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Abstract 
Despite progress in defining genetic risk for psychiatric disorders, their molecular mechanisms 
remain elusive. Addressing this, PsychENCODE has generated a comprehensive resource for 
the adult brain across 1866 individuals (resource.psychencode.org). It contains ~79K brain-
active enhancers, sets of Hi-C linkages and TADs, single-cell expression profiles for many cell 
types, ~2.5M expression QTLs, and further QTLs associated with chromatin, splicing, and cell-
type proportions. Integration shows varying cell-type proportions largely account for the cross-
population variation in expression (with ~88% reconstruction accuracy).  It also enables 
construction of a gene-regulatory network, linking GWAS variants to genes (e.g., 321 for 
schizophrenia). We embed the network into an interpretable deep-learning model, which 
improves disease prediction ~6X vs. polygenic risk scores and identifies key genes and 
pathways in psychiatric disorders. 

  
Introduction 
Disorders of the brain affect nearly one fifth of the world’s population (1). Decades of research 
has led to little progress in our understanding of the molecular causes of psychiatric disorders. 
This contrasts with cardiac disease, for which lifestyle and pharmacological modification of 
environmental risk factors has had profound effects on morbidity, or cancer, which is now 
understood to be a direct disorder of the genome (2-5). Although genome-wide association 
studies (GWAS) have identified many genomic variants strongly associated with 
neuropsychiatric disease risk -- for instance, the Psychiatric Genomics Consortium (PGC) has 
identified 142 GWAS loci associated with schizophrenia (SCZ) (6) -- for most of these variants 
we have little understanding of the molecular mechanisms affecting the brain (7). 
 
Many of these variants lie in non-coding regions, and large-scale studies have begun to 
elucidate the changes in genetic and epigenetic activity associated with these genomic 
alterations, suggesting potential molecular mechanisms. In particular, the Genotype-Tissue-
Expression (GTEx) project has associated many non-coding variants with expression 
quantitative-trait loci (eQTLs), and the ENCODE and Roadmap Epigenomics (Roadmap) 
projects have identified non-coding regions acting as enhancers and promoters (8-10). 
However, none of these projects have focused their efforts on the human brain. Initial work 
focusing on brain-specific functional genomics has provided greater insight but could be 
enhanced with larger sample sizes (11, 12). Moreover, new methodologies such as Hi-C and 



3 

single-cell sequencing, have yet to be fully integrated with brain genomics data, at scale (13-
16).  
 
Hence, the PsychENCODE Consortium has generated large-scale data to provide insight into 
the brain and psychiatric disorders, including data derived through genotyping, bulk and single-
cell RNA-seq, ChIP-seq, ATAC-seq, and Hi-C (17). All data have been placed into a central, 
publicly available resource that also integrates relevant re-processed data from related projects, 
including ENCODE, CommonMind (CMC), GTEx, and Roadmap. Using this resource, we 
identified functional elements, QTLs and regulatory-network linkages specific to the adult brain. 
Moreover, we combined these elements and networks to build an integrated deep-learning 
model that predicts high-level traits from genotype via intermediate molecular phenotypes. Here, 
by "intermediate phenotypes" we mean the read out of functional genomic information on 
genomic elements (e.g., gene expression and chromatin activity). In some contexts, these are 
referred to as “molecular endophenotypes” (18). However, we include additional low-level 
"phenotypes" such as cell fractions, so we use the more general term intermediate phenotype. 
We also refer to the high-level traits as “observed phenotypes,” which include both classical 
clinical variables and characteristics of healthy individuals, such as gender and age. 

 
Resource construction 
Resource.PsychENCODE.org is the central site for this paper. Broadly, it organizes data 
hierarchically, with a base of raw data files, a middle layer of uniformly processed and easily 
shareable results (such as open chromatin regions and gene-expression quantifications), and a 
top-level, “cap” of an integrative, deep-learning model, based on imputed regulatory networks 
and QTLs. To build the base layer we included all adult brain data from PsychENCODE and 
merged these with relevant data from ENCODE, CMC, GTEx, Roadmap, and recent single-cell 
studies (Table S1, Fig. 1). In total, the resource contains 3,810 genotype, transcriptome, 
chromatin and Hi-C datasets from PsychENCODE and 1,662 datasets using similar “bulk” 
assays merged from outside the consortium. Overall, the datasets from prefrontal cortex (PFC) 
involve sampling from 1,866 individuals. The resource also has single-cell RNA-seq for 18,025 
cells from PsychENCODE and 14,012 from outside sources (19). These data represent a range 
of psychiatric disorders including schizophrenia (SCZ), Bipolar Disorder (BPD), and Autism 
Spectrum Disorder (ASD). Note, the individual genotyping and raw next-generation sequencing 
of transcriptomics and epigenomics are restricted for privacy protection but access can be 
obtained by individual users upon approval. The protocols for all associated data are readily 
available (Fig. S1). Finally, PsychENCODE has developed a reference brain project on PFC, 
utilizing matched assays on the same set of brain tissues, which we used to develop an 
anchoring annotation (20). 
 

Transcriptome analysis: bulk & single-cell 
To identify the genomic elements exhibiting transcriptional activities specific to the brain, we 
took a conservative approach and used the standardized and established ENCODE pipeline to 
uniformly process RNA-seq data from PsychENCODE, GTEx and Roadmap (Figs. S2 and S3). 
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This consistency makes our expression data and subsequent results (including eQTLs and 
single-cell analyses) comparable with previous work. Using these data, we identified non-coding 
regions of transcription and sets of differentially expressed and co-expressed genes (20, 21). 
For instance, we found 12,080 genes were transcribed in the brains of 95% of the individuals 
surveyed, and >16,000 protein-coding and >9,000 non-coding genes were detected in total (in 
PFC) (20, 21). 
 
Brain tissues are composed of a variety of basic cell types. Gene expression changes observed 
at the tissue level may be due to changes in the proportions of basic cell types (22-27). 
However, it remains unknown how these changes in cell proportions can quantitatively 
contribute to the variation in tissue-level gene expression observed across a population of 
individuals. To address this question, we used two complementary strategies examining 
expression across our cohort of 1,866 individuals. 
 
