tissue of rats and                
mice after nerve or inflammatory surgery \cite{24472155, 21561713}. It has also been observed             
that several types of chemokines are significantly upregulated over a time scale of two weeks in                
peripheral tissues of the femorotibial joint in rats after induced chronic joint pain \cite{3835139}.              
A recent study has characterized over 8,000 eQTLs associated with susceptibility and            
maintenance of chronic pain in human dorsal ganglia \cite{28564610}. 
 
Epigenetic modifications also play a role in regulating the expression of genes related to the               
transition from acute to chronic pain. This includes methylation and downregulation of genes             
associated with accelerated disc generation \cite{21867537}, and demethylation-induced        
aberrant production of cytokine in osteoarthritis patients \cite{2788707}. Studies of expression           
and regulation of genes related to chronic pain development may provide diagnostic markers             
and targets for personalized intervention. 
 
Circulating RNAs as potential predictors 
Circulating RNA markers may be used as a source for non-invasive biological signatures related              
to acute to chronic pain transition. Circulating, or extracellular, RNA refers to a group of RNAs                
detected outside the cellular context especially body fluids. Several studies have identified            
differential expression of some circulating RNAs, especially miRNAs in body fluids, related to             
the development and treatment of chronic pain. Researchers have found that mice after spinal              
nerve ligation surgery display increased or decreased expression of several miRNAs in serum,             
and some of their target genes relate to the activation of cell signalling associated with nervous                
lesions \cite{25274330}. Altered miRNA profiles are also detected in the cerebrospinal fluids for             
patients with fibromyalgia, a disorder characterized by chronic pain and related to central             
sensitization \cite{24205312}. 
 
Some plasma miRNAs were also found to have commonly altered expression levels for patients              
after treatment with opioids, which is generally effective for chronic pain, and may serve as               
diagnostic markers for clinical outcomes \cite{4110167}. Generally, a systematic study of the            
significance of circulating RNAs in the development of chronic pain is still lacking. The function               
and origin of RNAs detected in body fluid requires further study. Large-scale analysis of              

 



transcriptomics of RNAs from body fluids in larger cohorts would further facilitate an             
understanding of the role of circulating RNAs in the development of chronic pain. 
 
Importance of neuroimaging techniques 
Neuroimaging has enabled noninvasive investigation of abnormally altered activities in the CNS.            
It has been observed that several types of chronic pain are associated with regional changes in                
gray matter density \cite{20236763}, abnormal interactions between gray and white matter           
\cite{19038215, 19035484}, altered functions in various brain regions \cite{22961548, 9252330,          
18184777}, and altered connectivity in the default-mode networks (DMN) \cite{18256259,          
20506181}. It should be noted that some of these studies show variable or even opposite               
changes for different types of chronic pain, suggesting high variability of the syndromes and              
complexity of the function of the CNS. Accumulation of high spatial and temporal resolution              
imaging data and incorporation of novel pattern recognition methods would help to identify             
neurological signatures and facilitate our understanding of the role of the CNS in the              
development of chronic pain \cite{5289824}, and could aid our integrative analysis of the cellular              
and extracellular transcriptomics. 
 

Innovation 
 
Prediction of the risk of transition into chronic pain is crucial for personalized prevention, and               
calls for further detailed investigation of the underlying mechanisms. This requires the            
accumulation and processing of large amounts of integrative data from multiple genomic            
sources and the integrative analysis of these data. Thus, the DIRC DIAC, as part of the Acute to                  
Chronic Pain Signatures (A2CPS) Program, plans to identify biological signatures of patient            
susceptibility, the biological processes and pathways related to the development of chronic pain,             
and potential treatment targets by integrating diverse datasets including health records, brain            
imaging and other omics studies. The scale of the data proposed to be generated by the A2CPS                 
consortium has to date never been studied by the pain research community and is in of itself                 
significantly innovative. In addition, the vast amounts of the diverse data and the breadths of the                
explored systems in the body will demand innovative interpretational frameworks and analysis            
tools. 
 

Aim 1) Running Pipelines 

1.1 Preliminary Results 
Transcriptomics 

 



We have extensive expertise with transcriptome analysis and in developing a wide range of              
customized tools, as well as building standardized pipelines for analysis and uniform processing             
of both long and short RNA-Seq data. These tools have been evaluated and implemented in               
several major consortia. 
 
General RNA-Seq analysis 
We have developed an efficient in-house data processing workflow for long RNA-Seq data that 
includes data organization, format conversion, and quality assessment. RSEQtools 
(http://rseqtools.gersteinlab.org/), is a computational package that enables expression 
quantification of annotated RNAs, as well as identification of splice sites and gene models 
\cite{21134889}. Comparisons between RNA-Seq samples, and to other genome-wide data, are 
facilitated by our Aggregation and Correlation Toolbox (ACT), a tool for comparing genomic 
signal tracks \cite{21349863}. We developed incRNA \cite{21177971} to predict novel ncRNAs 
using known ncRNAs of various biotypes. We created FusionSeq to detect transcripts that arise 
due to trans-splicing or chromosomal translocations \cite{20964841}. We have also constructed 
IQSeq \cite{22238592}, which calculates the relative and absolute abundance of contributing 
transcript isoforms to a gene from RNA-seq data. We have developed AlleleSeq tool 
\cite{21811232} that combines diploid genomic information with RNA-Seq data to identify 
transcripts showing allele-specific expression. We have further developed Pseudo-seq 
\cite{22951037} and PseudoPipe \cite{25157146} to addresses the issue of quantification of 
pseudogene expression. 
 
We recently developed the extracellular RNA processing toolkit, exceRpt (submitted to Cell            
Systems, available at http://github.gersteinlab.org/exceRpt), a set of tools and a pipeline           
designed for comprehensive analysis of small RNA-Seq datasets: read preprocessing, filtering           
and alignment, biotype abundance estimation, visualization and quality assessment. It is           
specifically designed to handle technical issues that are often characteristic of small RNA-Seq             
samples. The exceRpt pipeline has been used for uniform processing of hundreds of RNA-Seq              
datasets submitted to the exRNA Atlas (http://exrna-atlas.org/) repository. 
 
Consortium experience in transcriptomics analysis 
We also have extensive experience conducting integrative analyses of large sets of RNA-seq             
data. We have worked on the development and analysis of multiple RNA-seq flows in the               
context of large consortia, including the implementation of tools we developed and other popular              
tools such as Bowtie \cite{22388286} and Tophat \cite{19289445}. We describe our consortium            
experience further in aim 3.  
 
Proteomics 
We have substantial experience with the analysis of proteomic data \cite{19817483, 17923450,            
22583803} and its integration with genomic data, such as the combination of mass spectrometry              
(MS) proteomic and transcriptomic data \cite{25349915, 17519225}. Specifically, we have          
constructed a web tool called PARE (Protein Abundance and mRNA Expression;           
http://proteomics.gersteinlab.org), to correlate these two quantities \cite{17718915}. We also         

 



published the tool EMpire \cite{30125121}, which uses transcript-level RNA-seq expression as a            
prior likelihood and enables protein isoform abundances to be directly estimated from            
LC–MS/MS, an approach derived from the principle that most genes appear to be expressed as               
a single dominant isoform in a given cell type or tissue. We have also led studies interpreting                 
protein-protein interactions based on data from proteomic experiments \cite{15491499,         
14564010}. We have been members of numerous NIH proteomics projects and consortia,            
including the Northeast Structural Genomics Consortium, the NHLBI Proteomics Center and the            
Yale/NIDA Neuroproteomics Center, and have conducted analyses on the large scale proteomic            
data generated by these consortia \cite{12952525, 17923450}. 
 
