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Summary 

Many drugs are known to be ineffective for some patients, carrying certain non-synonymous 

single nucleotide variants (SNV). Prioritization of SNVs that disrupt drug efficacy remains 

difficult due to lack of experimentally measured data of ligand binding assays (LBA). Here, with 

recent developments in both population-level next-generation sequencing (NGS) and high-

resolution protein-drug co-crystal structure determination, we bootstrap physical calculations of 

binding affinity change as pseudo gold standard to construct a supervised learning method 

referred to as GenoDock to prioritize from gigantic SNVs candidates for those disrupting ones. 

Specifically, we collected the protein-drug complexes with high resolution structures and mapped 

associated somatic and germline SNVs onto the protein residues. We classify SNVs as disruptive 

and non-disruptive according to whether they can impair the binding from molecular docking 

calculations. We integrated genomics, structural and physicochemical features from SNVs, 

protein structures and drug ligands and trained GenoDock to do the prediction (with AUC=0.97).  
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Introduction 

In recent years, the immense growth of both genetic variation (Zuk et al., 2014) and protein 

structure datasets (Rose et al., 2015) which benefit from great advancement in related techniques 

has enabled us to study in depth the impact of genomic variants on protein structures and 

functions (Sethi et al., 2015). Great efforts have been taken to get the insights into how genetic 

variants associate with various diseases at a population level in order to potentially enhance drug 

effectiveness in the era of personalized medicine (Collins and Varmus, 2015; Ginsburg and 

McCarthy, 2001; Laing et al., 2011). Variant annotation tools such as SIFT (Adzhubei et al., 

2013), Polyphen-2 (Adzhubei et al., 2013), and CADD (Kircher et al., 2014) are some examples 

of such achievements, which mainly focus on sequence conservation within and across species to 

assign general impact of a non-synonymous single nucleotide variant (SNV). In general, studies 

for this purpose are usually limited to the available experimentally measured SNV implication 

characterizations on native and mutant protein samples, compared with fast-growing amount of 

variants which can to be mapped onto protein structures (Glusman et al., 2017). Conceptionally, 

we can map SNV data with associated proteins to quantitatively investigate how related physical 

properties are altered upon point mutation. In practice, the experimentally measured data are 

highly limited for certain mutations. Up to date, compared with more than 1 million exonic SNVs 

that have been identified by various consortium projects such as TCGA and ExAC, the available 

experimental measurements on characterizing variant implications such as protein-ligand binding 

affinity change are even more scarce (Pires et al., 2015). When we enlarge the scope to structural 

bioinformatics, the available protein structure PDB files are in a larger scale: there are about 

41,000 protein structures available from Homo sapiens in RSCB Protein Data Bank database 

(Berman et al., 2000); more than 175,000 exonic variants can be mapped with at least one protein 

PDB file with at least a 2.8Å resolution from RCSB PDB database(Kumar et al., 2016). Advance 

of computational methods for physical property calculations in past decades provides a practical 
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way to bridge the gap. 

Computational simulation of proteins has been validated as a crucial method (De Vivo et al., 

2016) to study protein dynamics and conformations and to calculate associated physical 

properties such as free energy change, especially when the capacity of conducting experimental 

measurements is limited. Great advancements have been made from pioneering molecular 

dynamics (MD) work by Levitt et al. (Levitt and Warshel, 1975) and McCammon et al. 

(McCammon et al., 1977) decades ago, to more recent structure modeling and docking tools such 

as UCSF DOCK (Kuntz et al., 1982), Rosetta (Rohl et al., 2004), AutoDock (Morris et al., 2009), 

and MODELLER (Webb and Sali, 2016). With the growth of genetic variation data in a 

population level, linking protein 3D structures and genomics, i.e. genetic diversity across large 

population, using computational models has been proven to be a powerful and innovative 

approach for precision medicine (Meyer et al., 2018). Here, we choose protein-drug interactions 

as our primary focus. We aim to investigate how likely a SNV perturbs the interaction between 

the associated protein and drug ligands. Studies have shown that many drugs are effective 

towards only a limited fraction of individuals due to different responses from patients to specific 

drugs (Meyer et al., 2013; Spear et al., 2001; Wilkinson, 2005). One of the reasons of loss of 

efficacy for drugs is drug-resistant genetic variants carried by patients (Madian et al., 2012; 

Wilkinson, 2005) [=>Ref1.1]. A patient’s genetic-centric prescription may be a reasonable 

approach to address the problem of drug ineffectiveness since recent advances of sequencing 

techniques make it more practical and affordable for high-throughput personal genomic analysis. 

Once personal carried genetic variants are identified, the focus can then be shifted to how single-

point alteration of protein residues caused by SNVs would influence drug efficacy. Thus, a well-

constructed database that directly links genetic variants to reliable human drug-protein co-crystal 

structures, as well as a robust methods to accurately predict if a SNV of interest would disrupt the 

binding of a drug to its protein target would help to investigate how individual carried variants 
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would potentially affects drug efficacy.  

To embody this idea, we developed a supervised learning method, GenoDock, to bridge 

SNVs on a large population scale and protein-drug co-crystal structures in the study. Our primary 

goal is to investigate how a given variant affects protein-ligand binding affinity. We first construct 

our database by mapping germline and somatic variants onto their associated protein residues 

with drug molecules present in the protein structure. We then examined the binding affinity 

change (∆𝐵𝐴) between the native and mutated protein structures associated with each SNV in our 

database through molecular docking. We grouped the variants based on whether they would lead 

to a positive shift in binding affinity (∆𝐵𝐴 > 0) or not (∆𝐵𝐴 ≤ 0). A positive shift in binding 

affinity indicates that the corresponded SNV is a disruptive one. The disruptive SNVs are our 

main focus in this study due to their high potential to associate with drug-resistance. Due to the 

available experimentally measured ligand binding affinity change data is highly limited (Benore, 

2010), it is not practical to train a supervised learning model based on experiment data. We fill 

this gap by constructing a calculated binding affinity change set as our “pseudo gold standard” 

using docking program suites. This enables us to train a novel supervised learning model using 

random forest algorithm to predict the probability of a given SNV to destabilize protein-drug 

binding by integrating genomic, structural and physicochemical features from SNV annotations, 

protein structures and drug ligands. Finally, we present GenoDock program suite together with a 

web interface (http://genodock.molmovdb.org/), which can be used to rapidly and efficiently 

prioritize SNV candidates that disrupt protein-drug binding.  