First, we used standard pipelines to uniformly process single-cell RNA-seq data from 
PsychENCODE, in conjunction with other single-cell studies on the brain (14, 16, 19). Then we 
assembled profiles of brain cell types, including both excitatory and inhibitory neurons (denoted 
as Ex1 to Ex9, and In1-8, following previous conventions), major non-neuronal types (e.g., 
microglia and astrocyte), and additional cell types associated with development (20). Depending 
on the underlying sequencing and quantification, our profiles were of two fundamentally different 
formats, Transcripts Per Kilobase Million (TPM) and Unique Molecular Identifier counts (UMI). 
The former ("TPM-profiles") includes the uniformly processed PsychENCODE developmental 
single-cell data merged with published adult and developmental data (Fig. S4 and Table S2) 
(14, 16).  In contrast, the "UMI-profiles" are built by merging PsychENCODE adult single-cell 
profiles with other recently published datasets (14). Both formats share common neuronal and 
major non-neuronal cell types and are used interchangeably in various analyses here (Fig. S5; 
Tables S3 and S4). Moreover, the expression values of biomarker genes for the same cell type 
were correlated between two formats (Figs. S6 and S7). Note, however, that our TPM-profiles 
have additional development-specific cell types, such as quiescent and replicating. 
 
From both sets of profiles, we can generate a matrix C of expression signatures, comprising 
marker genes and their expression levels across various cells (Fig. S8). In this matrix, a number 
of genes had expression levels that varied more across cell types than they did in bulk-tissue 
measurements across individuals in a population (e.g., dopamine receptor DRD3; Fig. 2A). This 
suggests cell-type changes across individuals could contribute substantially to variation in 
individual bulk expression levels. 
  
Second, we used an unsupervised analysis to identify the primary components of bulk 
expression variation. We decomposed the bulk gene-expression matrix using non-negative 

matrix factorization (NMF, B ≈ VH), and determined whether the top components, capturing the 

majority of covariance (NMF-TCs, columns of V), were consistently associated with the single-
cell signatures (Figs. 2B and 2C) (20). A number of NMF-TCs were correlated with cell types 
from matrix C for both TPM and UMI data -- e.g., component NMF-17 is highly correlated with 
the Ex2 cell type (r=0.63, Figs. 2C and S9). This demonstrates that an unsupervised analysis 



5 

derived solely from bulk data roughly recapitulates the single-cell signatures, partially 
corroborating them. 
 
We then examined how variation in proportions of basic cell types contributes to variation in bulk 
expression. To this end, we estimated the relative proportions of various cell types for each 
tissue sample (i.e., "cell fractions"). In particular, we deconvolved the bulk, tissue-level 
expression matrix using the single-cell signatures to estimate cell fractions across individuals 

(W), solving B≈CW (Fig. 2B) (20). As a validation, our estimated fractions of NEU+/- cells 

matched the experimentally determined fractions from reference brain samples (Median error = 
0.04, Fig. S10). Overall, our analyses demonstrated that variation in cell types contributed 
significantly to bulk variation. That is, weighted combinations of single-cell signatures could 
account for most of the population-level expression variation, with an accuracy of ~89% (Fig. 
2D, 1 - || B - CW ||2 / || B ||2 = 89%), and when calculated on a per person basis, this quantity 
varies ± 4% over the 1866 individuals in our cohort (Figs. S11 and S12).  Also, our results 
explained more variation at both population and individual levels than previous deconvolution 
approaches (Fig. S13) (20). 
 
We identified cell-fraction changes associated with different traits (Figs. 2E, S14, S15, S16, and 
S17). For example, there are different fractions of particular types of excitatory and inhibitory 
neurons in male and female samples; the fraction of In6, for instance, was significantly higher in 
females (Fig. 2E). Also, in individuals with ASD, the fraction of Ex5 was higher and 
oligodendrocytes, lower, with some commensurate increase for microglia and astrocytes (Figs. 
2E, and S18) (23, 28). 
 
Finally, we observed an association with age. In particular, with increasing age the fractions of 
Ex3 and Ex4 significantly increased and some non-neuronal types decreased (Figs. 2F and 
S19). These changes may be associated with differential expression of specific genes, e.g., 
Somatostatin (SST), known to be associated with aging and neurotransmission (Fig. 2F) (29) 
. SST exhibits increasing promoter methylation with age, perhaps explaining its decreasing 
expression. Other genes known to be associated with brain aging exhibit different trends, such 
as EGR1 and CP (Figs. 2F, S20, and S21) (20, 30). 
 

Enhancers 
To annotate brain-active enhancers, we used chromatin-modification data from the reference 
brain, supplemented by DNase and ChIP-seq data from Roadmap PFC samples. All data were 
processed by standard ENCODE ChIP-seq pipelines (Fig. S22). Consistent with the ENCODE 
annotations, we define active enhancers as open chromatin regions enriched in H3K27ac and 
depleted in H3K4me3 (Figs. 3A and S23) (20). Overall, we annotated a reference set of 79,056 
enhancers in PFC. 

 
Assessing the variability across individuals and tissues for enhancers is more difficult than for 
gene expression (31). Not only is the variability in chromatin-mark level (e.g., H3K27ac) at 
enhancers across different individuals and tissues high, but the boundaries of enhancers can 
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grow and shrink, sometimes disappearing altogether (Fig. 3A). To investigate this in more detail, 
we uniformly processed the H3K27ac data from PFC, temporal cortex (TC), and cerebellum 
(CB) on a cohort of 50 individuals, primarily of European descent and sequenced to similar 
depth (20) (Fig. S24). Aggregating ChIP-seq data across the cohort resulted in a total of 37,761 
H3K27ac "peaks" (enriched regions) in PFC, 42,683 in TC, and 26,631 in CB -- where each 
peak is present in more than half of the individuals surveyed. Comparing aggregated sets for 
these three brain regions, PFC was more similar to TC than CB (~90% vs 34% overlap in 
peaks). This difference is consistent with previous reports and suggests potentially different cell-
type composition in cerebellum from cortex (32, 33). 
 
We also examined how many of the enhancers in the reference brain are active in each of the 
individuals in our cohort (i.e., having enriched H3K27ac signal). As expected, not every 
reference enhancer was active in each cohort individual. On average, only ~70% ± 15% 
(~54,000) of the enhancers in the reference brain were active in an individual in the cohort, and 
a similar proportion of the reference enhancers (~68%) was active in more than half the cohort 
(Fig. 3B). To estimate the total number of enhancers in PFC, we calculated the cumulative 
number of active regions across the cohort (Fig. S25). This increased for the first 20 individuals 
sampled, but saturated at the 30th. Thus, we hypothesize that pooling the identified PFC 
enhancers from ~30 individuals is sufficient to cover nearly all possible PFC enhancer regions, 
estimated at ~120,000. 
  