Metabolomics 
The Metabolomics Consortium Data Repository and Coordinating Center (DRCC) at the           
University of California, San Diego (UCSD) has recently processed and curated its 1,000th             
metabolomics study. This collection of experimental datasets contains submissions from over           
200 different institutions around the world and represents over 70 different species with the              
majority coming from human (47%) and mouse (31%) sample sources. Analytical methods used             
in these studies include untargeted/targeted LC-MS (67%), GC-MS (21%) and NMR (12%). The             
DRCC is actively accepting metabolomics data for small and large studies on cells, tissues and               
organisms via the Metabolomics Workbench, which serves as a national and international            
repository for metabolomics data and metadata and provides analysis tools and access to             
metabolite standards, protocols, tutorials, training and more. Studies are available for browsing,            
analysis and download (subject to embargo release) in the NIH Data Repository section of the               
website (http://www.metabolomicsworkbench.org/). 
 
The UCSD Center for Computational Biology & Bioinformatics (CCBB) provides bioinformatics           
expertise to analyze large molecular datasets in the areas of genomics, systems biology and              
translational medicine. The CCBB has completed 285 investigator-initiated collaborative         
projects resulting in 43 peer-reviewed publications leveraging the scalable cloud-computing          
resources of Amazon Web Services, including a metabolomics analysis of rheumatoid arthritis            
\cite{​30075744} (​Metabolomics ​Figure 1​​). CCBB has carried out a number of research and             
clinical studies that establish our expertise in the field of metabolomics, scientific ability as well               
as the capacity both technical and instrumental to successfully perform accurate and precise             
metabolomics measurements on a large scale and in high throughput settings. 
 
Lipidomics 
The University of California, San Diego LIPID MAPS Lipidomics Core has been focusing on              
developing the field of lipidomics, especially targeting bioactive lipid mediators and biomarker            
development \cite{​22070478}​. The complexity of the lipidome both in dynamic range and            
structural diversity represents a major analytical challenge. To address these challenges, the            
LIPID MAPS Consortium was created in 2003 as a multi-institutional effort to quantify all of the                
major and minor lipid species of the mammalian lipidome. When it ended in 2013, we leveraged                
all these technologies and established the LIPID MAPS Lipidomics core at UCSD            
(​http://www.ucsd-lipidmaps.org​). 
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We established the first comprehensive human lipid profile in plasma and identified and             
quantified some six hundred distinct lipid molecular species across all mammalian lipid            
categories \cite{​20671299​}. Immunologically-activated macrophages were also profiled and over         
500 discrete lipid species were measured and associated pathways were mapped, integrating            
transcriptomics, proteomics and lipidomics \cite{​20923771​}. Our laboratory now routinely         
profiles plasma, urine, bronchoalveolar lavages, cerebral spinal fluid and various other tissues            
of both human and animal origin for biomarker discovery and for indicators of abnormal lipid               
metabolism. More recently, we established lipid profiles of liver biopsy specimen and plasma             
from individuals with non-alcoholic fatty liver disease for biomarker development          
\cite{​25598080​}. Our lipidomics platform for monitoring over 200 oxidation and signal           
transduction consequences is the most developed platform to emerge in the metabolomics area             
\cite{​21689782,25074422,26139350,​Quehenberger et al 2018 (in press)}. Pertinent to this         
application, we established that inflammatory hyperalgesia induced bioactive eicosanoid         
production and inhibition of the underlying enzymatic systems in the spinal cord attenuated             
NSAID-unresponsive hyperalgesia in a rat pain model \cite{​22493235,30130298​}. We used the           
same platform to profile plasma from individuals with non-alcoholic liver disease of various             
severities and established an eicosanoid biomarker panel that is able to discriminate between             
steatosis and steatohepatitis \cite{​25404585}​. Similar approaches were used to identify          
eicosanoid targets in various bacterial and viral infectious diseases including Lyme disease and             
influenza \cite{​22695969,23827684​}. 
 
In summary, we have carried out a number of research and clinical studies that establish our                
expertise in the field of lipidomics, scientific ability as well as our capacity both technical and                
instrumental to successfully perform accurate and precise lipidomic measurements on a large            
scale and in high throughput settings. 
  

1.2 Proposed Research 
We will develop and test pipelines for the various omic data types generated by the A2CPS                
consortium including, in particular, pipelines for processing transcriptomics data (RNA          
sequencing), proteomics, metabolomics and lipidomics data types. We will evaluate existing           
published pipelines, as well as compare with current best practice approaches and pipelines             
used by other larger genomic consortia to process these data. Compatibility of our approaches              
with existing analysis pipelines from other relevant genomic consortia (such as the Extracellular             
RNA Communication Consortium) will enable easier integration with external data sources. The            
evaluation of these processing pipelines will be conducted under the supervision of the Analysis              
Working Group (AWG) of the consortium.  
 
Analysis pipelines for the various omic data types will then be deployed at the DCC for                
processing of the data generated by the consortium. The DIRC DIAC will provide the pipelines               
to the DCC in the form of a Github repository, as well as dockerized images for deployment. The                  

 



DIAC will help support these pipelines, and modify and update them as needed to fulfill the                
potential evolving needs of the consortium.  
 
The DIAC will also assess existing standards and, if necessary, develop new quality control              
(QC) metrics for evaluating the data being generated, in agreement with members of the              
consortium. The DIAC will incorporate these QC metrics as output from the analysis pipelines,              
and will routinely assess such output for the data processed by the DCC. 
 
Metabolomics: Primary Data Analysis 
Targeted metabolomics datasets will be analyzed using XCMS-MRM and METLIN-MRM, which           
are a cloud-based data-analysis platform and a public library, respectively, to perform signal             
processing to detect, integrate and align peaks across samples ​\cite{30150755}. Untargeted           
LC/MS-based metabolomics data will be processed using XCMS for peak-picking and           
alignment, followed by peak annotation. Peak annotation includes peak grouping, using ion            
adducts to annotate features, making use of pathway information, integrating MS/MS data and             
incorporating retention time​ ​\cite{​29039932​}. 
 
Lipidomics: Primary Data Analysis 
After the initial data acquisition from LC-MS under various acquisition modes, the second step              
of data processing is to normalize the data via a set of internal standards. The third step of data                   
processing performs quantitation if authentic standards are available for the measured           
metabolites. The fourth step will normalize the data to the amount of input material and the                
results will be expressed as concentration units (e.g., pmol/ml plasma). In some cases, absolute              
quantification may not be possible due to lack of authentic standards. In that case, we will                
express the data as ratio between measured lipid metabolite and corresponding internal            
standard. The ratios will be normalized to and expressed as ratio per ml plasma. As such, they                 
represent relative concentrations and can be used for direct comparison of individual lipid             
metabolites between different samples as well as different metabolites in the same sample. 
   
Lipidomics: Quality Control Analysis 
Following the guidelines outlined in Good Laboratory Practice Standards (USEPA), validation           
assays are performed regularly for all the lipids using routine analytical preparation procedures.             
Every thirty sample, a quality control sample will be analyzed. The quality control sample will               
consist of the human plasma standard reference material SRM 1950, collected by NIST in              
collaboration with NIH. We previously established a comprehensive and quantitative lipid profile            
that covered over 600 lipid species. As we recorded the exact concentrations of these lipid               
species, repeated analysis of the reference material will serve as a quality control of our data                
set. As additional quality controls, we will use the retention times and mass spectral intensities               
of the internal standards. As an example, for the analysis of eicosanoids we will use 26                
deuterated internal standards. The deuterated standards are easily identifiable in the spectra            
and will be used to gauge potential retention time drift in the chromatogram. To prevent               
misidentification of endogenous metabolites due to retention time drifts, all spectra will be             
aligned based on the retention times of the internal standards. We will add the internal               
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standards to all samples at exactly the same amounts. Thus, they will serve as additional quality                
control to compensate for any variations in analytical sensitivity of the mass spectrometer. For              
quantification, we will create standard curves with quantitative standards that also contain the             
internals standards at the same concentrations as the samples. Our eicosanoid standard library             
for quantitative analysis contains over 140 authentic eicosanoid. Nine point standard curves will             
be generated and used to calculate the exact concentrations of the endogenous metabolites in              
the samples. 
 
