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Abstract  
- An argumentative piece on how Genomics is driving data science 
https://www.dropbox.com/s/vfsed9mdm21ra0z/DSG%20mind%20map.mup?dl=0 
1. Introduction 



One of the major goals of data science is to improve decision making by leveraging 
insights obtained from large datasets through and the application of statistics and 
computer science to real-world domains. Data science has caught a lot of public's 
attention in the most recent years, mostly due its application and impact in the 
technology industry (Google, Facebook). Much less appreciated, however, is the fact 
that a lot of early genomics, in particular, bioinformatics, was often data science even 
before it became broadly adopted. Genomics has had an intertwined growth, perhaps 
earlier than the overall field of data science, providing key ideas that one can see today 
reflected in other areas of data science and also borrowing concepts from other data-
intensive fields. 

Many factors contributed to the premature data-driven nature of genomics. Most of the 
technical advancements and data collection growth we have seen in the life sciences 
was driven by the advancements in computing power, the massive reduction in memory 
costs, and DNA sequencing. DNA sequencing technologies have undoubtedly been one 
of the most transformative developments in the life sciences. The drastic drop in 
sequencing cost and growth in sequence throughput allowed the collection of so much 
genetic data that some estimates project that the DNA sequencing data will surpass the 
amount of data collected in astronomy, industry, and social media \cite{MSchatz}. 
Moreover, DNA sequencing data is monolithic, discrete and not subjective. Like weather 
data, the number of sensors (sequencers) around the globe has grown exponentially 
and allowed uniform and consistent collection of data.  

The connection between Genomics and Data science is important to recognize as going 
forward. Genomics, to some degree, might provide a paradigm for Data science and 
other life sciences, and also should be recognized as one of the key early applications 
for data-intensive computing. Here we will show some aspects of the large scale in 
genomics currently and how it has both imported and exported a variety of different 
technical and cultural aspects from other disciplines in data science. We also explore 
the prospects for the future of genomics, as one increasingly sees a very data-rich 
ecosystem develop in the biological sciences. 

- Here we explore how genomics is an early instantiation of data science  
- We also explore the imports and exports and interplays between both disciplines 
- We explore the cultural and methodological exchanges between genomics and data 
science to highlight genomics as one of the best models for newer data-driven 
disciplines.  
- Furthermore, we use the big data framework (4V's - Volume, Velocity, Variety, and 
Veracity) to describe the recent developments observed in genomics. 



- We propose a new pathway for genomics in which the discipline is moving from a 
descriptive culture (i.e. data mining) to a predictive culture - forecasting (predicting 
generative models) by integrating physical models and large datasets. Analogous to 
weather forecasting. 
2. Contextualizing Genomics and Data Sciences  
Life sciences and statistics have always long shown evidence of intertwinement. There 
are at least two anecdotes from early twentieth century that could be referenced as 
remarkable examples of life sciences, in particular generics, multidisciplinary nature.  
Fisher, father of population genetics. Huge impact on statistics.  
Shannon, from the information theory also defended a short Ph.D. in population 
genetics.   
2.1 60’s-90’s: Origins: Tukey, Dayhoff – Struggling with computing/memory/storage 

Genomics and Data Science are, compared to more established areas, new disciplines. 
The definition and foundation of genomics are clear. Genomics is defined as the branch 
of molecular biology that investigates the structure, function, evolution, and mapping of 
genomes. Thus, the origin of genomics is clearly associated with the first fully 
sequenced genomes in the 90's. The establishment of genomics as a mature discipline, 
however, was only achieved after the efforts to draft the human genome. Nevertheless, 
in the 70's Dayhoff published the first editions of a database, which can be considered 
one the first efforts to characterize organisms in a, far from complete, but genome-wide 
fashion \cite{30084940, Dayhoff books}.   