Consistent comparison: transcriptome & epigenome 
As we uniformly processed the transcriptomic and epigenomic data across the PsychENCODE, 
ENCODE, GTEx, and Roadmap datasets, we could compare the brain to other organs in a 
consistent fashion and also compare the transcriptome variation to that of the epigenome. 
Several approaches, including PCA, t-SNE, and reference component analysis (RCA) were 
tested to determine the most appropriate method for comparison. We found that, although 
popular and interpretable, PCA de-emphasizes local structure and is overly influenced by 
outliers; in contrast, t-SNE preserves local relationships but “shatters” global structure. RCA is a 
compromise (20); it captures local structure while maintaining meaningful distances globally. We 
used RCA to project gene expression from PsychENCODE samples against a reference panel 
of gene-expression for different tissues derived from GTEx, and then reduced the dimensionality 
of the projections using PCA. RCA thus allowed us to represent high-dimensional expression 
data in a simple two-coordinate diagram. 
 
For gene expression, RCA revealed that the brain separates from the other tissues in the first 
component (Fig. 3E and S26). In particular, for brain, inter-tissue comparisons exhibit more 
differences than intra-tissue ones (Figs. S27, S28, S29, and S30). A different picture emerged 
for chromatin. The H3K27ac chromatin levels at all regulatory positions were, overall, less 
distinguishable between brain and other tissues (Fig. 3C) (20). At first glance, this is surprising 
as one expects great differences in enhancer usage between tissues. However, our analysis 
compares chromatin signals over all regulatory elements from ENCODE (including enhancers 
and promoters), which is logically consistent with our expression comparison across all protein-
coding genes (Fig. 3F vs. 3C, Tables S5, S6, and S7). As the total number of human regulatory 
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elements is much larger than brain-active enhancers (~1.3M vs. ~79K), our results likely reflect 
the fact that there are proportionately fewer brain-active regulatory elements than protein-coding 
genes (6% vs. 60%). 
 
Up to this point, our analysis focused on inter-tissue differences in annotated regions (i.e., 
genes, promoters, and enhancers). However, in addition to the canonical expression differences 
in protein-coding genes, we also found differences in unannotated non-coding and intergenic 
regions (Fig. S30). In particular, testes and lung have the largest extent of transcription overall 
for protein-coding genes (i.e., the most genes transcribed, Fig. 3D). However, when we shift to 
unannotated regions the ordering changes: brain tissues, such as cortex and cerebellum, now 
have a greater extent of transcription than any other tissue. 
 

QTL analysis 
We used the data in the brain resource to identify QTLs affecting gene expression and 
chromatin activity. We calculated expression, splicing-isoform, chromatin and cell-fraction QTLs 
(eQTLs, isoQTLs, cQTLs and fQTLs, respectively). For eQTLs, we adopted a standard 
approach, adhering closely to the GTEx pipeline (Figs. S31, S32, and S33; (34)). In PFC, we 
identified ~2.5M cis-eQTLs involving ~33K eGenes (i.e. expressed genes, ~17K non-coding and 
~16K coding, with FDR<0.05; Fig. 4A). We found 1,341,182 eQTL SNPs from ~5.3M total SNPs 
tested in 1 Mb windows around genes, comprising 238,194 independent SNPs after linkage-
disequilibrium (LD) pruning. This conservative estimate identified substantially more eQTLs and 
associated eGenes than previous studies, reflecting our large sample size (8, 11, 20). The 
number of eGenes, in fact, approaches the total number of genes estimated to be expressed in 
brain. That said, a very large fraction of the smaller GTEx and CMC brain eQTL sets were 
contained with our set (as evident from testing for overlap with the π1 statistic, Fig. 4A) (35). 
Moreover, as expected, our brain eQTL set showed higher π1 similarity and SNP-eGene overlap 
to GTEx brain eQTLs than those from other tissues (Figs. 4B and S31). We also applied the 
same QTL pipeline to splicing and identified 2,628,259 isoQTLs associated with the changes in 
isoform usage, which are, in turn, associated with 19,790 distinct genes (20). 
 
For cQTLs no established methods exist for large-scale data, although there have been 
previous efforts (36, 37). To identify cQTLs, we focused on our reference set of enhancers and 
examined how H3K27ac activity varied at these loci across 292 individuals (Fig. 4C) (20). 
Overall, we identified ~2,000 cQTLs in addition to 6,200 identified from individuals within the 
CMC cohort (38). 
 
We next identified SNPs associated with changes in the relative abundances of specific cell 
types. We term such relationships “cell-fraction QTLs” (fQTLs). In total, we identified 1672 
distinct SNPs constituting 4199 fQTLs (Fig. S34). Of these, the excitatory neurons Ex4 and Ex5 
were associated with the most fQTLs (1060 and 896, respectively). The biological mechanism 
governing the effect of a fQTL may involve other QTL types, such as eQTLs. An illustrative 
example is the gene FZD9 (Fig. 4D). We found the expression levels of this gene were 
associated with a neighboring non-coding SNP via an eQTL, and this same SNP was 
associated with the proportion of Ex3 cells via a fQTL. Perhaps connected to this, deletion 
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variants upstream of FZD9 had been previously been associated with cell fraction changes, 
related to Williams syndrome (39). 
 
Next, we attempted to re-calibrate the observed gene-expression variation, taking into account 
our fQTLs. In particular, our scheme, described above, for approximately deconvolving gene 
expression from heterogeneous bulk tissue (B) into single-cell signatures (C) and estimated cell 
fractions (W) enables us to calculate the residual gene expression (Δ) remaining after 
accounting for cell fraction changes (Fig. 2). Specifically, it is the component of the bulk tissue 
expression variation that cannot be explained by the changing cell fractions alone: Δ = B - CW. 
We can subsequently use this quantity to determine “residual QTLs” by directly correlating it 
with genotype. In total, this results in 202,940 SNPs involved in residual eQTLs. Potentially, one 
can elaborate on this further by allowing the correlations to be done in a cell-type specific 
fashion (Fig. S35). 
 