The UC San Diego Center for Computational Biology & Bioinformatics (CCBB) will leverage the              
Metabolomics Workbench ​\cite{​26467476​} and XCMS ​\cite{​22533540​} for the metabolomics         
data, and ​the expertise of the LIPID MAPS Lipidomics core for the lipidomics, to develop open                
source, automated and reproducible primary and secondary analysis pipelines for the A2CPS            
DIRC. The CCBB provides investigators with bioinformatics expertise to analyze large molecular            
datasets in the areas of genomics, systems biology and translational medicine. The CCBB will              
bring systems biology and machine learning techniques to analyze and integrate metabolomics            
data with outcomes, EHR data, imaging data and multi-omics data to prioritize clinically relevant              
genes and generate novel biological insights.  
 

Aim 2) Building Tools 

2.1 Preliminary Results  

Clustering Tools 
We will leverage our extensive experience processing and analyzing transcriptomic data in            
addressing the aims of the DIRC DIAC. In the interests of constructing the most robust set of                 
tools for transcriptome analysis, we evaluated 24 protocol variants of 14 independent            
computational methods for exon identification, transcript reconstruction and expression level          
quantification from RNA-seq data \cite{24185837}. Our results characterize the strengths and           
weaknesses of these methods, which would aid the design of analytical strategies.  
 
Following transcriptomic data processing in the aforementioned manner, several downstream          
analyses can be conducted to identify the functional and regulatory implications of the observed              
gene expression patterns. We developed a computational method (DREISS,         
dreiss.gersteinlab.org) for analyzing the “Dynamics of gene expression driven by Regulatory           
networks, both External and Internal, based on State Space models” \cite{27760135}. This tool             
evaluates the temporal dynamics of subnetworks of genes, by differentiating between internal            
and external sources of impact on these subnetworks. DREISS employs dimensionality           
reduction to help identify canonical temporal expression trajectories (e.g., degradation, growth           
and oscillation) representing the regulatory effects emanating from various subsystems (​Aim 2            
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Figure 1​​). Another such tool, Loregic (github.com/gersteinlab/loregic), is a computational          
method integrating gene expression and regulatory network data to characterize the           
cooperativity of regulatory factors \cite[25884877}. Loregic use all 16 possible          
two-input-one-output logic gates (e.g. AND or XOR) to describe triplets of two factors regulating              
a common target. The tool finds the gate that best matches each triplet’s observed gene               
expression pattern across many conditions (​Aim 2 Figure 2​​). Loregic is able to characterize              
complex circuits involving both proximally and distally regulating transcription factors (TFs) and            
also miRNAs, as demonstrated on human ENCODE ChIP-Seq and the Cancer Genome Atlas             
(TCGA) RNA-Seq data. Additionally, cross-species data can be exploited by OrthoClust, a            
computational framework for simultaneously clustering data across multiple species         
\cite{25249401}. It integrates the co-association networks of individual species by utilizing the            
orthology relationships of genes between species. It outputs optimized modules that are            
fundamentally cross-species, which can either be conserved or species-specific (​Aim 2 Figure            
3​​). The application of OrthoClust was demonstrated using RNA-Seq expression profiles of            
Caenorhabditis elegans and Drosophila melanogaster from the modENCODE consortium. A          
potential application of cross-species modules is to infer putative analogous functions of            
uncharacterized elements like non-coding RNAs based on guilt-by-association. 
 

Tools for the Deconvolution of Tissue-level Data 
Deconvolution refers to the decomposition of a dataset into its constituent components, such as              
functional modules or cell types in bulk tissue. In exRNA studies, deconvolution methods can              
help us identify fractions in the bulk expression data associated with specific cell types, and their                
corresponding characteristic expression patterns. We have previously employed several         
deconvolution analysis methods that can be integrated into the exRNA pipeline, in order to              
specify subtypes of cells associated with signatures of interest.  
 
We have employed two approaches to the bulk tissue deconvolution problem \cite{Wang et al              
2018 (capstone4)}: an unsupervised approach, non-negative matrix factorization (NMF); and a           
supervised approach, cell-signature-based decomposition. In the NMF approach, the bulk tissue           
gene expression matrix X (dimensions = N by M, where M = number of samples and N =                  
number of selected genes (e.g., biomarker genes)), is decomposed into the product of two              
matrices, H and V: H is a K by M matrix with the (i,j) element describing the contribution of the j​th                     
NMF "top component" (NMF-TC) to the ith sample, K is the number of selected NMF-TCs (e.g.,                
equal to the number of selected cell types), and V is an N by K matrix with the (i,j) element                    
being the expression level of the j​th gene in the i​th NMF-TC. Conceptually, V describes the gene                 
expression pattern of each characteristic “top component”, while H provides the weight of each              
“top component” in the observed samples of X. We found that NMF-TCs recovered the              
expression patterns of different cell types in bulk RNA-Seq data on brain cell population. This               
suggests that it is highly likely that a linear combination of single-cell components contributes to               
the overall expression pattern of the sample. Therefore, we aimed to more accurately identify              

 



the fractions that determine the sample expression. We then applied a supervised approach that              
uses single-cell expression signatures to find the fractions of different cell types.  
 
In particular, we defined the sample gene expression matrix B (N by M) for a               
phenotype/disorder, where M and N are defined above), and C is the fraction gene expression               
matrix is C (N by K), where K is the number of selected cell types. We used the non-negative                   
least square method to find a non-negative K by M matrix, W: the (i,j) element of W represents                  
the linear combination coefficient of the i​th fraction to the j​th sample expression. Applying this               
method to bulk RNA-Seq data on a brain cell population, we identified cell-fraction changes              
associated with different traits (​Aim 2 Fig 4​​). For example, there were different fractions of               
particular types of excitatory and inhibitory neurons in male and female samples, with the              
fraction of In6 being significantly higher in females. We then validated the method on an               
independent subset of samples to predict cell population fractions, finding that our estimations             
were close to the experimental fractions. 

Network Analysis and Visualization Tools 
We have demonstrated experience in biological network science. Following the identification of            
functional and regulatory networks from aforementioned pipelines and tools, the properties of            
these networks will be quantified and visualized to identify possible signatures of dysregulation             
in the transition to chronic pain. 
 
Our lab has developed various tools for network analysis from multiple perspectives, including             
tools to determine small-scale network motifs such as feed-forward loops and feedback loops as              
well as large-scale structures such as overall network hierarchies, center points of networks,             
bottlenecks of networks, and so forth. These tools have been used to analyze the human               
regulatory network, the network associated with cancer, the phosphorylation network in yeast,            
the yeast regulatory network, and other model organism networks \cite{25880651]. We have            
performed extensive comparisons between these regulatory networks and published many          
comparative network papers \cite{20439753}.  
 
TopNet is an automated web tool designed to calculate topological parameters and compare             
different sub-networks for any given network \cite{14724320}. It computes a variety of            
topological parameters given the input network and specified subnetworks and calculates the            
power-law degree distribution for each sub-network. In addition, we developed TopNet-like Yale            
Network Analyzer (tYNA), a Web system for managing, comparing and mining multiple networks             
\cite[17021160}. tYNA efficiently implements methods that are useful in network analysis,           
including identifying defective cliques, finding small network motifs (such as feed-forward loops),            
calculating global statistics (such as the clustering coefficient and eccentricity), and identifying            
hubs and bottlenecks. 
 