In contrast, the data science definition and foundation are not as straightforward. In the 
70’s, Tukey called for a revisit of statistics and suggested a new focus. Tukey called 
statisticians to not only be concerned about the theory of modeling data generation but 
also use the growing amount of data being collected to model more applied problems. 
This new field, called Data Analysis, was suggested to be a multidisciplinary discipline 
combining statistics, mathematics, and rudiments of computer science. From its 
beginning, Tukey suggested that this discipline should not only be focused on modeling 
but also carefully study data management, processing, and data representation.  
2.2 80’s-90's: Early genomics era - computing commodity and internet 
2.3 2000-today: Large-scale projects, deep learning, cheap storage/cloud 

[[ Figure 1 - Definition of biological data science (circos), Parallel timeline 
between DS and Genomics]]  
3. The exchanges between DS and Genomics  
3.1 The exports 
Over the years, the parallel progress of genomics and data science promoted numerous 
methodological exchanges between both disciplines. In general, the flow of ideas was mostly 
unilateral. Where genomics would import ideas developed by data scientists and apply to a 



narrower set of problems involving molecular biology. However, that's not to say that genomics 
and bioinformatics have not contributed to many concepts adopted by data science.  

One of the most notable examples of methods exported from genomics to data science is the 
Latent Dirichlet Allocation (LDA) model. LDA uses supervised sample classification to learn the 
most impactful factors that can predict future classifications. It has been used to, for example, 
classify the content of text excerpts based on the most informative words. LDA was first 
described in population genetics \cite{pritchard 2000}. Pritchard conceptualized LDA as a model 
to infer individuals' population structure based on most informative genetic variants. The 
concept was noticed by other and generalized using graphs.  

!  
Genomics has also contributed to concepts of data visualization in data science. One of the best 
examples is the Circos plot \cite{19541911}. Circos was initially conceptualized as a circular 
representation of the linear genomes. On its conception, the tool used to display chromosomal 
translocations or large synteny regions. As the visualization tool evolved to be more generic it 
was also used to display highly connected data sets. In particular, circos has been used by the 
media to display, for example, to track customer behavior, to track political citations, migration 
patterns.  

Finally, genomics has also created statistical methods to detect the association between 
phenotypes and SNPs. Genome-Wide Association Studies (GWAS) is a model that testes the 
significance of the correlation between multiple variants and discrete or continuous phenotypes. 
Since XXX \cite{yale GWAS paper}, with the advent of microarrays, phenotypes could be tested 
to be associated with hundreds of thousands of single nucleotide variants in the human 
genome. GWAS is probably one the best representation of models that have an imbalance 
between the number of variables (millions of SNPs) and the number of samples (individuals). 
More recently, researchers have been moving from monogenic to polygenic models. The 



models could certainly be used data science to models many multiple variables have small but 
significant effects on traits (i.e. hundreds of ratings/purchases could contribute to describing 
customer behavior)  [[Expand]]  

Prediction challenges are yet another example of pioneering concepts born and expanded in 
genomics that are widely adopted in data science. The Critical Assessment of protein Structure 
Prediction (CASP) is an organized effort to evaluate and assess the current state of the 
prediction of protein structures. Every two years, since 1994, a committee of researchers select 
a group of proteins that i) have their structure described by experiments – usually 
crystallography; and ii) are target of in silico prediction of structure for hundreds of groups 
around the world.  CASP is a community-wide experiment to determine the state of the art in 
modeling protein structure from amino acid sequence. After predictions are submitted, 
independent board of assessors compare the prediction models to the experiment evidence and 
rank those methods. On the most recent instantiation of CASP more than 100 groups submitted 
more than 50,000 models for 82 targets. Similar initiatives have been seen in biomedicine and 
system biology, the DREAM challenges, for example, are annual challenges that are broadly 
distributed across many topics. In the same lines, today there are prediction challenges to 
define, for example, the state of are of image classification, to speech recognition.   
3.2 The non-methodological exports of genomics  