To further dissect the associations between genomic elements and QTLs, we compared all of 
the different types of QTLs with each other and with genomic annotations (Fig. 4E). As 
expected, eQTLs tended to be enriched at promoters, and cQTLs, at enhancers and TF-binding 
sites; fQTLs were spread over many different elements. Also, an appreciable number of eQTLs 
and isoQTLs were enriched on the promoter of a different gene than the one regulated, 
suggesting the activity of an Epromoter, a regulatory element with dual promoter and enhancer 
functions (40). For the overlap among different QTLs, we expected that most cQTLs and fQTLs 
would be a subset of the much larger number of eQTLs; somewhat surprisingly, an appreciable 
number of these did not overlap (Fig. 4F). To evaluate this precisely, we calculated π1 statistics 
and found that the eQTL overlap with cQTLs was the largest while that with fQTLs was lowest 
(0.89 vs 0.11). Moreover, eQTL-cQTL overlaps often suggested that the expression-modulating 
function of an eQTL derived from chromatin changes (e.g. for MTOR, Fig. 4F). Finally, 1391 
SNPs, which we dubbed multi-QTLs, functioned as QTLs in at least 3 different capacities (e.g. 
as eQTLs, cQTLs and isoQTLs, Fig. 4F). 
 

Regulatory networks 
We next integrated the genomic elements described above at the regulatory-network level. We 
created a network revealing how the genotype and regulators relate to target gene expression. 
We first processed a Hi-C dataset for adult brain in the same reference samples used for 
enhancer identification, providing a physical basis for interactions between enhancers and 
promoters (Fig. 5A, Table S8) (13, 20). In total, we identified 2,735 topologically associating 
domains (TADs) and ~90K enhancer-promoter interactions (Fig. S36). As expected, ~75% of 
enhancer-promoter interactions occurred within the same TAD, and genes with more enhancers 
tended to have higher expression (Figs. 5B and S36). We integrated the Hi-C data with eQTLs 
and isoQTLs; surprisingly, QTLs involving SNPs distal to eGenes but linked by Hi-C interactions 
showed significantly stronger associations (i.e. QTL p-value) than those with SNPs directly in 
the eGene promoter or exons (Figs. 5C and S37). 
 
To gain insights on the brain chromatin, we compared the adult PsychENCODE Hi-C dataset to 
those from other tissues in a similar fashion to the transcriptomic and epigenomic comparisons 
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above. In particular, we selected a set of tissues and cell types from ENCODE and Roadmap, 
consistently processed their associated Hi-C data at a low resolution and compared them to our 
reference-brain Hi-C data. As expected, we found that all the samples for adult brain regions 
tend to separate markedly from the other tissues in terms of A/B compartment similarity and 
other metrics (Figs. 5D and S38). 
 
In addition to the adult brain, we also added PsychENCODE Hi-C data of fetal brain into the 
comparison, assessing the degree to which the chromatin differences between developmental 
stages relate to that between tissues (Fig. 5D). We found that while Hi-C datasets for adult brain 
clustered together, the Hi-C dataset for fetal brain was distinct (Figs. 5D and S39). Indeed, only 
~31% of the interactions in our adult Hi-C data were detected in the fetal dataset (Figs. S39 and 
S40) (13). While hard to exactly quantify, this difference appears larger than that seen for cross-
tissue transcriptome comparison, with fetal samples included (Fig. S41). We did a number of 
other comparisons with fetal and adult brain Hi-C datasets, analyzing the regulatory elements 
and genes linked by each. As expected, we found fetal-linked genes more highly expressed, 
prenatally, and adult-linked ones, postnatally (Fig. 5E). In addition, the fetal-linked genes were 
preferentially expressed in developmental cell types (Fig. 5F). They were also highly expressed 
in adult neurons, while the adult-linked ones were preferentially expressed in glia, reflecting 
known cell-type composition (Figs. 5D and 5F) (41).  
 
In addition to Hi-C linkages, we tried to find further regulatory connections by relating the activity 
of TFs to target genes (Fig. 5A). In particular, for each potential target of a TF, to create a 
connection, we required that (i) it has a "good binding site" (matching the TF's motif) in gene-
proximal open chromatin regions (either promoters or brain-active enhancers) and that (ii) it has 
a high coefficient in a regularized, elastic net regression, relating TF activity to target expression 
(Fig. S42) (20). Elastic-net regression assumes that target-gene expression is determined by a 
linear combination of the expression levels of its regulating TFs via regression coefficients 
(using sparsified L1 and L2 regularization). Overall, we found that a subset of regulatory 
connections could predict the expression of 8,930 genes with MSE< 0.05 (mean-square error, 
Fig. S43). For example, we could predict the expression of the ASD-associated gene CHD8 with 
MSE=0.034 (equivalent to R2=0.77 over the population) (20). Finally, the enhancer-binding TFs 
with high regression coefficients -- implying a high chance for TF regulation of the target genes 
via bound enhancers -- provide a third set of putative enhancer-to-gene links. 
 
Collectively, we generated a full regulatory network, linking enhancers, TFs, and target genes 
(Fig. S42). We provide both the full network and a high confidence subset (20). In particular, the 
subset includes 43,181 proximal and 42,681 distal linkages involving 11,573 protein-coding 
target genes (TF-to-target gene via promoter for proximal vs via enhancer-target-gene 
connection for distal; Fig. 5A; 15 (20)). As functioning regulatory connections reflect cell type, 
we also generated potential cell-type specific regulatory networks (Figs. 5F, 5G and S44). In 
these, we found a number of well-known TFs associated with brain development -- e.g., 
NEUROG1, DLGAP2, and MEF2A for excitatory neurons and GAD1, GAD2, and LHX6 for 
inhibitory neurons (Fig. 5G) (42-45). 
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Linking GWAS variants to genes 
We used our regulatory network based on Hi-C, QTLs, and activity relationships to connect non-
coding GWAS loci to potential disease genes. For the 142 SCZ GWAS loci, we identified a set 
of 1,111 putative SCZ-associated genes, covering 119 loci (the "SCZ-genes," Fig. 6A) (46). 321 
of these constitute a “high-confidence” set supported by more than two evidence sources (e.g., 
QTLs and Hi-C, Figs. 6A, 6B and S45); examples include CHRNA2 and CACNA1C (Fig. 6B-C). 
Overall, the SCZ-genes represent an increase from the 22 genes reported in an earlier QTL 
study and a larger number than can be linked simply by genomic proximity (176, Fig. 6A) (11, 
46). In fact, the majority of SCZ-genes were not even in LD with the index SNPs (~67% or 
748/1,111 genes with r2<0.6, Fig. S45), consistent with the fact that regulatory relationships 
often do not follow linear genome organization (13). 
 