We have also published many papers on construction of hierarchy structures for the regulatory              
network for both transcriptional and post-transcriptional regulation. We proposed the          

 



hierarchical score maximization (HSM) algorithm, which first defines a score to quantify the             
degree of hierarchy in a network, and then perform simulated annealing procedure to infer a               
hierarchical structure that maximizes the score \cite{4404648} (​Aim 2 Figure 5​​). We applied our              
algorithm to determine the hierarchical structure of the phosphorylome in detail and investigate             
the correlation between its hierarchy and kinase properties. Using genome-wide binding           
locations of 165 human, 93 worm, and 52 fly transcription-regulatory factors (RFs), we             
performed simulated annealing to reveal the organization of RFs in three layers of             
master-regulators, intermediate regulators, and low-level regulators \cite{4336544}. We        
organized the binding profiles of 119 TFs in 458 ChIP-Seq experiments from ENCODE into a               
hierarchy and integrated it with other genomic information (e.g. miRNA regulation), forming a             
dense meta-network. Factors at different levels have different properties: for instance, top-level            
TFs more strongly influence expression and middle-level ones co-regulate targets to mitigate            
information-flow bottlenecks \cite{4154057}.  
 

 
 

Neuroimaging 
We have recently quantified whole-brain global functional connectivity in 300 adults, in 
relation to behavioral measures of alcohol use and impulsivity, which may relate to 
chronic pain markers. We identified robust relationships between global connectivity in 
prefrontal motor planning areas and maximum lifetime drinks, which was fully mediated 
by self-reported impulsivity (​Figure 2​​)[14]. These results replicate existing effects[15] 
and establish the viability of proposed methods to discover novel relationships between 
neural functional architecture and altered behavior.  
 
All necessary pipelines for the processing and analysis of anatomical, BOLD functional            
connectivity, and structural connectivity data have been fully implemented at Yale.           
These analyses will be greatly facilitated by sophisticated processing protocols          
developed by the Human Connectome Project (HCP)[23-25]. We have implemented the           
HCP pre-processing and analysis pipeline on Yale’s High Performance Computing          
Cluster. All analyses relating imaging and clinical measures will be performed in            
collaboration with the investigators of the DIRC. 
  
We have developed the Multimodal Neuroimaging Analysis Platform (MNAP) suite of           
tools, which integrates several packages that support an extensible framework for data            
organization, preprocessing, quality assurance, and various analyses across        
neuroimaging modalities. The MNAP suite architecture is robust yet flexible and can be             

 



readily extended by adding functions developed by its core tools. It provides a high              
throughput ‘batch’ engine and seamless analytic integration with other widely-adopted          
community tools such as FSL, Connectome Workbench, HCP Pipelines, PALM,          
Octave/Matlab, AFNI, R Statistical Environment, FreeSurfer, and AFNI packages.         
Overall, the MNAP suite supports full ‘turnkey’ workflow, from imaging data upload to             
derived neuro-behavioral phenotypes (​https://dev-mnap-tools-yale-edu.pantheonsite.io/​) 
 
 
We have a number of papers relating omics data to imaging data and we have               
developed a formalism using canonical correlation analysis to interlace these two           
quantities to find the best correlation. (Refer to the metagenomics papers and also             
TARA’s genome pathology paper) 
 
 
 
 
 

2.2 Proposed Research 
 
[[ 
we plan to apply loregic 
We plan to develop sig tool from orthoclust 
We plan look at the time series txn & meta data w/ driess 
]] 
 
We plan to develop a number of tools to identify candidate biomarkers and combine them into                
biosignatures predictive of the susceptibility or resilience to the development of chronic pain             
after an acute pain event. These tools will also be helpful identifying signatures and potential               
biomarkers that distinguish acute from chronic pain individuals. These tools will be developed             
collaboratively with members of the consortium based on specific priorities as directed by the              
Analysis Working Group (AWG). Specifically, we will evaluate and compare a number of             
commonly used supervised and unsupervised data mining methods, such as Robust Feature            
Selection ​\cite{Saeys, Y., Abeel, T., de Peer, Y. V., Robust Feature Selection Using Ensemble              
Feature Selection Techniques, ​Machine Learning and Knowledge Discovery in Databases, Part           
II​, Proceedings, 2008}​, Principal Component Analysis ​\cite{18327243}​, Support Vector         
Machine-Recursive Feature Elimination ​\cite{Guyon, I., Weston, J., Barnhill, S., Vapnik, V.,           
Gene selection for cancer classification using support vector machines, ​Machine Learning​, 46:            
389-422}​, for the search and prioritization of biomarker candidates from proteomics,           
extracellular RNA, lipidomics, metabolomics, transcriptomic, and possibly other data types as           
determined by the consortium.  

 

https://dev-mnap-tools-yale-edu.pantheonsite.io/


 
We will also develop network analysis tools to analyze both single-perturbation and temporal             
dynamic patterns from longitudinal time-course expression data and identify expression patterns           
associated with diseases or phenotypes and their regulatory mechanisms. In particular, we will             
construct the gene co-expression networks and find modules (with associated expression           
signatures) enriched in diseases or phenotypes. Finally, we will identify gene regulatory logics             
driving diseases or phenotypes via Loregic ​\cite{25091629}​. We will construct the regulatory            
networks for biomarker genes using ENCODE and other publicly available molecular profiles            
such as ChIP-seq data. 
 
We will conduct out analysis by integrating electronic health records, patient-reported outcomes,            
and imaging data. We will build upon our evaluation of the aforementioned approaches and              
develop software that provide diverse functionality for the analysis of A2CPS datasets. The             
software will be made modular, open-source, user-friendly, and will include appropriate           
documentation and easy-to-follow tutorials. It will be crafted such that it requires little external              
dependencies, is straightforward to set up, and can work as a stand-alone package. The tool               
will not duplicate existing software with similar features. It will use standard formats for data               
input and output to facilitate its use and interoperability with other software. 

Metabolomics 
XCMS will be used to perform statistical testing between groups to identify biomarkers using              
Welch’s ​t​-test with unequal variances and the “HPLC/Q-TOF” parameter ​\cite{​22533540​}.          
Dysregulated metabolic pathways will be identified using mummichog ​\cite{​23861661​} using the           
entire metabolic feature table. Integrative analysis with other omics data, such as proteomics             
and transcriptomics will be employed using the autonomous multimodal metabolomics data           
integration approach described in \cite{​29893550}​. 

Lipidomics 
Lipid biomarkers of acute to chronic pain will be computed by taking the log10 quantity ratios                
between conditions, calculating statistical significance adjusting for multiple testing and pathway           
analysis will be performed to identify active pathways that are dysregulated. Pathway analysis             
will be performed by computing a Z-score for each weighted pathway, based on the molecular               
concentration of lipid species across all possible lipid pathways from Reactome following the             
methods in \cite{​27816901​}. To integrate lipidomics with other omics data, we will employ both              
cluster based and network based approaches \cite{​28193460​}. 
 

Neuroimaging 

Few studies have systematically studied concurrent multi-modal alterations in this condition or            
linked such impairments to its genetic risk, functional outcome, and individual differences in             
clinical outcome in chronic pain disorders. ​This Neuroimaging component of the proposal has             
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the potential to map hitherto undiscovered neural network alterations in pain disorders with             
unprecedented level of data integration quality. The approach is further strengthened by the use              
of the following key innovative tools in the analyses of the DIRC DIAC: 
  
Seed-based Analyses Focused on Subcortical Reward Pathways​​. Our seed-based         
approach will closely follow our prior studies using subcortical anatomically-defined nuclei           
\cite{​20498341​}. The analysis starts using individual-specific, anatomically defined subcortical         
seeds focused on reward pathways (e.g. accumbens, see ​Figure 2C-E​​) to test whether there is               
widespread reward-related ‘connectomic’ signature in chronic pain. Here we will use our            
validated in-house Matlab tools \cite{​21415225​,​21193174​} to examine subcortical coupling with          
all voxels in the brain. First, we compute a seed-based correlation map by extracting average               
time-series across all voxels in each subject’s bilateral anatomically defined seed through            
FreeSurfer-based segmentation \cite{​11832223​,​15501102​} (or any other subcortical seed of         
interest). This signal is then correlated with each gray matter voxel. In turn, the computed               
Pearson correlation values are transformed to Fisher Z values (Fz). This yields a map for each                
subject, where each voxel’s value represents connectivity with the anatomically-defined          
subcortical seed. 
 