The evidence of interchange across genomics and DS is not only limited to 
methodological exchanges. Genomics has also exported and tested many principles of 
a successful data-driven discipline. These principles promote and embrace openness 
and reuse of data (data exhaustion) to a level rarely seen in academia. Here we 
organize and discuss the tenets of data-driven community.  
 \cite{Should neuroscience be like genomics?-24904347} 

3.2.1. The Bermuda principles. 

Initially conceptualized by the leaders of The Human Genome Project (HGP), the 
Bermuda Principles \cite{1996} is a document that defines how the data produced by 
the human genome project should be handled. In particular, the principles stated that 
data generated by the HGP should be publicly released, at most, 24 hours after it was 
generated. Many factors influenced the elaboration of these principles. First, the fierce 
competition from the private sector. At the same time, the public effort to sequence the 
human genome was being threatened by Celera. Second, the early discussions about 
the sequencing of the human genome were inspired by the Manhattan project 
\cite{UCSC}, thus, the public effort had a large consortium of research groups 
collaborating in order to sequence the human genome as soon as possible. Peer-to-
peer exchange of data would only cause delays in the process of discovery and 
assembly. We argue that the early elaboration of the Bermuda principles and a large 
number of groups using the datasets produced by the project caused a paradigm shift in 
the genomics community. Today, many researchers and consortia projects adopt 



Bermuda-like principles. For example, the 1000genomes \cite{}, ENCODE \cite{} and 
others release their datasets before publication to allow a broader number of 
researchers to use public datasets \cite{encodeauthors} 
3.2.2. Large-scale repositories and universal file formats 

As a result of the Bermuda-like principles, a large amount of sequencing data has been 
made available to the public. While a lot of datasets are being shared by the 
researchers themselves, genomics can also count on public data hosts, a huge contrast 
to other disciplines. The vast majority of sequencing data is hosted by public platforms 
that, essentially for free, host public and private datasets. The same is observed at the 
European Bioinformatics Institute (EBI). These central archives are a rich source of data 
for any genomics projects, contributing to a culture of data reuse and transparency.  

The early adoption of data formats has also contributed to the standardization of 
genomics datasets. The majority of computations in genomics are based in a handful of 
file formats. For example, FASTA, BED, BAM, VCF, and bigwig, respectively represent 
sequences, coordinates, alignments, variants and coverage of DNA or amino acid 
sequences. Moreover, the early adoption and establishment of file formats is the result 
of the nature of the monolithic human genome. Both DNA and amino acids are discrete 
variables that are tied together by a reference coordinate system, the human reference 
genome. The monolithic nature of the genomics also contributes to the standardization 
of formats and allows the community to quickly test, adapt and switch for other methods 
that use the same input format. 
\cite{3162770} 
3.2.4. Community commitment to distribute data and methods openly 
Probably the fact that data is open, pushed software code also to be open. Maybe 
there's a great interaction here, where the open source culture, particularly strong at 
UCSC, pushed for open data and both things retro-feed themselves. A huge amount of 
open source available. The recent push from journals to evaluate code quality.  
The imports 
On the flip side of the coin, over the years, genomics has been importing many concepts from 
data science. For example, most array and massively parallel sequencing platforms are heavily 
dependent on image processing algorithms. Improvements chemistry but also in image 
processing have been associated with better sequencing quality and the cost drop in many 
sequencing platforms \cite{}. 
Another central aspect of genomics, the process of mapping reads to the human reference 
genome, also relies on a major technique on data science. Fast string processing algorithms. At 
its foundation protein, pairwise alignment predates DNA sequence alignment. The first 
implementations were based on Smith-Waterman \cite{1981} and Dynamic programming 
\cite{FASTA 85; BLAST 90}. These methods were highly reliant on computing power and more 
memory efficient. With the advancements of other string alignment techniques and the 
explosion on sequencing throughput genomics experienced had burst in sequence alignment 



performance. Since most of the sequencing technologies produced short reads during, the first 
half of 2010 saw a growth in methods using index techniques. That advancement was 
accompanied by a drop in memory cost. In particular, we have seen many methods based on 
burrow-wheeler transformation (BWA, bowtie), De Bruijn graphs (Kallisto, Salmon), and Maximal 
Mappable Prefix (STAR). 