We then looked at the characteristics of the 1,111 SCZ-genes. As expected, they shared many 
characteristics with known SCZ-associated genes, being enriched in translational regulators, 
cholinergic receptors, calcium channels, synaptic genes, SCZ differentially expressed genes, 
and loss-of-function intolerant genes (Fig. S45) (46). We integrated the SCZ-genes with single-
cell profiles and found that they are highly expressed in neurons, particularly excitatory ones, 
consistent with the recent findings (Fig. 6E) (46). Next, we identified the TFs regulating the SCZ-
genes (based on our regulatory network, either directly or via an enhancer; Fig. 6D). These 
include LHX9 and SOX7, transcription factors critical for early cortical specification and neuronal 
apoptosis, respectively (47, 48). 
 
In addition to SCZ, we also looked at other diseases, linked by our regulatory network. In 
particular, we found aggregate associations between our brain eQTLs and enhancers and many 
brain-disorder GWAS variants, much more so than for GWAS variants for non-brain diseases 
(Fig. 6F, Table S9). 
 

Integrative deep-learning model 
The full interaction between genotype and phenotype involves many levels, beyond those 
encapsulated by the regulatory network. We addressed this by embedding our regulatory 
network into a larger multilevel model. In particular, we developed an interpretable deep-
learning framework, the Deep Structured Phenotype Network (DSPN) (20). This model 
combines a Deep Boltzmann Machine architecture with conditional and lateral connections 
derived from the regulatory network (49). Traditional classification methods such as logistic 
regression predict phenotype directly from genotype, without using intermediates such as the 
transcriptome (Fig. 7A). In contrast, the DSPN is constructed via a series of intermediate 
models that add layers of structure. We included layers for intermediate molecular phenotypes 
associated with specific genes (i.e., their gene expression and chromatin state) and pre-defined 
gene groupings (cell-type marker genes and co-expression modules), multiple higher layers for 
inferred groupings (hidden nodes), and a top layer for observed traits (psychiatric disorders and 
other brain phenotypes). Finally, we used sparse inter- and intra-level connectivity to integrate 
our knowledge of QTLs, regulatory networks, and co-expression modules from the sections 
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above (Fig. 7B). By using a generative architecture, we ensure that the model is able to impute 
intermediate phenotypes, as well as provide forward predictions from genotypes to traits. 
 
Using the full model with the genome and transcriptome data provided, we demonstrated that 
the extra layers of structure in the DSPN allowed us to achieve substantially better trait 
prediction than traditional additive models (Fig. 7C). For instance, a logistic predictor was able 
to gain a 2.4X improvement when including the transcriptome vs. using the genome alone 
(+9.3% for transcriptome vs. +3.8% for the genome, above a 50% random baseline). In 
contrast, the DSPN was able to gain a larger 6X improvement (+22.9% vs. +3.8%), which may 
reflect its ability to incorporate non-linear interactions between intermediate phenotypes. This 
result clearly manifests that the transcriptome carries additional information, which the DSPN is 
able to extract. Moreover, the DSPN allows us to perform joint inference and imputation of 
intermediate phenotypes (i.e., transcriptome and epigenome) and observed traits from just the 
genotype alone, achieving a ~3.1X improvement over a logistic predictor in this context (Figs. 
7C and S46). Overall, these results demonstrate the usefulness of even a limited amount of 
functional genomic information for unraveling gene-disease relationships and show that the 
structure learned from such data can be used to make more accurate predictions of observed 
traits, even on samples for which intermediate phenotypes are imputed. 
  
We transformed our results to the liability scale for comparison with narrow-sense heritability 
estimates (Fig. 7C) (20). Prior studies have estimated that common SNPs explain 25.6%, 
20.5%, and 19% of the genetic variance for SCZ, BPD and ASD, respectively (50). These may 
be taken as theoretical upper bounds for additive models, given unlimited common-variant data. 
By contrast, non-linear predictors can exceed these limits. Our best liability scores (from just the 
genotype at QTL-associated variants) are substantially below these bounds, implying that 
additional data would be beneficial. In contrast, the variance explained by the full DSPN model 
exceeds that explained by common SNPs in SCZ and BPD, possibly reflecting the influence of 
rare variants and epistatic interactions (32.8% and 37.4% respectively -- the variance of 11.3% 
for ASD is slightly lower). Note, however, these estimates may be confounded by trait-
associated variation which is environmental in origin (Fig. S47). 
  
A key aspect of the DSPN is its interpretability. In particular, we examined the specific 
connections learned by the DSPN between intermediate and high-level phenotypes. Here, we 
included co-expression modules and submodules in the model, referring to this modification as 
"DSPN-mod" (Fig. S48). Using it, we determined which co-expression modules were prioritized, 
as well as the sets of genes associated with latent nodes that were uncovered at each hidden 
layer (Fig. 8A and Table S10; 15 (20)). Broadly, we take an unbiased view of all 5,024 modules 
and higher-order groupings constructed from these and then prioritize a subset of ~180 modules 
and groupings for each psychiatric disorder, showing these to being enriched in specific 
functional categories (Fig. 8B-C) and to intersect substantially with the modules from more 
disease-focused analyses (Fig. S49) (21). (For completeness, we provide a full table showing 
the prioritization and functional categories for all possible modules associated with various traits 
(Fig. S50). In particular, we found that cross-disorder prioritized modules are associated with 
functional categories such immune processes, synaptic activity and splicing, consistent with the 
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findings from more disease-focused analyses (Fig. 8C) (21). Also, we showed that prioritized 
SCZ and BPD modules are enriched for known GWAS SNPs (Fig. S51, for ASD, the lack of 
GWAS SNPs precludes similar analyses). For SCZ, which is the best characterized of the three 
disorders, we find enrichments for pathways and genes known to be associated with the 
disease, including: (i) glutamatergic-synapse pathway genes, such as GRIN1, (ii) calcium-
signaling pathway and astrocyte-marker genes, and (iii) complement cascade pathway genes 
such as C4A, C4B, and CLU (Fig. 8D) (21). Other prioritized modules include well-characterized 
genes such as MIAT, RBFOX1 and ANK2 (SCZ), RELA, NFkB2 and NIPBL (ASD) and 
HOMER1 (BPD) consistent with the results of (21). Finally, we identify modules associated with 
aging, finding that they are enriched in Ex4 neuronal cell-type genes, synaptic and longevity 
functions, and the gene NRGN, all consistent with differential expression analysis (Fig. 8D and 
S20). 
 