 

Results 

GenoDock dataset and toolkit 

Figure 1a highlights our strategy to construct the dataset that is publicly available from our 

GenoDock website (http://genodock.molmovdb.org/). The database contains 10,283 non-

http://genodock.molmovdb.org/
http://genodock.molmovdb.org/
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synonymous SNVs (SNV) from 228 proteins in Homo sapiens, and 113 FDA-approved drug 

ligands, which have co-crystal structures with at least one of the 228 proteins. We screened from 

over 30K human proteins with high resolution (better than 3.0Å) X-ray-solved protein PDB 

structures (https://www.rcsb.org/) and kept those with at least one FDA-approved drug ligand in 

the co-crystal structures. After removing the structural redundancy based on the result of 

sequence alignment, we mapped the germline SNVs from Exome Aggregation Consortium 

(ExAC) (Lek et al., 2016) and the somatic SNVs from The Cancer Genome Atlas (TCGA) dataset 

(Cancer Genome Atlas Research, 2008, 2012; Cancer Genome Atlas Research et al., 2013) to 

these 228 protein structures according to BioMart-derived human gene and transcript ID 

(Kasprzyk, 2011). In total, we collected 8,565 SNVs in 166 PDB structures for ExAC germline 

variants, and 1,718 SNVs in 135 PDB structures for TCGA somatic mutations. The SNVs, protein 

structures, and drug ligands form SNV-Structure-Ligand 3-tuple entries in our database. For each 

SNV-Structure-Ligand entry, as visualized in Figure 1b, we used Modeller program suite (Webb 

and Sali, 2016) to generate a putative structural model of the point mutation through homology 

modelling. We then used AutoDock Vina (Trott and Olson, 2010) to calculate the binding affinity 

score for the wild-type protein and the corresponding ligand (∆𝐺𝑊𝑇) and that after the residue is 

mutated (∆𝐺𝑀𝑈𝑇) in order to get the score change (∆𝐵𝐴) in kcal/mol (∆𝐵𝐴 = ∆𝐺𝑀𝑈𝑇 − ∆𝐺𝑊𝑇). 

The ∆𝐵𝐴 value set serve as the reference set, or “pseudo gold standard” for GenoDock program 

suite. 

The change in binding affinity of the drug ligand after the protein target is mutated is the 

target label that GenoDock aims to predict based on a random forest classifier. A positive shift in 

binding affinity indicates that it requires less energy to break the binding between the protein and 

the ligand, and thus the point mutation plays a disruptive role that could potentially cause drug 

resistance. As shown in Figure 1c, we categorize ∆𝐵𝐴 values for each SNV-Structure-Ligand 

entry into two classes: if ∆𝐵𝐴 is positive, we tag it as “disruptive”; if ∆𝐵𝐴 is non-positive, we 

tag it as “non-disruptive”. We integrated selected genomic, structural and physicochemical 

https://www.rcsb.org/
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features of SNVs, protein structures, and ligands to train the classifier: SNV annotation features 

include allele frequency, SIFT (Kumar et al., 2009), PolyPhen-2 (Adzhubei et al., 2010), and 

GERP (Davydov et al., 2010) scores; ligand features include molecular weight, hydrogen-bond 

donor and acceptor count, rotatable bond count and polar surface area; protein structure features 

include binding site, side chain hydropathy and volume change, and distance of the mutated 

residue from ligand (see ‘Methods’ for details of random forest model construction and feature 

selection; Figure 1, Figure 4 and Supplementary Figure S1 & S2).  

Ideally, we need experimentally measured binding affinity assay (LBA) data to characterize 

the impact of SNV on protein-drug binding, but the LBA data is far from enough compared with 

the number of variants mapped on to protein residues. For example, Platinum database (Pires et 

al., 2015) is a recent effort to collect experimentally measured LBA data for over 1,000 

mutations, which could potentially serve as the real gold standard of binding affinity change. 

However, only around 100 mutations of Platinum dataset are associated with human proteins. By 

constructing the pseudo gold standard set for each of the SNV-Structure-Ligand entry, we expand 

the number of entries of the gold standard set to ~10k. The GenoDock model thus enables us to 

prioritize SNVs that may potentially disrupt protein-drug binding on large scale of drug ligand, 

protein structure and exonic SNV datasets. For instance, there are more than 10 million exonic 

variants sequenced from consortium projects such as ExAC and TCGA; more than 175,000 

exonic variants can be mapped onto at least one protein structure with at least a 2.8Å resolution 

from RCSB PDB database (Kumar et al., 2016); DrugBank database (Wishart et al., 2018) 

contains around 2,700 approved small molecule drugs. All these datasets could potentially be 

screened with GenoDock program suite to prioritize the disruptive SNVs. 

 

Amino acid mutation landscape in GenoDock dataset   

After the construction of GenoDock dataset, we then analyze the mutation landscape of 

TCGA somatic and ExAC germline variants in our dataset which provides us with the opportunity 
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to analyze known amino acid changes and mutation trends that are under high selective 

constraints or potentially lead to human disease. Analyzing the mutation landscape of our 

database is very useful for our following study of how a point mutation affects drug efficacy, 

which is further tailored to how side-chains interact with ligand differently before and after the 

replacement. Within the GenoDock database, we find that the two most abundant mutations are 

arginine to cysteine and arginine to histidine (Supplementary Figure S3). This is within our 

expectation. First, arginine is the most frequently occurred amino acid among the somatic 

mutations and germline variants that can be mapped on to a PDB structure in our protein pool 

(14% in wild-type distribution, see Figure S3); second, arginine to cysteine mutation is also found 

to be the most common mutation that cause human disease in disease-associated variant datasets 

such as Human Gene Mutation Database (HGMD) (Stenson et al., 2014), the Online Database of 

Mendelian Inheritance in Man (OMIM) ((Hamosh et al., 2005), and ClinVar (Hamosh et al., 

2005; Landrum et al., 2014; Peterson et al., 2013; Stenson et al., 2014); third, many cancer 

mutation signatures are enriched in the arginine to histidine mutation (Peterson et al., 2013). 

Previous literature shows that mutation from arginine to histidine can confer protein pH 

sensitivity to the mutant and thus alters protein function leading to diseases (Reichold et al., 2010; 

Szpiech et al., 2017; Zhang et al., 2012). Overall, we observe that ~ 1/3 of somatic SNVs lead to 

point mutations from a charged amino acid residue to a polar one; whereas among the germline 

variants, the most frequently occurred mutations are between two hydrophobic amino acids 

(Supplementary Figure S4).  

 

Distributions of ∆𝑩𝑨 for common, rare, passenger, and driver SNVs 

With these ExAC germline SNVs in our dataset, our interest is to see whether there is a 

significant difference between the rare and the common SNV groups in terms of destabilization of 

the protein-drug complex. Rare and ultra-rare SNVs are in general interpreted as of higher impact 

than those common ones. The allele frequency values in population level studies also indicate 
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varying degrees of constraint during natural selection. Similarly, we divide the TCGA somatic 

SNVs into highly deleterious driver SNVs and neutral passenger SNVs to investigate different 

impacts of the two groups on drug binding (Stefl et al., 2013) (see ‘Methods’ for details regarding 

common, rare, passenger and driver SNV tagging).  

In Figure 2, we visualize the distributions of binding affinity change for each group, 

especially for disruptive SNVs that positively shift ∆𝐵𝐴, which contribute to 6.0% and 8.9% of 

all SNVs in our ExAC and TCGA data source (Supplementary Figure S5). Though we do not 

observe a significant difference in ∆𝐵𝐴 distributions between common and rare SNVs, when we 

bring together the top common and rare germline SNVs with positive ∆𝐵𝐴 (the “outlier” region 

in the boxplot), top rare SNVs have a significantly higher ∆𝐵𝐴 than those common ones. It 

implies that rare SNVs pool contains more extremely deleterious samples in terms of disrupting 

drug-protein binding than those from common SNV pool (e.g. the top 50 group has p = 3.5e-7; 

Supplementary Figure S6). This observation is intuitively consistent with our expectation as rare 

variants tend to have greater impacts on protein stability as a result of higher selective constraints.  