Network-level Analyses Based on Existing Parcellations​​. ​​We will perform regionally          
constrained analyses based on well-established functional network segmentation, consisting of          
~100 brain areas in 7 functional networks, derived from resting-state connectivity analyses in             
large datasets \cite{​21653723​}. We will also use state-of-the-art network parcellation schemes           
made available by David Van Essen’s lab (see Letter of Support). This approach accomplishes              
a dimensional reduction, while also reducing noise. This, however, reduces spatial resolution            
and could potentially mask disorder-specific alterations below the level of network parcellation.            
Thus, we use this strategy in parallel with, rather than in place of, voxel-wise analysis. For                
functional connectivity analyses, we will average fluctuations in BOLD signal within an area for              
each network and compute co-variation among the resulting regional signals. For structural            
connectivity, we sum streamlines within each of the cortical areas, generating a ‘parcellated’             
Connectome for each subject, resulting in a data-reduced structural connectivity matrix on a             
standard cortical mesh. This will provide a reduced large-scale functional and structural            
connectivity matrix for each subject. 
 
Data-driven Analyses​​. ​​Strong evidence implicates specific networks and regions in functional           
impairment in chronic pain. However, functional/structural dysconnectivity in chronic pain          
disorders, especially within cortical networks, may be highly variable, given clinical           
heterogeneity. We thus designed new neuroimaging techniques to identify dysconnectivity in a            
data-driven fashion, termed global brain connectivity (GBC)       
\cite{​22980587​,24314349,21496789}. We have applied GBC-type measures to clinical        
questions in collaboration with the developer of GBC, Dr. Michael Cole, who will be consulted to                
optimize GBC analyses (see Letters of Support). GBC provides a measure of the average              
connectivity strength from one voxel/area to all other voxels/areas – thus producing an unbiased              
approach as to the location of dysconnectivity. Unlike seed-based approaches, GBC is sensitive             

 



to consistent perturbations (irrespective of target locations) in the functional/structural          
connectivity of an area. Further, unlike seed approaches, GBC involves one statistical test per              
voxel rather than one test per voxel-to-voxel pairing, substantially reducing multiple           
comparisons (e.g., 30k vs. ~450 million). These improvements dramatically increase the           
chances of identifying group differences in connectivity, or individual differences correlated with            
symptoms \cite{​22980587​,21496789,19909818,22745498}. By extension, this approach can be        
applied to structural connectivity derived from DWI, either at the whole-brain level or within              
associative networks. 
 
Group-level Analyses. To examine between-group differences or relationships with clinical          
assessments, Fz maps are entered into an independent samples t-test (or other appropriate             
2​nd​-level tests) (​Figure 2​​). Whole-brain type I error correction is accomplished via threshold-free             
cluster enhancement (TFCE) non-parametric techniques implemented in FSL’s ​Randomise tool          
\cite{​18501637​}. This approach was chosen because the studies will not necessarily recruit            
demographically matched samples. 
 
 
Normalize processed datasets and deconvolute multi-omics profiles 
The molecular profiles obtained by RNA-Seq and other omics primary data processing pipelines             
will be normalized and registered between time points and between individuals. Normalization is             
critical in order to identify differential biomarkers of diseases or phenotypes. We will also              
evaluate existing tools for differential "omic" analysis ​\cite{25516281}{19910308} as well as           
develop new methods if necessary in order to identify the molecular biomarkers that show              
significant differences between diseases and normal conditions.  
  
One of the main analysis problems will be to develop methods to deal with longitudinal time                
course in multi-omics datasets. Toward this end, we will normalize omics data from several              
experiments individually, and then account for uneven sampling and time gaps using a             
Lomb-Scargle periodogram \cite{22424236}{16303799}{10643760}​. Each periodogram will then       
be available for standard time-series analysis and data clustering such as the hierarchical             
clustering used to obtain common trends and assess biological relevance using such tools as              
Gene Ontology, Reactome, KEGG and WikiPathways for pathway analysis         
\cite{22424236}{21177976}{12140549}​. This framework will normalize and compare many        
different types of omics datasets. To identify specific effects within massive quantities of             
longitudinal data we will develop tools that use bootstrap simulations to assess power and              
significance, taking into account the auto-correlated behavior of the data-points and           
periodogram analyses described above, where the number of datapoints can be leveraged to             
reduce the prediction error at each individual point. 
  
To identify both intracellular and tissue composition changes under disease conditions, we will             
apply the Epigenomic Deconvolution method, which utilizes lists of loci exhibiting variation in             
CpG methylation levels across constituent cell types compiled from reference methylomes           
produced by the NIH Roadmap Epigenomics project \cite{25693563} and from a growing            

 



multitude of array-based profiles in NCBI GEO and other public archives. Starting from             
methylation profiles of tissue homogenates we will estimate both cell type proportions and             
methylation profiles of constituent cell types. The proportion estimates will then be used as a               
"key" to deconvolute gene expression and other "omic" profiles of constituent cell types. 
 

Aim 3)​​ Integrative Analysis [currently 3081 words] 
 
===========================  outline  ============================= 
3.1 overview [YY to write w/ MG rough dictation] 
 
3.2 Prelim Res.  
3.2a our experience leading consortium analyses in the framework of AWGs for general 
genomics [YY] 
3.2a1 our experience doing integrative analysis of consortium's wide datasets  
Relating gene expression to chromatin - building integrative models [YY] 
3.2a2 relating 'omics to variants in general (funseq, radar, uORF) [YY w/ JZ] 
3.2b our experience leading consortium analyses in the framework of AWGs for disease 
genomics [YY] 
3.2b1 ​Brain disease​​ [YY + PE] 
3.2b2 cancer  [YY] 
 
3.3 Proposed research  
3.3a integrative analysis of the main consortium 'omics & imaging data & EHR, trying to develop 
multi-omic signatures of A2P  
3.3a1 - forming an AWG to tackle this problem [YY+JR - 1 para] 
3.3a1i  general support for consortium activities  [YY+JR] 
3.3a2 Using adv. deep learning for the signatures analysis [YY+PE+JW] 
3.3a3 futility analysis on the core analysis [JZ+LS] 
3.3b relating the integrative analysis to variants (outreach analysis) say it connects to SOC [BL] 
3.3c relating to other ext. Data (eg methylation, blueprint, GTex, encode, exRNA)[BL] 
 
==================================================================== 
 
 

3.1 Overview 
In aim 3, we will try to do large-scale integrative analyses based on all the data types produced 
by the A2CPS Consortium. Firstly, we will integrate the large-scale omics data, imaging data, 
and the EHR data together, using a variety of machine learning techniques, such as deep 

 



learning models, to accurately predict the acute to chronic pain signatures. Then, we will also try 
to integrate the main Consortium data with complementary external data sources, including 
genomic variation data and other existing functional genomic data, to understand the regulation 
of the signatures. 
  
We will try to do this large-scale data integration in a consortium framework, through forming an 
Analysis Working Group (AWG). We will also help lead futility analysis in this group, to estimate 
the sample numbers needed to carry out these analyses on detecting the signature effect. 
  
For this aim, we will demonstrate our ability and experience carrying out this aim through our 
past work in large-scale genomics efforts, both in more basic science (e.g. ENCODE and 1000 
Genomes Project​) and disease-oriented contexts, particularly in relation to psychiatric diseases 
(e.g. PsychENCODE). Particularly, we will also talk about our past work in integrating 
large-scale genomic data with genomic variation data. 
 