- Multiple testing?  
- LASSO regression? 

Much more recently as the amount of DNA sequence, especially driven by the large 
accumulation of orthogonal methods such as functional genomics, and protein structure there 
has been an influx of deep learning solutions from data science. Very intriguing implementations 
of deep learning networks are being developed to, for example, predict protein structure \cite{}, 
classify tumor \cite{} or predict the chances of a patient to develop psychological diseases 
\cite{}. In particular, deep learning methods have been used to integrate large datasets to 
annotate and classify DNA sequences, to predict protein structures or even to model the 
interaction between genetic, transcriptomic and regulatory variations to predict pathways 
associated with diseases.  

4. Framing key issues in Genomics in Data Science terms (The four big V's of Genomics) 
4.1 Volume 

The growth of genomics data has witnessed an exponential boom during the last 20 
years. In Figure 1, we plot growth patterns of data generated from sequencing and 
microarray experiments in the European Nucleotide Archive (ENA) \ref{ena}. As a result 
of the swift decrease in sequencing costs \cite{NIHsequencingcostdrop},\cite{costofseq1 
and 2}, the total size of the sequencing data surpassed that of microarray counterparts 
in 2007. The steep growth has remained consistent, a trend that was also observed in 
NCBI’s Sequence Read Archive (SRA) as we show later in this paper. The gap between 
NGS and microarray data is expected to keep widening during the next decade should 
current trends be sustained. Interestingly, MS data has also witnessed an exponential 
growth rate since depositing the first MS dataset in 2009 
\cite{the_ena_first_ms_dataset}, what indicates that the massive volume of generated 
data might transcend the borders of genomics and relates to other biomedical areas 
such as proteomics. 
Current and Expected Growth Patterns across Fields 

A consistent pattern of data growth in genomics, climate science, and social science 
can be observed in Figure 2B showing growth patterns in (logged) total size of 
deposited data over time in NASA’s Earth Science Data Systems Program \ref{nasa}, 
NIH’s Sequence Read Archive (SRA) \ref{sra}, and the Harvard Dataverse 
\cite{dataverse}, respectively. The rate of growth varies considerably among fields, 



however, while climate science and astronomy (need refs) continue to dominate 
scientific fields w.r.t to data generation [[MG: AMT - Atmospheric Measurement 
Techniques]], genomics seems to have a faster rate during the last decade mainly 
because of the formation of mass scale consortia projects that leverage this kind of data 
and rapid advancements in sequencing technologies \refs{}.  

Considering the patterns of progress in supercomputing power and towering growth of 
sequence data generation shown above, we predict that new challenges in data 
handling and processing will emerge during the next decade. The sum of top 500 
supercomputers deployed for R&D is growing in a slower pace than that of genomics 
data, and further investments in infrastructure, a major part of which is supercomputing 
stations, are necessary. Furthermore, the growing interest in cloud computing 
\ref{cloudcomputingrefs} is expected to considerably increase web traffic, for which the 
infrastructure has been growing steadily and is expected to accommodate such 
emerging advancements as demonstrated above in IPTraffic plot \ref{IPdata}. 

Nature of Different Fields 

The total size of data generated by social scientific studies has been significantly 
smaller than that by studies in other scientific fields, especially natural sciences and 
medicine. One emblematic example is shown in Figure 1 with the Harvard Dataverse, 
predominantly comprising of social science studies’ datasets. As this (social sciences) 
pattern seems to be consistent throughout a long stretch of time, i.e. decades in that 
particular example, we interject that certain fields intrinsically tend to not generate 
enormous amounts of data. A number of factors might be behind this issue: 
● Types of experimental studies (surveys vs sequencing vs imaging) 
● Nature of collected data (spreadsheets vs genomes vs images) 
● Number of faculty positions and research centers (and consequently 

researchers) [to look into this link https://www.humanitiesindicators.org/content/
indicatorDoc.aspx?i=71 + other articles on lack of funding in humanities might 
help] 