Based on efforts made in characterization of cancer genomes (Cancer Genome Atlas 

Research, 2008, 2012; Forbes et al., 2011), people have validated the important roles of driver 

SNVs in driving cancer progression (Hong et al., 2015; Raphael et al., 2014). These facts 

motivate us to probe the impacts of SNVs from driver genes on perturbing interactions between 

associated protein residues and drug ligands. Indeed, our analysis shows a significant difference 

between passenger and driver SNVs. Those cancer-associated driver SNVs tend to destabilize 

protein-drug binding to a bigger extent compared with neutral passenger ones (p = 3.60e-4). In 

Figure 2, we also plot the percentage of SNVs that lead to a non-positive ∆𝐵𝐴 together with the 

percentage of SNVs that do not change the binding affinity upon point mutation (∆𝐵𝐴 = 0). We 

find that the portion of SNVs that would cause a non-positive ∆𝐵𝐴 decrease from common 

(94%), rare (93%), passenger (91%) to driver (85%) groups. This indicates that in the driver SNV 
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group there is a heavier portion of variants that impair drug binding compared with the other 

groups. Next, we conduct further analysis to see more difference in disruptive and non-disruptive 

variants in terms of genomic, structural and physicochemical properties. Specific properties with 

different responses from the two classes of variants will serve as features in our later learning 

method to separate binding-disruptive SNVs from the rest.  

 

Feature engineering and exploration to classify disruptive and non-disruptive SNVs 

 This work aims to provide a pipeline that could efficiently distinguish variants that 

destabilize protein drug binding activities (disruptive) from the rest (non-disruptive). Genomic, 

structural and physicochemical properties (features) of variants, proteins and ligands are playing 

important roles in discerning the two classes of variants. Thus we extract and define a list of 

features that discriminate the disruptive SNVs from those in non-disruptive and serve as training 

reference in our classifier (see ‘Methods’ for details on feature selection and construction). For 

each SNV-Structure-Ligand entry in GenoDock database, we construct three groups of features: 

SNV annotation features (Figure 3a); protein structure features (Figure 3b), and drug ligand 

features (Figure 3c) to see if these features are sensitive to differentiate the two classes of SNVs.  

 In Figure 3a, we observe that disruptive SNVs have a significantly lower mean SIFT score 

(mean = 0.101 and mean = 0.149, respectively) and a significantly higher Polyphen-2 score 

(mean = 0.665 and mean = 0.516, respectively) than those from non-disruptive ones (p-value for 

SIFT is 1.21e-6 and p-value for Polyphen-2 is 2.20e-18), indicating that those more deleterious 

SNVs (indicated by a lower SIFT or a higher Polyphen-2 score (Adzhubei et al., 2013; Adzhubei 

et al., 2010; Gonzalez-Perez and Lopez-Bigas, 2011; Kumar et al., 2009; Tennessen et al., 2012)) 

are more likely to cause a positive shift on ∆𝐵𝐴. The median GERP scores for the two classes 

also differ significantly (p = 0.0101). SNVs that cause positive ∆𝐵𝐴 are likely to be mapped 

onto more conserved regions (indicated by a higher GERP score) (Genomes Project et al., 2012; 

Khurana et al., 2013; Tennessen et al., 2012) on protein structure (mean = 3.32) than the other 
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group (mean = 2.99). 

 In Figure 3b, we show the box plot distributions of the two classes of SNVs regarding 

protein structure features. Distance between mutated amino acid residue and drug molecule is 

perhaps the most direct feature to tell whether a point mutation would be likely to affect ligand 

binding. We observe that more SNVs that impair binding activity are in the binding pocket (mean 

= 6.29Å) than the other class (mean = 19.8Å, p = 1.27e-143). If the distance is bigger than our 

threshold (8Å), the mutation is less likely to affect the protein and drug ligand binding due to the 

weaker van der Waals interaction. Another important physical property affecting drug binding is 

side-chain volume change between wild-type and mutated residue. Upon our definition of volume 

change index, we observe that SNVs which disrupt ligand binding are more likely to result from a 

decreased side chain volume (mean = -0.177, see “Methods” for definition of volume change 

index), whereas on average the SNVs that lead to a non-positive ∆𝐵𝐴 have a bulkier side chain 

volume (mean = 0.0343; p = 1.68e-20). Side chain hydropathy change is another feature in 

context of ligand-protein interaction. For example, side chain hydropathy score (Kyte and 

Doolittle, 1982) increasing from a hydrophilic residue to a hydrophobic one may break the 

hydrogen bond network or salt bridge between the wild type residue to drug ligand (see 

“Discussion” for detailed case analysis) (Boccuto et al., 2014; Doss and Nagasundaram, 2012; 

Kumar et al., 2013; Zhang et al., 2013). We observe this trend from the SNVs in our database, the 

SNVs with a positive ∆𝐵𝐴 have a higher hydropathy score (mean = 0.63) than the other class 

(mean = 0.35), indicating that the disruptive SNVs tend to have a less hydrophilic character (p = 

0.0217). 

 Figure 3c depicts the difference from the drug ligand in the co-crystal protein structure that 

SNVs are mapped to. In order to study SNVs’ impacts towards protein-ligand binding, ligand 

properties are also an important part. We extract five features among various of physicochemical 

properties for each drug molecule in our database (Figure3a; Supplementary Figure S7). We 
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observe that those SNVs with a positive ∆𝐵𝐴 reside in a protein structure with a heavier drug 

ligand (mean = 361g/mol) than the other group (mean = 341g/mol), and this difference is 

significant (p = 2.14e-3). Also, we notice that the polar surface area of the drug ligands with a 

SNV that lead to positive ∆𝐵𝐴 tend to be smaller (mean = 94.6Å2), compared with the other 

group (mean = 105Å2; p = 5.13e-5). One reason may arise from the sensitivity of a heavier ligand 

and of a ligand with smaller polar surface area is higher in response to the side chain volume or 

hydropathy change upon point mutation. 

 After a feature exploration and engineering process based on differential effects of each 

feature has on disruptive and non-disruptive SNVs, we select good training feature candidates 

shown in Figure 3 for our learning method to prioritize SNV candidates that lead to a positive 

protein ligand binding affinity change. We find SNV annotation scores including Polyphen-2, 

SIFT and GERP; ligand molecule properties such as polar surface area, and protein structural 

alteration including side-chain volume change are all promising input features to our GenoDock 

classification model present below. 

 

Construction and evaluation of GenoDock toolkit in classifying binding affinity change 

 In this study, we present GenoDock classifier to predict binding affinity score change upon 

point mutations using docking calculations as the gold-standard for ∆𝐵𝐴, aiming to help 

identifying potential SNVs that cause ligand-binding disruption and drug resistance. We 

implemented a machine learning approach to achieve this purpose with additional steps integrated 

into our pipeline for evaluating our predictions. To make sure our evaluation towards GenoDock 

classifier is unbiased, we design a method which involves a cross-validation step to pick the best 

performed model among a set of chosen learning methods; a grid-search-based model selection 

step to optimize the parameters for learning model construction, and an evaluation step using an 
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independent test set isolated from the learning set (Supplementary Figure S8; see “Methods” for 

details). When applying GenoDock for practical use, it is possible that some of the feature groups 

are not available. For example, an user may only has an SNV and a drug ligand of interest to 

investigate whether the SNV would be disruptive towards ligand binding, and there is yet no 

protein structure accessible. Thus we provide four independent models depending on information 

availability (SNV only; SNV + Structure; SNV + Ligand; SNV + Structure + Ligand), we apply 

the procedure above onto each model to make our pipeline a uniform one. Model selection for 

different learning methods shows that random forest classifier is the best one (Supplementary 

Figure S9; see “Methods” for model selection).  