3.2 Preliminary Results 
3.2a Experience leading consortium analyses in the framework of AWGs 
for general genomics 
3.2a1 Integrative analysis of consortium's wide datasets 
We served in a variety of leadership roles for several large-scale national collaborations focused 
on general functional genomics and data science, including (mod)​ENCODE ​Consortium, 1000 
Genomes Project, extracellular RNA Consortium, KBase and Northeast Structural Genomics 
Consortium. 
  
We played a lead role in the integrative analysis of multi-omic datasets from ENCODE 
Consortium​ ​\cite{22955616,22955619,22955620,25164755,25164757}​ and modENCODE 
Consortium ​\cite{25164755,21177976}​. By integrating large-scale RNA-seq and ChIP-seq 
datasets from ENCODE, we have developed statistical models to quantify the relationship 
between gene expression and transcription factor binding and/or chromatin modification 
signatures ​\cite{21926158,22955978}​. ​We have also developed a number of approaches for 
constructing and studying biological networks that can be applied to analyze ENCODE datasets. 
We integrated multiple genomic datasets to construct gene regulatory networks consisting of 
various regulatory factors including transcription factors and micro-RNAs and their target genes 
\cite{22955619,25164757,22125477}​. For constructed gene regulatory networks, we developed 
methods to construct and analyze human and model organism gene regulatory networks 
\cite{20439753,21177976,22125477,21430782,22955619}​ using ENCODE and modENCODE 
datasets. We also analyzed hierarchical structures of gene regulatory networks and found that 
hierarchy rather than centrality ("hubiness") better reflects the importance of regulators 
\cite{22955619,17003135,20122235,20351254,20523742}​. 
  

 



We also helped lead the structural variation (SV) analysis for the 1000 Genomes Project 
\cite{20981092,26432245,24092746}​. We developed an annotation pipeline that maps SNPs, 
indels and SVs on to protein coding genes ​\cite{28851873}​. We also developed algorithms to 
identify indels and structural variations based on split-read, read-depth and paired-end mapping 
methods. Using the datasets from 1000 Genomes Project, we studied the distinct features of 
SVs originating from different mechanisms ​\cite{28662076}​. We performed SV mechanism 
annotations for the 1000 Genomes Project Phase 3 deletions using BreakSeq ​\cite{20037582}​, 
categorizing 29,774 deletions by their creation mechanisms. 
  
We are an integral part of the extracellular RNA (exRNA) Consortium 
\cite{27112789}{27076901}​, a large-scale collaboration project aimed at establishing dada 
standards, a data portal, and tools and reagents to the scientific community. We performed 
integrative analysis of consortium data and provide support to the broader consortium ​\cite{Cell 
Sys}​. We developed the exceRpt (extra-cellular RNA processing toolkit) 
(http://github.gersteinlab.org/exceRpt), a pipeline for the analysis of extracellular small RNA-Seq 
experiments. 
  
We also participated in the DOE KBase (The United States Department of Energy Systems 
Biology Knowledgebase) ​\cite{29979655}​, which is an open-source software and data platform 
that enables data sharing, integration, and analysis of microbes, plants, and their communities; 
and Northeast Structural Genomics Consortium ​\cite{18487680}​, which employs both X-ray 
crystallography and NMR spectroscopy to provide novel structural information useful in 
modeling thousands protein domains. 
 
 
3.2a2 Integrative analysis of omics datasets with genomic variants 
We have extensively analyzed patterns of variation in non-coding regions and their coding 
targets ​\cite{21596777}{22955619}{22950945}​. In recent projects ​\cite{24092746,25273974}​, we 
integrated multiple methods into a comprehensive prioritization pipeline called FunSeq (​Aim 3 
Figure 1​​). The pipeline identifies sensitive regions with annotations under high selective 
pressure, links non-coding mutations to their target genes, and prioritizes variants based on 
network connectivity. It also identifies deleterious variants in non-coding elements, including TF 
binding sites, enhancers, and regions corresponding to DNase I hypersensitive sites. Recently, 
we developed RADAR by extending the FunSeq variant prioritization framework to the RNA 
transcript level ​\cite{Genome Biology in press}​. RADAR integrates the ENCODE eCLIP 
datasets, Bind-n-Seq datasets and RBP KD RNA-seq datasets to reconstruct a comprehensive 
post-transcriptional network. By combining other genomic information including conservation 
and motif features, RADAR could pinpoint deleterious variants, such as splicing-disruptive ones, 
which may be missed by other methods. Finally, we developed a computational tool to 
systematically annotate uORFs (upstream open reading frames) in the genome ​\cite{29562350}​. 
We applied this tool to predict the consequences of genomic variants and somatic mutations for 
affecting uORFs. 
  

 



Additionally, we have developed a variety of tools that prioritize protein-coding variants. VAT 
(Variant Annotation Tool) characterizes variants according to affected genes and transcript 
isoforms ​\cite{22743228}​, while ALoFT (Analysis of Loss of Function Transcripts) predicts 
loss-of-function (LOF) mutations and their impact ​\cite{28851873}​. Relatedly, our NetSNP 
biological network integration tool ​\cite{23505346}​ identifies cancer genes based on 
connectivity. STRESS ​\cite{27066750}​ and Frustration ​\cite{27915290}​ are two other tools we 
built to identify mutations that affect allosteric hotspots in proteins and identify key functional 
protein regions prone to genetic alterations. Our Intensification tool searches for deleterious 
mutations within repeat regions of proteins ​\cite{27939289}​. 
 
 
3.2b Experience leading consortium analyses in the framework of AWGs 
for disease genomics 
3.2b1 Brain diseases 
It is clear that the sensory, process and modulation of acute and/or chronic pain is involved in a 
distributed network in the brain, especially for the pain-relevant brain regions. Pain can affect 
mood, sleep, memory and concentration, and has association with various psychiatric diseases 
\cite{17087832,28146315}​. Considering our extensive experience in neurogenomics and 
psychiatric diseases, our work is very relevant to the A2CPS Consortium. 
  
We played a lead role in the ​data analysis ​for the PsychENCODE Consortium 
\cite{26605881,29439242}​, a project aimed at understanding regulatory variants in the context 
of their functional connections to psychiatric disorders, with several papers currently in the 
revision stage ​\cite{capstone4,capstone1,capstonedevelopment}​. In our recent work, we 
identified functional elements, multiple QTLs and regulatory-network linkages specific to the 
adult brain by integrating data from the PsychENCODE Consortium together with relevant 
external data sources from ENCODE, CommonMind, GTEx, and Roadmap ​\cite{capstone4}​. In 
addition to the adult brain, we also assessed the degree of chromatin differences between 
developmental stages relative to that between tissues. Furthermore, we used the regulatory 
network based on Hi-C, QTLs, and activity relationships to connect noncoding GWAS loci to 
potential psychiatric disease genes including schizophrenia, autism, bipolar and Alzheimer's 
disease. We also ​participate in​ the BrainSpan Consortium, which aims to create a 
comprehensive map of gene expression and to understand how the human brain changes 
throughout life. In collaboration with Prof. Nenad Sestan's group at Yale, together with groups at 
USC, the Allen Brain Institute and elsewhere, we analyzed large amounts of RNA-seq data to 
characterize the transcriptome of the human brain during development ​\cite{24695229}​. We 
have already developed RSEQtools ​\cite{21134889}​, a suite of tools that performs common 
tasks on RNA-seq data such as calculating gene expression values, generating signal tracks of 
mapped reads, and segmenting that signal into actively transcribed regions. 
  