Conclusion 
We have developed a comprehensive resource for functional genomics of the adult brain by 
integrating PsychENCODE data with a broad range of publicly available datasets. In closing, we 
review our key findings and ways that they can be improved in the future.   

 

First, in terms of QTLs, we identified a set of eQTLs several fold larger than previous studies, 
targeting a saturating proportion of protein-coding genes. Moreover, we were able to identify a 
substantial number of cQTLs. PsychENCODE was, in fact, among the first efforts to generate 
ChIP-seq data across a large cohort of brain samples, with experiments primarily focused on 
H3K27ac. In the future, further increasing cohort size and performing additional chromatin 
assays, such as STARR-seq and ChIP-seq for other histone modifications, will improve the 
identification of enhancers and cQTLs (51). More fundamentally, one-dimensional fluctuations in 
chromatin signal reflect changes in three-dimensional chromatin architecture and new metrics 
beyond cQTLs may be needed.  

 
Second, in terms of single-cell analysis, we found varying proportions of basic cell types (with 
different expression signatures) accounted for a large fraction of the expression variation across 
a population of individuals. However, this assumes that the expression levels characterizing a 
signature are fairly constant over a population of a given cell type. In the future, larger-scale 
single-cell studies will allow us to examine this question in greater detail, perhaps quantifying 
and bounding environment-associated transcriptional variability. In addition, current single-cell 
techniques suffer from low sensitivity and dropouts; thus, it remains challenging to reliably 
quantify low-abundance transcripts (15, 52). This is particularly the case for specific cell sub-
structures, such as axons and dendrites (15). 
 
Third, we developed a comprehensive deep-learning model, the DSPN, and used it to illustrate 
how functional genomics data could improve the link between genotype and phenotype. In 
particular, by integrating regulatory-network connectivity and latent factors, the DSPN improves 
trait prediction over traditional additive models. Moreover, it takes into account dependencies 
between gene expression levels not modeled by univariate eQTL methods. Note, the separation 
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we make between eQTL detection and integrative modeling allows us to compare our eQTL 
methods directly to previous analyses such as GTEx, which use univariate approaches. 
However, multivariate-based methods for identifying QTLs have been used elsewhere in the 
literature and, in the future, may be combined with our approach (53, 54). 
 
Further, in the future, we can envision how our DSPN approach can be extended to modeling 
additional intermediate phenotypes. In particular, we can naturally embed in the middle levels of 
the model additional types of QTLs and phenotype-phenotype interactions - e.g., QTLs 
associated with miRNAs, neuroimaging, human/primate specific genes and developmental brain 
enhancers (55-58). 
 
We expect that the DSPN will improve accuracy mainly for complex traits with a highly polygenic 
architecture, but not necessarily for traits that are strongly determined by only a few variants, 
such as Mendelian disorders, or closely correlated with population structure, such as ethnicity. 
However, even when the DSPN performance is low, it may still provide insights about 
intermediate phenotypes, such as the transcriptome; for instance, in our analysis the PFC 
transcriptome appears substantially less predictive with respect to gender (after removing the 
sex chromosome genes) than age, but this very fact highlights the similarity of the transcriptome 
between sexes (59). Finally, although our focus has been on common SNPs, the DSPN may be 
able to capture the effects of rare variants, such as those known to be implicated in ASD (50), 
through their influence on intermediate phenotypes. 
 
In summary, our integrative analyses demonstrate the usefulness of functional genomics for 
unraveling molecular mechanisms in the brain (60, 61) and the result of these analyses suggest 
directions for further research into the etiology of brain disorders. 
 

Materials and Methods Summary 
The materials and methods for each section of main text are available in the section with same 
heading of the supplement (20); i.e., supplementary content to a given main text section within 
the supplementary section is named in a parallel fashion. Supplementary materials and 
methods are contained within their respective sections. Detailed data protocols are available in 
the supplement. The associated and derived data files are also available on the resource 
website, Resource.psychENCODE.org.  
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Figure 1. Comprehensive data resource for functional genomics of the 
adult brain. 
The functional genomics data generated by the PsychENCODE consortium constitute a 
multidimensional exploration across tissue, developmental stage, disorder, species, assay, and 
sex. The central data cube represents the results of our data integration for the three 
dimensions of disorder, assay, and tissue, where the numbers of datasets in the analysis are 
depicted. Projections of the data onto each of these three parameters are shown as graphs for 
assay and disorder, and as a schematic for the primary brain regions of interest. Assay: 
Dataset numbers for a subset of assays are shown, including RNA-seq (2040 PsychENCODE + 
1632 GTEx, used in multiple downstream analyses), genotypes (1362 PsychENCODE + 25 
GTEx = 1387 individuals matched to RNA-seq samples for QTL analysis after QC-filtering), and 
H3K27ac ChIP-seq (408 PsychENCODE + 5 Roadmap). The number of cells assayed by 
scRNA-seq (right-hand y-axis) = 18025 PsychENCODE + 14012 external datasets. Disorder: 
Across all assays, there are 113 GTEx + 926 PsychENCODE control individuals, and 558 SCZ, 
217 BPD, 44 ASD and 8 AFF individuals from the PsychENCODE, resulting in 1,866 individuals. 
Tissue: Three brain regions are considered: the prefrontal cortex (PFC, N = 26,769), temporal 
cortex (TC, N = 2,153), and cerebellum (CB, N = 348). See Table S11 and 
Resource.psychencode.org for more details. 