During our preparation of training data, we tune the number of samples of disruptive SNVs 

and non-disruptive SNVs to be 1:1 in our training set to avoid potential bias from imbalanced 

sample volume of two classes, while keeping the original sample ratio of two classes unchanged 

in the test set. For the models in which only one of PDB structure or ligand molecule is present, 

we evaluate the classification performance with “Binding Site” feature included and excluded 

during the training process, separately. As depicted in Figure 4a, we test the classifier trained with 

SNVs’ “Binding Site” feature (“Binding Site” is “known”) to get the probability of SNVs to 

disrupt binding. The area under the receiver-operator characteristic curve (AUC of ROC) for 

predictions of four models are 0.73 (SNV only), 0.91 (SNV + Structure), 0.96 (SNV + Ligand), 

and 0.97 (SNV + Structure + Ligand), respectively. If whether target SNVs are in binding pocket 

or not remains unknown, we then train our classifier with “Binding Site” feature excluded 

(“Binding Site” is “unknown”) during training and test process for “SNV + Structure” and “SNV 

+ Ligand” model. In Figure 4b, AUC values for these two models become 0.74 and 0.79, 

respectively. After all, as we feed the GenoDock classifier with more and more features, the 

performance of predictions keeps improving: when input integrates all of the three feature groups, 

our method is able to identify most of the SNVs that lead to a positive shift towards binding 

affinity with an AUC of 0.97. Using the same learning pipeline, we back test the performance of 
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GenoDock with the performance of SIFT, Polyphen-2, GERP, and the Combined Annotation 

Dependent Depletion (CADD) (Kircher et al., 2014), independently. GenoDock gives the highest 

AUC value among these tools since it is specifically developed for addressing the impact of 

SNVs on ligand-binding affinity change instead of a general annotation towards potential benign 

or deleterious influences onto protein function (Supplementary Figure S10).    

 We then apply Gini importance to identify relevant importance of different features during 

the decision-making process. (Menze et al., 2009). We observe that the relative importance of the 

features such as the SNV annotations and binding site remain stable across our different models, 

revealing the robustness of our method. The relative importance across genomic and structural 

features under a uniform learning pipeline provides us a reasonable way to draw insights on how 

an SNV would make impacts towards ligand binding (Supplementary Figure S11).  

  

Performance evaluation of GenoDock using experimentally measured data 

To further evaluate the performance of GenoDock, we apply the program suite on an 

independent test set parsed from Platinum database, serving as the gold standard set (see 

‘Methods’ for details on dataset preparation). For the 87 data entries parsed from Platinum, the 

AUC of ROC reaches 0.62, which shows reasonable and acceptable accuracy of GenoDock 

benched with experimentally measured results. We then evaluate the precision of GenoDock 

predictions on Platinum dataset by tuning the cutoff between “disruptive” and “non-disruptive” 

based on predicted probability of ∆𝐵𝐴 > 0. For example, when cutoff is set to be 0.7, those 

SNVs with a probability of ∆𝐵𝐴 > 0 greater than 0.7 will be assigned to be a “disruptive” one; 

otherwise we assign the SNV to be a “non-disruptive” one. We count the number of true positive 

and false positive entries benched with the gold standard set and calculated the precision. With 

cutoff to be 0.5, the precision reaches at 0.84 (Supplementary Figure S12).  

Based on our performance evaluation results, we have shown that by integrating features 

from SNV annotations, protein structures and drug ligand properties, GenoDock can clearly 
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identify SNVs that lead to a positive ∆𝐵𝐴 shift from the rest candidates with high accuracy. The 

performance from the independent test set based on experimentally measured LBA results further 

validates the prediction reliability by GenoDock. In this study, we also identify SNV candidates 

that may potentially impair protein-drug binding.   

 

GenoDock helps identify known and unknown SNVs that disrupt protein-ligand binding  

We present an example of the implicit decision-making process of GenoDock in Figure 5, 

based on the overall importance score rankings of different features for the “SNV + Structure + 

Ligand” model. As shown in Figure 5a, GenoDock successfully reaches to the prediction that 

somatic T790M mutation (rs55181378) on human epidermal growth factor receptor (EGFR; PDB 

ID: 2ity) is very likely to impair the binding between one of its tyrosine kinase inhibitors (TKIs), 

gefitinib, and the EGFR kinase domain (probability of ∆𝐵𝐴 > 0 is 64%). Through molecular 

and clinical studies, people have shown that the resistance towards gefitinib arise from the 

substitution of a bulkier methionine residue for threonine at position 790 (Balak et al., 2006; 

Janne, 2008; Kobayashi et al., 2005; Kosaka et al., 2006; Pao et al., 2005). Further studies on the 

EGFR-gefitinib co-crystal structure show that the larger methionine residue lead to steric 

hindrance of the aromatic moieties of gefitinib molecule, preventing the accessibility of gefitinib 

to the binding pocket of EGFR kinase domain (Balak et al., 2006; Daub et al., 2004; Janne, 2008; 

Kobayashi et al., 2005). This biophysical rationale is traced in the classification process of 

GenoDock. From the decision flow in Figure 5a, the mutated residue is mapped in the binding 

pocket of the kinase domain, and the side chain volume is increased by 1/3 from threonine to 

methionine, which may potentially block the interaction of the ligand to the binding pocket. 

Furthermore, the functional annotations of the SNV associated with T790M mutation indicate that 

this variant is of high impact, which strengthens the confidence that this variant would impair the 

protein-ligand binding. Together with the next fact that the side chain hydropathy changes from 
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the hydrophilic threonine to the hydrophobic methionine, GenoDock classifies this SNV to be 

very likely to cause a positive shift towards binding affinity.  

In Figure 5b, we present an example representing the method by which GenoDock helps 

identify new variant candidates that could potentially lead to drug resistance, using “SNV + 

Structure + Ligand” model. Farnesyl diphosphate synthase (FPPS) is an important target for the 

bisphosphonate class of drugs such as zoledronate (ZOL). ZOL targets FPPS as an 

immunomodulator which alters macrophages from a tumor-promoting to a tumor-killing 

phenotype (Coscia et al., 2010; Kunzmann et al., 1999; Martin et al., 2001; Russell, 2011; 

Shipman et al., 1998; Wood et al., 2002). ZOL is a highly hydrophilic binder to FPPS via 

electrostatic and hydrogen bond interactions (Liu et al., 2014). We visualized the interaction 

between ZOL and FPPS (PDB ID: 4p0w) in Figure 5b, in which ZOL ligand is binding to 

ARG112A via a “salt bridge” between the positive charged guanidium with the negative charged 

sulfate group of ZOL. However, with the mutation R112H (rs155317993), this binding network 

no longer exists. GenoDock classifies this SNV as a disruptive one with a probability of 99.8%, 

followed by a similar decision-making pipeline discussed in the previous case. The disruptive role 

of R112H in ZOL binding to FPPS has not yet characterized through experiment assays, however, 

GenoDock provide evidence that this variant is highly possible to impair the inhibitor 

effectiveness and is worth further investigation. We validate the predictions of both examples 

using AutoDock, which gives a positive binding affinity shift. More biological functional assays 

can be performed in the future in addition to the computational validation. In addition of the two 

specific case above, GenoDock is also used to process large scale of SNV candidates for 

disruptive variant screening. 