Particularly, we developed an integrated and interpretable deep-learning model, Deep 
Structured Phenotype Network (DSPN), that could predict psychiatric disorder phenotypes using 

 



genotype and functional genomic elements ​\cite{capstone4}​. The model combines a Deep 
Boltzmann Machine (DBM) architecture ​\cite{R. Salakhutdinov, G. Hinton, Deep Boltzmann 
Machines. Proceedings of the Twelfth International Conference on Artificial Intelligence and 
Statistics (2009)}​ with conditional and lateral connections derived from a gene regulatory 
network. Traditional classification methods such as logistic regression predict phenotype directly 
from genotype, without using intermediates such as the transcriptome. In contrast, the DSPN is 
constructed via a series of intermediate models that add layers of structure. We included layers 
for intermediate molecular phenotypes associated with specific genes (i.e., their gene 
expression and chromatin state) and pre-defined gene groupings (cell-type marker genes and 
co-expression modules), multiple higher layers for inferred groupings (hidden nodes), and a top 
layer for observed traits (psychiatric disorders and other brain phenotypes). Finally, we used 
sparse inter- and intra-level connectivity to integrate our knowledge of QTLs, regulatory 
networks, and co-expression modules from the sections above. By using a generative 
architecture, we ensure that the model is able to impute intermediate phenotypes, as well as 
provide forward predictions from genotypes to traits. 
 
3.2b2 Cancer 
In addition to neurogenomics and psychiatric diseases, we also played a lead role in the ​data 
analysis ​for the ​Pan-Cancer Analysis Working Group (PCAWG) ​Consortium 
\cite{https://www.biorxiv.org/content/early/2017/07/12/162784,https://www.biorxiv.org/content/ea
rly/2018/09/07/179705}​, and ​participated in TCGA PRAD (prostate cancer) and KICH (kidney 
cancer) projects ​\cite{21307934,28358873,26536169}​. ​PCAWG ​Consortium represents​ an effort 
to combine all TCGA and ICGC whole genome sequencing data to improve our understanding 
of cancer. We are co-leaders of the PCAWG-2 group, and participate in the analyses of the 
PCAWG-3, 8, and 11 groups. ​We leveraged our expertise in non-coding regions in the first 
whole-genome analysis of TCGA ​kidney cancer ​(KIRP) samples, in which we found significant 
genomic noncoding alterations beyond traditional known drivers of KIRP located within coding 
exons ​\cite{28358873}​. 
  
We also developed ​a variety of tools for integrative analysis of cancer genomics data.​ We 
developed LARVA (Large-scale Analysis of Recurrent Variants in noncoding Annotations), a 
statistical method for identifying significant mutation enrichments in noncoding elements 
\cite{26304545}​. Furthermore, we developed MOAT (Mutations Overburdening Annotations 
Tool), an alternative, empirical mutation burden approach that evaluates mutation enrichments 
based upon permutations of the input data ​\cite{29121169}​. More recently, we have developed 
a network-based annotation for cancer mutations by leveraging thousands of functional 
genomics datasets from ENCODE cell types ​\cite{ENCODEC submitted}​. Our analysis improves 
the understanding of different oncogenic transformations in the context of a broader cell space. 
Finally, we organized the whole ENCODE resource as a coherent workflow for cancer genomics 
to prioritize key elements and variants. 
 

 



3.3 Proposed Research 
3.3a Integrative analysis of the A2CPS consortium's omics & imaging data 
& EHR data, trying to develop multi-omic signatures of A2P 
3.3a1 Formation of an Analysis Working Group (AWG) to Coordinate Integrated 
Analysis 
The DIAC will help organize and coordinate the formation of an analysis working group (AWG) 
in order to lead the data analysis efforts of the consortium. All members of the consortium will be 
invited to participate in the regular (frequency to be determined) AWG conference calls. Data 
analysis efforts by members of the DIAC as well as other members of consortium will be 
encouraged to be presented on these AWG calls and this will facilitate integrative analysis of 
consortium wide data as well as provide a forum for discussion of these integrative analysis 
efforts. The AWG will be responsive the steering committee of the A2CPS Consortium and will 
routinely report on the ongoing analysis efforts. 
 
3.3a1i General Support for Consortium Activities 
In addition to the integrative analysis efforts the DIAC will also provide more general analysis 
support for members of the A2CPS Consortium. Members of the DIAC will collaborate with 
members of the consortium on more focused analyses. The DIAC will support the DCC a in 
support of the pipelines and tools developed by the DIAC and will support the SOC in outreach 
efforts to publicize the analysis pipelines, tools and analysis work products developed and 
performed by the DIAC. In addition to coordinating the AWG, the DIAC will participate in other 
A2CPS Consortium efforts such as conference calls and in person meetings in order to further 
support the analysis needs of the consortium. 
 
 
3.3a2 Using advanced deep learning models for the signatures analysis 
To model the complex interactions between genotype and acute to chronic pain signatures, we 
will develop an interpretable deep-learning framework called the Deep Structured Phenotype 
Network (DSPN). Briefly, the DSPN model combines a Deep Boltzmann Machine (DBM) 
architecture with conditional and lateral connections derived from a gene regulatory network 
(​\cite{R. Salakhutdinov, G. Hinton, Deep Boltzmann Machines. Proceedings of the Twelfth 
International Conference on Artificial Intelligence and Statistics (2009)}​), which allows prior 
structure to be embedded within a deep model of the joint distribution of molecular and 
high-level phenotype signatures (i.e. acute to chronic pain signatures). 
  
Traditional classification methods such as logistic regression could predict phenotype directly 
from genotype, without using intermediates such as the transcriptome (​Aim 3 Figure 2A​​). In 
contrast, the DSPN model will be constructed via a series of intermediate models that add 
layers of structure. Diverse data types from the A2CPS Consortium and prior knowledge such 
as genotype data, transcriptome data, proteome data, metabolome data, cell-type marker 

 



genes, co-expression modules, enhancers, as well as imaging data and EHR, will be included in 
the intermediate models and further integrated in the DSPN model for a top-layer prediction on 
the observed traits (i.e. phenotypic pain signatures) (​Aim 3 Figure 2B​​). 
  
A key advantage of the DSPN model is interpretable. By using this generative architecture, we 
ensure that the DSPN model is able to impute intermediate phenotypes, as well as provide 
forward predictions from genotypes to phenotypic pain signatures. The DSPN model is defined 
to be a conditional DBM, with extra structure added to the visible units to reflect regulatory 
relationships between various intermediate phenotypes. The model will be trained using 
persistent Markov Chain Monte Carlo, and prediction is performed by minimizing the model 
free-energy (intermediate variables) or feed-forward prediction (observed traits) (see ​\cite{R. 
Salakhutdinov, G. Hinton, Deep Boltzmann Machines. Proceedings of the Twelfth International 
Conference on Artificial Intelligence and Statistics (2009)}​).  
 
 
3.3a3 Futility analysis on the core analysis ​​[by JZ] 
#### we will help to lead the discussion  
As stated in the RFA, we will help lead a discussion of whether.... comprehensive analysis to 
check whether the gene signatures that we developed for acute to chronic pain will be 
sufficiently powered after the study completes at the end of year three. We imagine that this will 
take place in to be formed analysis group (described above in XXX). It will involve many 
participants not just those in the DIRC but those in the CCC, which has many statisticians. Also, 
we anticipate that not just signatures developed by the DIRC will be evaluated but those by 
other components of the A2CPS and that these signatures will reflect many different data 
modalities (eg transcriptome, proteome, metabolome....) and that a big part of the assessment 
will be determining which modality provides the greatest power.  
 
To be concrete about this process , we describe more for what we could to specifically assess 
the signatures developed in the DIRC above, For these these, We will check if we can develop 
a signature with enough statistical power or just marginal power but can be reasonably 
improved with the addition of more data. In addition to power analysis, we will also perform 
mediation analysis. Identified candidate signatures will be evaluated using mediation analysis to 
distinguish between true biological association and mediators. For example, one differentially 
expressed gene between case and control group can be independently associated with the 
phenotype and other variables, or 2) associated with only with the other variable through its 
effects the phenotype or vice versa. Mediation will be assessed using the Baron and Kenny 
criteria. Only in the absence of a significant indirect effect, we will conclude the true association. 
We will do this analysis in a consortium wide fashion by looking at the signatures that other 
groups have developed and try to benchmark them in it in terms of their power to unify our 
scientific discoveries. 
  