Figure 2. Deconvolution analysis of bulk and single-cell 
transcriptomics reveals cell fraction changes across the population.  
(A) Genes had significantly higher expression variability across single cells, sampled from 
different types of brain cells, than equivalent tissue samples, taken from a population of 
individuals. Left: dopamine gene, DRD3. (B) Top: the bulk tissue gene expression matrix (B, 
genes by individuals) can be decomposed by NMF (See Fig. S52). Bottom: the bulk tissue gene 
expression matrix B can be also deconvolved by the single-cell gene expression matrix (C, 
genes by cell types) to estimate the cell fractions across individuals (the matrix, W); i.e., B ≈ 
CW. The three major cell types analyzed are depicted with neuronal cells (blue), non-neuronal 
cells (red), and developmental (dev) cells (green), as highlighted by columns groups in C (also 
row groups in W). (C) The heatmap shows the Pearson correlation coefficients of gene 
expression between the NMF-TCs and single-cell signatures (for N=457 biomarker genes; 15). 
(D) The estimated cell fractions can account >85% of the bulk tissue expression variation 
across the population. (E) Cell fraction changes across genders and brain disorders. 
(Differences significant (via KS-test) compared to control samples after accounting for age 
distributions are labeled (**)). See Table S12 for more detail. (F) Changing cell fractions (for 
Ex3), gene expression (for SST) and promoter methylation level (median level, for SST) across 
age groups are shown. With increasing age the fractions of Ex3 and Ex4 significantly increase 
and some non-neuronal types decrease (Ex3 trend analysis, p<6.3e-10). 
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Figure 3. Comparative analysis of transcriptomics and epigenomics 
between brain and other tissues. 
 (A) Epigenetics signals of the reference brain (purple) were used to identify active enhancers 
using the ENCODE enhancer pipeline. The H3K27ac signal tracks at the corresponding 
enhancer region from each individual in the cohort are shown in green. with the gradient 
showing the normalized signal value for each H3K27ac peak (B) The overlap of the H3K27ac 
peaks from an individual in the population with the reference brain enhancers is shown as the 
Venn diagram. The histogram shows the varying percentage of overlapped H3K27ac peaks 
across individuals. (C) The tissue clusters of RCA coefficients (PC1 vs. PC2) for chromatin data 
of any potential regulatory elements are shown. Clusters of PsychENCODE samples (dark 
green ellipses), external brain samples (light green ellipses), and other non-brain tissues 
(magenta ellipses) are plotted. The reference brain is shown as the purple dot (same in E and 
F). (D) The extent of transcription for coding (arrowhead) and non-coding (diamond) regions. 
Average transcription extent (x-axis) is shown compared to the cumulative extent of 
transcription across a cohort of individuals (y-axis) for select tissue types including cerebellum, 
cortex, lung, skin, and testis, using PolyA RNA-seq data. Finally, Panels E and F are drawn 
similarly to C, but now for transcription rather than epigenetics. (E) RCA coefficients for gene 
expression data of PsychENCODE, GTEx brains, and other tissue samples are shown in dark 
green, light green and in magenta, respectively. (F) The center (cross) and ranges of different 
tissue clusters (dashed ellipses) are shown on an RCA scatterplot of (E). 
 

Figure 4. QTLs in the adult brain.  
(A) Numbers of genes with at least one eQTL (eGenes) are shown across different studies. The 
number of eGenes increased as the sample size increased. The eGenes of PsychENCODE are 
close to saturation for protein coding genes. The estimated replication π1 values of GTEx and 
CMC eQTLs versus PsychENCODE are shown (35). (B) Similarity between PsychENCODE 
brain DLPFC eQTLs and GTEx eQTLs of other tissues are evaluated by π1 values and SNP-
eGene overlap rate. Both π1 values and SNP-eGene overlap rate are higher in brain DLPFC 
than the other tissues. (C) Example of an H3K27ac signal across individuals in a representative 
genomic region showing largely congruent identification of regions of open chromatin. The 
region in the dashed frame represents a cQTL; the signal magnitudes of individuals with a G/G 
or G/T genotype were lower than the ones with a T/T genotype. (D) An example of the 
mechanism by which a fQTL may work to impact phenotype. This fQTL overlaps with an eQTL 
for FZD9, a gene located in the 7q11.23 region that is deleted in Williams syndrome. The fQTL 
may affect the fraction of Ex3 through regulating FZD9 expression. Note that only Ex3 
constitutes a statistically significant fQTL with this SNP (as designated by the asterisk). (E) 
Enrichment of genomic regions annotations of QTLs is shown. Pink circles indicate highly 
significant enrichment (p<1e-25). (F) Numbers of identified QTLs associated elements (eGenes, 
enhancers, and cell types) and QTL SNPs are shown in the bottom left table. Asteriks (*) 
indicate that for cQTLs we only show the number of top SNPs for each enhancer. The isoQTLs 
were calculated based on isoform percentage (i.e., the percentage of the ratio between the 
transcript abundance and its parent gene’s abundance). Overlaps of all QTL SNPs and overlap 
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of eQTL and isoQTL eGenes are shown in heatmaps (square rows). The linked circles show the 
overlap of QTL types. Sharing of other QTLs vs. eQTLs are evaluated using π1 values in the 
orange bar plot. This indicates the highest sharing is between cQTLs and eQTLs. An example 
on the right for the MTOR gene shows the overlapping of eQTL SNPs of the gene and cQTL 
SNPs for the H3K27ac signal on an enhancer ~50kb upstream of the gene. Hi-C interactions 
(bottom of the plot) indicate that the enhancer interacts with the promoter of MTOR, suggesting 
that the cQTL SNPs potentially mediate the expression modulation manifest by the eQTL SNPs.  
 

Figure 5. Building a gene regulatory network from Hi-C and data 
integration. 
(A) A full Hi-C data from adult brain reveals the higher-order structure of the genome, ranging 
from contact maps (top), TADs, and promoter-based interactions. Bottom shows a schematic of 
how we leveraged gene regulatory linkages involving TADs, TFs, enhancers, and target genes 
to build a full gene regulatory network (Fig. S42) and a high confidence subnetwork consisting 
of 43,181 TF-to-target-promoter and 42,681 enhancer-to-target-promoter linkages (20). (B) We 
compared the number of genes (left y-axis, dotted line) and the normalized gene expression 
levels (right y-axis, boxes) with the number of enhancers that interact with the gene promoters. 
(C) QTLs that were supported by Hi-C evidence (174,719) showed more significant P-values 
than those that were not (promoter/exonic QTLs, 130,155; non-supported QTLs, 1,065,311). (D) 
Cross-tissue comparison of chromatin architecture indicates that adult brains in PsychENCODE 
and Roadmap (e.g. DLPFC, Hippocampus) share chromatin architecture more than non-related 
tissue types. Fetal brain shows distinct chromatin architecture to adult brain, indicating 
extensive rewiring of chromatin structures during brain development. (E) Genes assigned to 
fetal active elements are prenatally enriched, while genes assigned to adult active elements are 
postnatally enriched. (F) Genes assigned to fetal active elements are relatively more enriched in 
neurons in the adult (Adult-Neuron) and fetal brain (Development), while genes assigned to 
adult active elements are relatively more enriched in glia (Adult-astrocytes, endothelial cells, 
and oligodendrocytes). (G) The circos plots show the linkages from the full regulatory network 
targeting the cell-type-specific biomarker genes. The biomarker genes for excitatory/inhibitory 
neuronal type are the shared biomarker genes by at least five excitatory/inhibitory subtypes 
(19). Selected TFs for particular cell types are highlighted.  
 