 

An application of GenoDock on large scale disruptive variant screening for drug ligands  

 GenoDock program suite can be applied for many purposes. Previous studies revealed that 
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variants have direct impact upon protein structures, which could have significant consequences 

upon drug binding (Collins and Varmus, 2015; Ginsburg and McCarthy, 2001; Laing et al., 2011). 

However, no computational tool yet provides a large-scale analysis for the implications of 

variations on the drug efficacy. Here, we apply the program to evaluate how likely a drug ligand 

can be disrupted with large amount of somatic SNVs carried by individuals (Figure 6). The 

290,515 somatic exonic variants are retrieved from original TCGA dataset, with SNV annotation 

features (SIFT, PolyPhen-2, and GERP) aligned for each SNV. We then select the two drug ligand 

from previous case study, gefitinib (IRE) and zoledronate (ZOL), together with eight other 

randomly picked-up drug ligands from GenoDock database: risedronate (RIS), sildenafil (VIA), 

acetazolamide (AZM), imatinib (STI), progesterone (STR), testosterone (TES), androstenedione 

(ASD), and dorzolamide (ETS). We run GenoDock (“SNV + Ligand” model) for each of the ten 

drug ligand with every SNV in the pool to calculate the probability of being disruptive of a 

variant for a certain drug. We assume that each variant is associated with amino acid residues 

locating within the binding pocket for that drug in order to evaluate the maximum probability of 

this variant to be disruptive. For each drug ligand, we plot the density distribution curve. Each 

curve represents ~0.3 million probability of being disruptive for each variant. Based on the cutoff 

we optimized based on Platinum dataset test result, SNV with a probability higher than 0.5 is 

highly likely to impair the binding for corresponded drug ligand. Thus, we can get a rough sense 

of how easily a drug ligand is affected when interacting with protein residues associated with 

various somatic variants. The higher portion of SNVs with probability higher than 0.5 for a drug 

ligand, the drug is more likely to be affected in its efficacy. For the ten drug ligands, imatinib has 

the highest number of SNVs that could potentially disrupt its binding with protein residues, 

whereas only 7% of the somatic SNVs could potentially impair binding activity for 

acetazolamide. This approach provides a reasonable method to evaluate drug ligand candidates 

with similar functionality. The drug ligand with less SNVs that could disrupt its binding may be a 

relatively better choice compared with other candidates with higher portion of disruptive SNVs 
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within a given variant pool.  

The GenoDock web interface 

To make our method accessible, we provide a web interface, the GenoDock web server 

(http://genodock.molmovdb.org/). We tailored GenoDock into four individual models based on 

the accessibility of input features to broaden the application landscape of our tool, with different 

level of prediction accuracy. The users can import their sample data using our GenoDock graphic 

user interface with different feature set combination: SNV feature only; SNA feature and structure 

feature; SNV feature and ligand feature, and all three groups of features. The predicted result will 

be feedback in form of a HTML webpage. The calculation page can be reached through 

http://genodock.molmovdb.org/calculation/0. Users can also download our open source python 

code to run large scale inputs on local computers or on HPC clusters.  

 

Discussion 

In this study, we constructed a dataset to bridge SNVs with their annotations from different 

sequencing datasets onto high resolution protein structures for downstream analysis; a highly 

sensitive classification model to prioritize SNV candidates that could potentially cause protein 

drug binding disruption based on integration of genomic annotations and structural properties, 

and a user-friendly web interface, the GenoDock server, that rapidly provides predictions of 

binding affinity change for SNVs of interest. The GenoDock method is a “hybrid model” that 

leverage physical calculations as “pseudo gold standard” to train statistical learning model when 

available experimentally measured “real gold standard” is highly limited. 

For the construction of GenoDock database, we employed SNVs from the ExAC Consortium 

and the TCGA project as the source of germline variant and somatic variants feed, respectively. 

http://genodock.molmovdb.org/
http://genodock.molmovdb.org/calculation/0
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From a pool of ~2.5 million ExAC germline variants and ~1 million Pan-Cancer somatic 

mutations, we successfully mapped ~10,000 SNVs onto ~300 human proteins for each of which 

high-resolution co-crystal structure with FDA-approved drug ligand is available. We identified 

735 SNVs with predicted positive shift in binding affinity from 123 proteins of that ~300 protein 

pool, covering 85 drug ligands (see “Additional File: table 1”). For the prioritization of SNVs that 

would cause binding disruption, we demonstrated that GenoDock is an efficient classifier with an 

AUC of 0.97 when all features are available. The independent test set on Platinum experimentally 

measured binding affinity change results further shows acceptable and reasonable prediction 

sensitivity and precision with an AUC of 0.62 and with an precision of 0.84 (Supplementary 

Figure S13). 

The major challenge of this study is to construct the gold standard set for binding affinity 

change native and wildtype protein-ligand co-crystal structures due to the lack of corresponded 

experimental measured ligand binding assay results. For example, Platinum contains about 1k 

mutations, and less than 10% of the mutations (87) are associated with SNVs mapped on human 

protein. This 87 experiment results of binding affinity change serves as our “real” gold standard 

set in the study. However, this dataset is far from enough to construct our supervised learning 

model. To fill this gap, we construct our “pseudo” gold standard set of binding affinity change for 

each of the ~10k SNVs in our GenoDock dataset via docking calculations. The prediction result 

of GenoDock based on the pseudo gold standard is acceptable when benched with the 

independent test set with 87 real gold standard entries. By conducting physical calculations to 

construct a relatively large enough gold standard to train our statistical leaning model, we are then 

enabled to process large scale of variants and structure datasets. 

While our approach can identify SNV candidates that potentially impair protein-drug binding 

in a rapid yet accurate manner, the method is still limited in two aspects. First, the lack of high-

resolution co-crystal structures of protein-drug complexes which limits the size of our “pseudo” 
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gold standard set. As structural data is sparse, only 1% of exome SNVs were mapped onto 

protein-drug co-crystal structures. Fortunately, with the development of protein structure 

determination techniques such as NMR, electron microscopy and cryo-electron microscopy 

(cryo-EM) (Bai et al., 2015) , we can foresee that the number of highly reliable protein-drug 

structural data will increase rapidly. In addition, remarkable progress in putative 3D protein-drug 

interaction models based on homology modelling techniques may also potentially expand the 

structure pool (Marks et al., 2011; Zhan and Guo, 2015). Together with tremendous progress in 

revealing the mutational landscape of human genomes via large-scale sequencing projects such as 

The UK 10,000 Project and the International Cancer Genomics Consortium, we will periodically 

update the GenoDock dataset with new SNV-Structure-Ligand entries for better prediction 

results.  