We will use different statistical schemes tailored specifically for particular computational 
methods. For instance, the simplest approach would be for differentially expressed genes. We 

 



will calculate a desirable sample size by assuming the negative binomial distribution of the read 
counts and using a generalized linear model at the gene level that considers the dependence 
between gene expression level and its variance (dispersion) ​\cite{29843589}​. These 
assumptions have been proved to properly control the false positive rate and provide an 
accurate estimation. Finally, we have extensive experience in relating such calculations to 
PsychENCODE and cancer driver detection in determining cohort size. With a similar sample 
size, we have successfully found DEX signatures and modules to in various cancer and 
psychiatric diseases.  
 
3.3b Integrative analysis of the A2CPS Consortium's data with genomic 
variants 
To investigate the genetic basis of pain signatures, we will integrate processed functional 
genomic data with the genotype information from the same individuals in order to identify 
eQTLs, and will extend this strategy to identify metabolomic variants (mQTLs), as well as 
variants associated with proteomic changes (pQTLs). To further dissect the associations 
between genomic elements and QTLs, we will compare all of the different types of QTLs with 
each other and with different genomic annotations. In addition, to characterize the rare variants 
within the individuals studied, we will perform burden tests with LARVA ​\cite{26304545}​, a 
statistical method developed by our group, to identify genomic regions that are over or under 
represented in terms of the number of rare variants. Furthermore, we will perform allelic analysis 
of available functional genomic data to identify allelic heterozygous variants using AlleleSeq 
\cite{21811232}​. Finally, we will use FunSeq ​\cite{​25273974​}​ in order to integrate rare variants 
and associated functional genomic data to rank those that are most likely to be significant for 
diseases or phenotypes. 
  
We will also compile these identified eQTLs, mQTLs, pQTLs, as well as their associated pain 
phenotypic significance into easy-to-use database formats, and collaborate with the SOC to 
make them accessible to the consortium, as well as external researchers through the A2CPS 
data portal. 
 
 
3.3c Integrative analysis of the A2CPS Consortium's data with external 
data sources 
To generate a comprehensive molecular map and regulatory network for the acute to chronic 
pain signatures, we will integrate complementary large-scale data from external sources, 
including ENCODE, Roadmap Epigenomics, Blueprint Epigenome, GTEx and exRNA 
Consortium. Specifically, we will incorporate the ENCODE TF data, the GTEx tissue-specific 
profiles, and the epigenetic marks of transcriptional regulatory elements from the Roadmap 
Epigenomics and Blueprint Epigenome. From these datasets we will construct integrative 
models relating epigenetics and transcriptomics using our previously developed statistical and 
machine learning approaches ​\cite{21926158,22955978}​. Briefly, combined datasets of genomic 
features in small bins (e.g. 100bp) will be correlated with expression values over those regions. 

 



We will then generate statistical models relating epigenetic marks, TF binding, as well as gene 
expression. 
  
We will further extend these models to incorporate proteomic and metabolomic data. To build 
our integrated models, the metabolomic and proteomic data will be combined with pathway 
information, such as Gene Ontology, KEGG, Reactome and WikiPathways 
\cite{17923450,22424236,21177976,12140549}​. These pathways will be linked to transcriptomic 
data through their associated genes, using the same machine learning approaches to relate 
transcriptional activity to metabolite and protein abundances. Thus, we can integrate 
metabolomic and proteomic data with epigenetic and cis-regulatory data. Finally, the large depth 
and coverage of transcriptomic experiments will be leveraged to develop integrative models, 
which will be valuable for the identification of key biomarkers for acute to chronic pain 
signatures. 
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### Figures (6 => 1.5pg) 
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## Aim 1 figures 
 
 
 

 
Metabolomics Figure 1. Blood metabolite clustering. ​a Overview of the metabolites identified by             
1H-nuclear magnetic resonance (NMR) organized by metabolic pathway. ​b Heat map and hierarchical             
cluster analysis indicate positive relationships between polar metabolites identified by 1H-NMR in serum             
from patients with rheumatoid arthritis before treatment with rituximab. 
 

 



 

## Aim 2 figures 

 
Figure 1​​ DREISS workflow. 
 

 



 
Figure 2​​ Procedures for mapping logic gates and calculating consistency scores. 
 
 

 



Figure 3​​ Outline of OrthoClust. 
  

 



 
Figure 4     
Deconvolution analysis of bulk and single-cell transcriptomics reveals cell fraction changes 
across the population. 
 
 
 

 



 
 
Figure 5     
The schematic diagram of the hierarchy score maximization algorithm. In hierarchical 
networks, the downward, upward, and horizontal edges are shown in red, blue, and 
black colors, respectively.  
 

 
Figure 5 (Imaging). (A-B) Data-driven global whole-brain connectivity reveals premotor PFC           
area that is related to self-reported impulsivity and in turn drinking, shown on the surface and in                 
the volume representation. (C) Relationship between bilateral premotor connectivity and          

 



impulsivity, replicating prior findings. (D) Relationship across two bilateral premotor areas,           
illustrating that they likely form a ‘network’. (E) Relationship between maximum lifetime drinks             
and premotor connectivity (r=.18, p<.0025, 2-tailed) and (F) impulsivity (r=.34, p<.0001,           
2-tailed). (G) Direct relationship between premotor connectivity and drinking is fully mediated by             
impulsivity, establishing a possible causal model. 

## Aim 3 figures 

 
Figure 1. The workflow of FunSeq. 
 
 
 

 



 
Figure 2. DSPN model (A) The schematic outlines the structure of the following models: Logistic 
Regression (LR), conditional Restricted Boltzmann Machine (cRBM), conditional Deep 
Boltzmann Machine (cDBM), and Deep Structured Phenotype Network (DSPN). Nodes are 
partitioned into four layers (L0-L3) and colored according to their status as visible, visible or 
imputed (depending on whether observed or not at test time) or hidden. (B) DSPN structure is 
shown in further detail, with the biological interpretation of layers L0, L1, and L3 highlighted. 
Gene regulatory network (GRN) structure is embedded in layers L0 and L1, with different types 
of regulatory linkages and functional elements shown​. 
 
 
 
 
 

DIRC SOC  
%%% Contribute 1 page to the SOC on impact analysis [BL, double recycle, by Sun.] 
Assess the impact of the consortium and facilitate the dissemination of exRNA            
knowledge through text mining 
The DIAC will build upon the success we have had with our evaluations of the impact of large                  

scientific consortia and will continue to analyze the patterns of dissemination of knowledge             

about exRNA within the consortium and across the consortium into external communities. We             

 



will construct co-authorship networks from temporal data available using PubNet ​and use the             

diffusion base model we developed in Yan et al. \cite{21603617} to measure how quickly              

information about ex-RNA diffuses out of the consortium​. As there will be many different ways               

for a scientific discovery to be exposed to the community, the impact of a paper would not be                  

able to merely quantified by the number of citations. In addition to number of citations, we will                 

also collect and analyze statistics such as the number of HTML views, the number of PDF and                 

XML downloads, blog coverage and social bookmarking about papers authored by the            

consortium. In particular, we will look at article Altmetrics data, such as attention score, number               

of times each consortium publication is mentioned by twitter users, the geographic breakdown             

and demographic breakdown of the readers of consortium publications. The distributions of            

readers by professional status (e.g. Bachelor, Master, Doctor, etc.) and by discipline (e.g.             

Biology, Genetics, Computer Science, etc.). We will also use text mining to identify             

high-frequency terminologies about exRNA and collaborate with the SOC to standardize the            

semantics of those terminologies to facilitate better scientific communications within the           

consortium as well as external communities. Importantly, we will use text mining to construct a               

database about exRNA-disease relationships and collaborate with the SOC to make such            

knowledge easily accessible to the consortium participants as well as external researchers. 
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