Figure 6. Gene regulatory networks assign genes to GWAS loci for 
psychiatric disorders. 
(A) A schematic depicting how SCZ GWAS loci were assigned to putative genes. The number 
of SCZ GWAS loci and their putative target genes (SCZ-genes) annotated by each assignment 
strategy is described (top). The overlap between SCZ-genes defined by QTL associations 
(QTL), chromatin interactions (Hi-C), and activity relationships (Activity) is depicted in a Venn 
diagram (bottom). SCZ-genes with more than 2 evidence sources were defined as high-
confidence (high conf.) genes. (B) A gene regulatory network of TFs, enhancers, and 321 SCZ 
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high-confidence genes, on the basis of TF activity linkages. A subnetwork for CACNA1C is 
highlighted on the right. (C) An example of the evidence depicting that GWAS SNPs that 
overlap with CHRNA2 eQTLs also have chromatin interactions and activity correlations with the 
same gene. Orange dots refer to SNPs that overlap between eQTLs and GWAS plots. (D) TFs 
that are significantly enriched in enhancers (left) and promoters (right) of SCZ-genes. (E) SCZ-
genes show higher expression levels in neurons (particularly excitatory neurons) than other cell 
types. (F) Brain disorder GWAS show stronger heritability enrichment in brain regulatory 
variants (eQTLs) and elements (enhancers) than non-brain disorder GWAS. ADHD, attention-
deficit/hyperactivity disorder; T2D, type 2 diabetes; CAD, coronary artery disease; IBD, 
inflammatory bowel disease. 
 

Figure 7. DSPN deep-learning model links genetic variation to 
psychiatric disorders and other traits. 
(A) The schematic outlines the structure of the following models: Logistic Regression (LR), 
conditional Restricted Boltzmann Machine (cRBM), conditional Deep Boltzmann Machine 
(cDBM), and Deep Structured Phenotype Network (DSPN). Nodes are partitioned into four 
layers (L0-L3) and colored according to their status as visible, visible or imputed (depending on 
whether observed or not at test time) or hidden. (B) DSPN structure is shown in further detail, 
with the biological interpretation of layers L0, L1, and L3 highlighted. The gene regulatory 
network (GRN) structure learned previously (Fig. 5A) is embedded in layers L0 and L1, with 
different types of regulatory linkages and functional elements shown. (C) The performance of 
different models is summarized, comparing performance (i) across models of different 
complexity, and (ii) transcriptome vs. genome predictors, corresponding to with/without 
imputation for the DSPN (colors highlight relevant models for each comparison). Performance 
accuracy is shown first, with variance explained on the liability scale in brackets. All models 
were tested on identical data splits, which were balanced for predicted trait and covariates 
(including gender, ethnicity, age and assay). RNA-seq, cell fraction, H3k27ac data were 
binarized by thresholding at median values (per gene, cell-type, enhancer respectively), as was 
age (median 51 years) when predicted. LR-gene and LR-trans are logistic models using the 
genotype and transcriptome as predictors respectively; DSPN-impute and DSPN-full are models 
with imputed intermediate phenotypes (genotype predictors only) and fully observed 
intermediate phenotypes (transcriptome predictors) respectively. Differential performance is 
shown in terms of improvement above chance, with liability variance score increases in 
brackets. Abbreviations as in main text, with GEN=Gender, ETH=Ethnicity, AOD=Age of death. 
 

Figure 8. Interpretation of the DSPN model highlights functional 
associations and shared disease mechanisms.  
(A) Schematic illustrates module (MOD) and higher-order grouping (HOG) prioritization scheme. 
Red and blue lines represent positive and negative weights respectively, and full and dotted 
lines represent first and second ranks by absolute value (creating a DAG with branching factor 
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4, rooted at L3). Highlighted nodes (grey) in L1d show positive prioritized MODs, for which a 
positive path (containing an even number of negative links) exists connecting module to SCZ 
node. a1/a2 and b1/b2 highlight ‘best positive paths’ from a and b respectively to SCZ in terms of 
absolute rank score. Associated HOGs are defined for a1/a2, containing all nodes in L1d having a 
path in the DAG to a1 (resp. a2) which is identically signed to the best path from a to a1 (resp. a2) 
(20). Positive prioritized HOGs are associated with nodes on best paths from all positive prioritized 
MODs;  negative prioritized MODs/HOGs are calculated similarly. (B) Panel summarizes functional 
annotation scheme: (i) 5024 WGCNA MODs (modules/submodules) are derived from multiple 
data splits.(ii) MODs are prioritized  as in (A) for each disorder, and (iii) associated HOGs are 
calculated. (iv) Gene set enrichment analysis associates functional terms with all MODs/HOGs. 
(v) Terms are ranked per disorder by counting the number of prioritized MODs/HOGs they 
associate with, and broad functional categories are defined; (vi) prioritized MODs/HOGs are 
linked to potentially interesting genes, enhancers and SNPs using GRN connectivity. (C) Chart 
shows upper segment of cross-disorder ranking of GO/KEGG functional terms, where cross-
disorder ranks are assigned using the average per-disorder rank ordering. Ranking score levels 
and functional categories are as in the key in (B). Highlighted ranks and terms correspond to 
examples shown in (D). See Fig. S49 for extended ranking. (D) shows examples of associations 
between prioritized MODs/HOGs and genes, enhancers and SNPs for each disorder and age 
model. Associated functional terms and categories are as in (B). A table providing coordinates 
of eQTLs and cQTLs for all examples shown is provided in Table S13.  
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