Second, our binding affinity change data is calculated based on docking calculations at 

current stage, which limits the upper boundary of our prediction accuracy. Calculation or 

prediction of binding affinity change between protein and ligand molecule is a challenging task. 

Developments of docking methods in recent years give us higher confidence of using the 

calculated results (Ballester et al., 2014; Smith et al., 2016; Yan et al., 2016). Thus we construct 

our “pseudo” gold standard set based on binding affinity calculations from AutoDock Vina, which 

is a state-of-the-art and a well-established program suite wildly used in pharmaceutical research 

projects (Castro-Alvarez et al., 2017; Wang et al., 2016). We further validated the consistency of 

the ∆𝐵𝐴 results for each SNV-Structure-Ligand entry via AutoDock . If we have enough 

experimentally measured LBA data for mutations recoded in GenoDock database later on, we 

plan to update the ∆𝐵𝐴 values with experimental results under the same pipeline to further 

enhance the reliability of GenoDock predictions. Third, we fix the protein backbone while 

conducting docking calculations to avoid concerns and problems raised from protein flexibilities, 

which makes it hard to probe influence towards binding activities by protein motions or 
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conformational changes. 

We demonstrate that GenoDock is a “hybrid model” that joint physical calculations and 

statistical learning for predicting SNV candidates that could potentially disrupt protein-ligand 

binding, which could be further employed as a metric to gain valuable mechanistic insights into 

drug resistance activities and to design personalized disease therapies for individual patients 

accordingly. We believe that GenoDock will continuously help to predict the impacts of SNVs on 

protein-drug interaction when datasets of larger size and better quality, advanced molecular 

docking software, and more LBA experimental data being used in our method.                                     

               

 

Methods 

GenoDock Database preparation 

Germline exonic variants were collected from Exome Aggregation Consortium(ExAC) 

release 1(Lek et al., 2016) (download source: 

ftp://ftp.broadinstitute.org/pub/ExAC_release/release1/). Somatic exonic variants came from The 

Cancer Genome Atlas (TCGA) network (http://cancergenome.nih.gov; download source: 

http://portal/gdc.cancer.gov/repository). “Simple Nucleotide Variation”, “Masked Somatic 

Mutation” and “MuTect2 Variant Aggregation and Masking” were served as filters for “Data 

Category”, “Data Type”, and “Workflow Type”, respectively. The list of FDA approved drug 

ligands was directly obtained from DrugBank (Wishart et al., 2018). Human protein PDB 

structures with a resolution better than 3.0 Å were downloaded from the Protein Data Bank 

(https://www.rcsb.org/) (Berman et al., 2000). A careful curation to filter in PDB that contains 

FDA approved drug molecules was conducted. The mapping of the variants from both the ExAC 

and TCGA datasets to the curated co-crystal PDB structures was done using a modified version of 

a previously published method (Kumar et al., 2016). For tagging common and rare variants from 

ExAC dataset, a cutoff of 1 was used to differentiate rare SNVs from common ones: if a variant 

ftp://ftp.broadinstitute.org/pub/ExAC_release/release1/
http://cancergenome.nih.gov/
http://portal/gdc.cancer.gov/repository
https://www.rcsb.org/
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occurred only once in the ExAC dataset, we tagged this SNV as rare; if a variant occurrence 

count is bigger than 1, we tagged it as a common SNV [=>Ref2.2]. For tagging driver and 

passenger SNVs from TCGA dataset, SNVs were tagged as enriched-in-driver variants if they 

were variants in cancer driver genes listed in the Catalogue of Somatic Mutations in Cancer 

(COSMIC), version 83. If a variant was not in a cancer driver gene, we tagged it as a passgener 

one. Not all SNVs in driver genes are driver variants, but they are more likely to be driver 

variants, which is sufficient for our purpose in this study. 

 

Mutant structure and binding affinity change calculation 

 For each entry recorded in our database, we generated a mutant structure associated with that 

SNV through homology modelling using Modeller (ver. 9.18) (Webb and Sali, 2016), using the 

corresponded native co-crystal structure as template. During the modelling process, adjustments 

were made to the target residue under stereo-chemical and homology-derived restraints, followed 

by a minimization step of the restraints to deliver the final mutant structure. In this project, 

10,283 mutant PDB structures were generated in total.      

 For each native-mutated protein structure pair, we used AutoDock Vina (Trott and Olson, 

2010) to evaluate the change in drug binding affinity to setup the pseudo gold standard set: 

∆𝐵𝐴 = ∆𝐺(𝑀𝑈𝑇) − ∆𝐺(𝑊𝑇), in kcal/mol, where ∆𝐺(𝑀𝑈𝑇) and ∆𝐺(𝑊𝑇) are binding 

affinities of the drug with the mutated and wild-type protein target evaluated using AutoDock 

Vina, respectively. During the calculation, we fixed the protein structure to avoid concerns from 

protein flexibility. “Local optimization” was applied for ligand binding model, and “Vina score” 

was set as the scoring function. Due to the lack of experimentally measured LBA data for every 

entry in GenoDock dataset, we validated the calculations of Vina by applying the same procedure 

with AutoDock Tools (ver. 6.2.6) (Morris et al., 2009) to check the consistency of the two 

methods. If for a given structure pair, ∆𝐵𝐴 values calculated by two scoring methods were of the 
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same sign (both positive, indicating both tools assigned a drug binding disruptive role to the SNV; 

or both non-positive), then we regard the result as consistent. The two methods achieved a 

consistency of 84%. Also, the two sets of results from Vina and AutoDock Tools reached a 

Pearson product-moment correlation (PMCC) of 0.89 (Supplementary Figure 12), indicating a 

strong consistency.        

 

Features extraction and construction for machine learning method 

SNV features: 

SIFT and PolyPhen-2: SIFT score and Polyphen-2 score for somatic and germline exonic SNVs 

in our study were directly extracted from the “INFO” column of VCF files from ExAC 

consortium and TCGA project.  

GERP: GERP scores were retrieved directly from Sidow lab 

(http://mendel.stanford.edu/SidowLab/downloads/gerp/index.html) (Davydov et al., 2010). 

Ligand features: 

Ligand features including molecular weight, H-bond donor and acceptor count, rotatable bond 

count, and polar surface area for each drug molecule in our database were extracted from 

PubChem database (Kim et al., 2016).  

Structure features: 

Amino acid side chain volume change index: defined as ∆𝑉𝑖𝑛𝑑𝑒𝑥 = 𝑙𝑜𝑔2(
𝑉𝑀𝑈𝑇

𝑉𝑊𝑇
), where VMUT and 

VWT stand for van der Waals volume (Darby and Creighton, 1993) of mutant and wild-type 

protein residue, respectively.  

http://mendel.stanford.edu/SidowLab/downloads/gerp/index.html
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Amino acid side chain hydropathy change: for each amino acid, we employed amino acid 

hydropathy scale by Kyte and Doolittle (Kyte and Doolittle, 1982) as the hydropathy metric 

[=>Ref2.3]. Amino acid side chain hydropathy change index is defined as ∆hydropathy =

hydropathy(mutant) − hydropathy(WT).  

Distance between mutation and drug ligand: the distance between a protein residue to a ligand 

was defined as the shortest distance of a heavy atom of that residue to a heavy atom of the 

associated ligand. 

Binding site (“on”/“off”): This is a binary feature describing whether the mutation is on or off the 

binding site. If a residue has a distance less than 8Å from the target ligand in the co-crystal 

structure, we consider that this residue is on the binding pocket . Though this feature is grouped 

into the structure feature set, it could still be used when only one of drug ligand or protein 

structure is available. We construct the “SNV + Ligand” model and “SNV + Structure” model 

under two scenarios: “Binding Site” is known and “Binding Site” is unknown. The former model 

was trained with “Binding Site” feature included, and users need to tell GenoDock whether the 

SNV of interest is associated with residues on or off the binding pocket. The later model was 

trained with “Binding Site” feature excluded. In practice , with “Binding Site” being “on”, we are 

able to predict the maximal probability of the target SNV to be ligand-binding disruptive. On the 

other hand, users are also free to set “Binding Site” being “off” if they want the prediction for the 

protein residues of associated variants are not in binding sites. When the user does not care about 

binding status when applying “SNV + Ligand” model or “SNV + Structure” models, they can use 

remove this feature and make “Bind Site” to be unknown. We engineered GenoDock source 

scripts for both application scenarios. 

 

Training, testing, and evaluating the performance of machine learning method          
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 GenoDock dataset was separated into training set (70%) and test set (30%) in a random 

manner. To avoid potential bias raised from imbalanced composition of the two classes of 

samples in our dataset (735 entries for disruptive SNVs; 9,458 entries for non-disruptive SNVs), 

we counted the number of disruptive SNV samples (∆𝐵𝐴 > 0) and randomly select equal number 

of non-disruptive SNV samples from (∆𝐵𝐴 ≤ 0) to make up the balanced training set. Scikit-

learn package (Pedregosa et al., 2011) is used for learning model development. We tested 

classification methods including Lasso Regression (LR), Support Vector Machine (SVM), 

Random Forest (RF) and Gradient Boosting Decision Tree (GBDT). We trained each learning 

model through a 10-fold grid-search cross-validation process. For each training, the rest 30% data 

was tested for performance evaluation. Based on the AUC values, RF has the highest AUC among 

all methods (Supplementary Figure S9). Feature selection was performed by evaluation of AUC 

for each feature respectively. If the selection power of a feature was near or worse than random 

selection, we removed it from our feature pool (e.g. allele frequency). With the same procedure, 

we trained and optimized a random forest model for each of the four feature combinations (SNV 

only; SNV + Structure; SNV + Ligand; SNV + Structure + Ligand) for GenoDock.  

 

Curation of independent test set based on experimental measurements 

We also prepared an independent bench set comprising experimentally measured binding 

affinity change upon for mutations from Platinum database (Pires et al., 2015). Briefly, the full 

Platinum database content was downloaded as a flat comma-separated file from 

http://biosig.unimelb.edu.au/platinum/. Amino acid mutations other than single-point mutations 

and those found in species other than human beings were excluded. In addition, mutations that are 

not resulted from single-nucleotide variation were also removed because GenoDock uses the 

GERP score as one of the predictive features and the GERP score is position-specific. Further, 
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mutations that cannot be mapped onto their associated UniProtKB canonical amino acid 

sequences were discarded. In the end, 87 unique data points were obtained (two data points with 

the same mutation but different ligands were considered to be different) and used as the 

independent test set. Each data point in this set was labeled as “disruptive” if its associated fold 

change in binding affinity upon mutation, (
𝐵𝐴𝑊𝑇−𝐵𝐴𝑀𝑈𝑇

𝐵𝐴𝑊𝑇
), is negative or “non-disruptive” 

otherwise. Note that the curation of this test set was conducted in a manner that is completely 

blinded from the training of GenoDock. Ligand features and structure features are assigned for 

each mutation entry for the database to run GenoDock. We then apply “SNV + Structure + 

Ligand” model (auROC = 0.97) on the dataset to evaluate the reliability of GenoDock 

predictions. [=>Ref1.3; 2.5, 2.6]     

 

Protein-ligand complex visualization  

 All figures regarding protein-ligand complex were generated by the PyMOL molecular 

graphics system, Version 2.0 Schrödinger, LLC.   
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Main Figure Captions and main Figures 

Figure 1. Framework of the GenoDock Project – from dataset preparation to model 

construction. 

(a) A flowchart for collecting and processing raw data to construct GenoDock database from the 

protein structure data source (RCSB PDB), SNV data source (ExAC and TCGA), and drug ligand 

data source (PubChem Compound). SNVs are mapped with protein drug co-crystal structures to 

form each SNV-Structure-Ligand entry in our database. We then calculate the binding affinity 

change for each mutation to construct the pseudo gold standard for further statistical learning 

model. 

(b) Illustration of protein-ligand binding affinity change calculations. For each native co-crystal 

structure in our dataset, we generate a mutant structure using Modeller. For each of the native and 

mutated structure pair, we calculate the binding affinity using AutoDock, respectively, in order to 

obtain the binding affinity change (∆𝐵𝐴) upon the point mutation. ∆𝐵𝐴 for each SNV serves as 

the pseudo gold standard set for later on classification model. 

(c) Construction of the random forest model to predict the direction of protein-ligand binding 

affinity change (∆𝐵𝐴 > 0 𝑜𝑟 ∆𝐵𝐴 ≤ 0). With feature engineering and exploration, several SNV 

features (i.e. SIFT, GERP, Polyphen-2), drug ligand features (i.e. molecular weight, hydrogen 

bond donor/acceptor count), and structure features (i.e. binding site, side chain volume and 

hydropathy change) are combined to predict the direction of protein-ligand binding affinity 

change. GenoDock program suite is trained and tested with a rigorous cross-validation, model 

selection and evaluation manner, with four application models available. We employ Platinum 

dataset as our real gold standard providing about 100 records of experimentally measured binding 
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affinity changes for human protein mutations. By constructing docking calculations for binding 

affinity changes, we have calculated binding affinity change for each of the ~10,000 mutations in 

GenoDock database, making it possible to train a supervised learning model with confidence. 

With the trained GenoDock model, it is then possible to screen large scale datasets for drug 

ligands (e.g. ~2.7k from DrugBank database), human protein structures (~30,000 from RCSB 

PDB website with resolution higher than 3.0 Å), and exonic SNVs (~1,000,000 sequenced exonic 

SNVs; ~175,000 SNVs mapped with at least one human protein structure with 2.8Å or higher 

resolution from RCSB PDB database).  

 

Figure 2. Boxplot of ligand binding affinity changes for different types of SNVs in 

GenoDock 

An overall comparison of common, rare, passenger and driver SNVs in terms of binding affinity 

change from GenoDock data source. SNVs with ∆𝐵𝐴 > 0 are plotted in order to compare the 

extent of destabilization towards ligand binding activities by each SNV group. The mean values 

for those SNVs leading to ligand-binding disruption for common, rare, passenger, and driver 

SNVs from ExAC and TCGA dataset are 0.117kcal/mol, 0.129 kcal/mol, 0.159 kcal/mol, and 

0.236 kcal/mol, respectively. The difference in common and rare SNVs from ExAC dataset is not 

significant; the difference of passenger and driver SNVs from TCGA is significantly different, 

with a p-value of 3.60e-4, where driver SNVs have a bigger extent in disrupting ligand binding 

compared with other groups. The green-dot line and pink-dot line in the figure show the 

percentage of SNVs from each group that lead to non-positive shift of binding affinity (∆𝐵𝐴 <

0 𝑜𝑟 ∆𝐵𝐴 = 0; 94%, 93%, 91%, 85%, respectively), and those that do not change the binding 

affinity (∆𝐵𝐴 = 0; 88%, 87%, 87%, 77%, respectively). It is clear that cancer driver SNVs have a 

greater probability to result in a positive binding affinity change compared with the other three 

groups.  

 

Fig. 3. Boxplot distribution between disruptive SNVs (positive binding affinity shift) and 

non-disruptive SNVs (non-positive binding affinity shift) regarding different features 



 37 

groups:  

(a) PolyPhen-2, SIFT and GERP score as SNV features. We observe that Polyphen-2, SIFT, and 

GERP scores for the two groups of SNVs are all significantly different with p-values smaller than 

0.05 from two-sample Wilcoxon tests. SNVs that disrupt ligand protein binding have a higher 

mean Polyphen-2 score (mean Polyphen-2 value: 0.665 and 0.516 for disruptive and non-

disruptive SNVs, respectively) and a lower SIFT score (mean SIFT value: 0.101 and 0.149 for 

disruptive and non-disruptive SNVs, respectively), both indicating a more deleterious role of 

disruptive SNVs on protein function. In terms of GERP score, SNVs lead to positive binding 

affinity change are more likely to be associated with protein residues from more conserved 

regions, indicating by a higher mean GERP score (mean GERP value: 3.32 and 2.99 for 

disruptive and non-disruptive SNVs, respectively). 

(b) Side-chain volume and hydropathy change as protein structure features; distance between 

ligand and mutated residue when co-crystal structure is present. Amino acid side chain volume 

and hydropathy change before and after mutation directly affect interaction of protein residue 

with ligand. We observe that the mean value of both side chain volume and hydropathy are 

statistically significant. On average, SNVs that destabilize ligand binding have decreased side 

chain volumes compared with the other class of ns SNVs (mean volume change index: -0.177 and 

0.0343 for disruptive and non-disruptive SNVs, respectively). For side chain hydropathy change, 

there is also a significant difference between the two classes of SNVs (mean hydropathy change: 

0.6306 and 0.3562 for disruptive and non-disruptive SNVs, respectively). When protein-drug co-

crystal structures present, we directly calculate the distance of the mutated protein residue from 

the drug ligand. Within our expectation, the SNVs which will positively shift binding affinity are 

more likely to be mapped on to residues within binding pocket (mean distance from ligand: 6.29Å 

and 19.8Å for disruptive and non-disruptive SNVs, respectively). 

(c) Polar surface area and molecular weight as ligand features. Within the context of protein drug 

ligand interaction, physicochemical features of drug molecules play vital roles to interpret SNV 

implications. We observe that SNVs that disrupt binding affinity, the drug ligands tend to have a 

significant smaller average polar surface area that those corresponded with SNVs in the other 

class (mean ligand polar surface area: 94.62Å2 and 105.5Å2 for disruptive and non-disruptive 
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SNVs, respectively). We also observe that the average molecular weight of drug ligands 

interacting with disruptive SNVs is significantly higher than those corresponded with the other 

class (mean molecular weight of ligand: 361.0g/mol and 341.2g/mol for disruptive and non-

disruptive SNVs, respectively). 

 

Figure 4. Performance and implementation of GenoDock for binding affinity change 

prediction. 

(a) ROC plots for four models with different input feature groups (with “Binding Site” feature 

included during training process in “SNV + Structure” and “SNV + ligand” model). Our classifier 

achieved AUC of 0.73 (SNV only), 0.91 (SNV + Structure), 0.96 (SNV + Ligand), and 0.97 

(SNV + Structure + Ligand), respectively. For “SNV + Structure” and “SNV + Ligand” models, 

we train the model including binding site information, and we test the data with original binding 

site information of each single SNV. 

(b) ROC plots for four GenoDock models with different input feature groups (with “Binding Site” 

feature excluded during training process in “SNV + Structure” and “SNV + Ligand” model). Our 

classifier achieved AUC of 0.73 (SNV only), 0.74 (SNV + Structure), 0.79 (SNV + Ligand), and 

0.97 (SNV + Structure + Ligand), respectively. For “SNV + PDB” and “SNV + Ligand” models, 

we train and test the model without “Binding Site” feature to predict the influence of SNVs onto 

binding affinity change in case we cannot tell whether the associated protein residue is on binding 

site or not. In GenoDock web interface, users can switch “Binding Site” to be known or unknown 

for predictions of interest. 

 

Figure 5. Case study: GenoDock identifies known and unknown drug-resistance mutations.   

(a) Identification of T790M mutation on EGFR with gefitinib-resistant effect. The threonine on 

chain A in human EGFR protein (PDB ID: 2ity) is mutated to methionine by a somatic SNV 

(rs55181378). T790M is a well-studied mutation in clinical research. Patients with somatic 
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activating mutations in the EGFR gene would develop resistance to tyrosine kinase inhibitors 

(TKIs) such as gefitinib (Ligand ID: IRE). With the T790M mutation, drug resistance arises 

from the steric hindrance of gefitinib binding due to the increased side chain volume of 

methionine, leading to a positive shift to binding affinity. GenoDock correctly predicts this shift 

step by step along its decision-making process.  

(b) Identification of an unknown mutation potentially leading to drug resistance: resistance effect 

towards zoledronate acid by R112H mutation on human ASH1L. The arginine on chain A in 

ASH1L protein (PDB ID: 4p0w) is mutated to histidine by a somatic SNV (rs155317993). Due to 

the breaking of the salt bridge between the ARG side chain and the drug ligand zoledronic acid 

(Ligand ID: ZOL), the resulting uncharged HIS binds to the ligand much weaker, indicated by a 

positive shift of binding affinity change, which is correctly predicted by GenoDock.  

 

Figure 6. An example of GenoDock application on large scale dataset 

We apply GenoDock (“SNV + Ligand” model) on a pool of 10 drug ligands on a set of 290,515 

somatic exonic variants from original TCGA dataset to estimate how vulnerable each drug ligand 

is to be disrupted by individual carried variants. We assume that each variant is associated with 

amino acids locating in the binding pocket in order to estimate the maximum probability of this 

SNV to disrupt protein-ligand binding. Each line stands for density distribution of these ~0.3 

million variants in terms of probability of being disruptive to a certain drug ligand. Variants with 

a probability higher than 0.5 is highly likely to impair the binding. The less disruptive SNVs a 

drug is associated with, the more likely the drug will be in terms of retaining its efficacy for 

individuals carrying a variety of variants. Within the 10 drug ligands selected, imatinib (STI) has 

the most number (65%) of SNVs which are likely to disrupt its binding with proteins; relatively, 

acetazolamide (AZM) has least portion of disruptive SNVs (7%) compared with other drug 

ligands.  