● Funding 
● History of practice in a field (social sciences > astronomy > genomics yet order 

w.r.t. Data generation is different) 
Data Eruption between Past and Present 
Technological advancements have always escalated scientific data generation. Before 
genomics has been established as a major scientific field, Carlos Jaschek of the Center 
of Stellar Data and Observation is Strasbourg, France, conducted in 1978 
\cite{jascheck1978} the first analysis of data growth in modern astronomy focusing on 
seven then-major subareas in the field. Not only is the title the author chooses to 

https://www.humanitiesindicators.org/content/indicatorDoc.aspx?i=71
https://www.humanitiesindicators.org/content/indicatorDoc.aspx?i=71


describe the data growth phenomenon (“information explosion”) is different from the one 
commonly used today (“data eruption/deluge”) \ref{find refs for “data eruption/deluge”), 
but also his predictions underestimated actual values witnessed after the study. 
However, even when working on a much smaller scale compared to that of today, the 
study also relied on approximations because of inaccessibility and lack of annotation 
problems, two problems that considerably persist today. Different growth patterns were 
also observed among subareas, which defied the common belief back then of 
homogeneous exponential growth across astronomical subdisciplines. A similar 
conclusion can be drawn from the aforementioned analysis of data growth patterns 
among scientific fields we demonstrate in Figure 1. 
4.2 Velocity  

Increasing velocity of genomics data generation, as shown in Figures 1 and 
\fig{datagrowthfig} \cite{seq throughput growth} has been a driving factor behind the 
significant increase in volume. Nevertheless, most of the datasets generated by 
genomics is more of a static nature. For example, genomics change very little over time 
and there is little necessity of datasets being processed instantaneously.  
New areas in genomics such as disease control, epidemiology are beginning to 
leverage cheap sequencing to track the spread of viruses and bacteria in the population 
\cite{ebola, zika}. Similar applications have been in ? microbiome? \cite{??} 
4.3 Variety   
Continuous emergence of new approaches to studying the genome has led to the 
availability of a wide variety of (i) data types, (ii) formats, and (iii) functional assays. 
Currently, the most widely used data types constitute raw Next Generation Sequencing 
(NGS) data, sequence alignments, annotation sets, and quantitative information derived 
from experiments and software pipelines (e.g. Chip-Seq files and variant files). Among a 
multitude of reasons, data variety has necessitated the need for standardization to 
facilitate the extraction, integration, and sharing of genomics data \cite{comprehensive 
paper here}. Additionally, the study of DNA-DNA interactions in three-dimensional space 
has grown further to append more data types to the genomics data variety equation. 
Primary growth of multi-dimensional, interaction genomics data took shape after the 
arrival of Hi-C technology in 2009 [V1], which measures interactions between all pair 
combinations of fragments under study. The technology arrived after a series of 
advancements that in 2002 with 3-C interaction studies focusing on single pairs of 
fragments [V2, V3]. (More on assays can be added if need be - list of references in 
Additional useful references below) 

- 0.5 para explosion of *seq methods 
- 1 para uniform data of DNA/AA 

4.4 Veracity (cleanliness)  
Numerous standards have been developed to scrutinize sequencing data accuracy 
\cite{here + this reference has many other details we can refer to should we need to 

https://www.sciencedirect.com/science/article/pii/S2212066116300230
https://www.sciencedirect.com/science/article/pii/S2212066116300230


elaborate on Veracity}, most popular of which is Phred score in FASTQ files \cite{Cock 
et al. here}. In particular, the third generation of sequencers which produce longer 
sequencing reads at the expense of sequence veracity \cite{PBio+Nanopore}. 
Algorithmic challenges to mapping sequence reads, calling variants and performing 
other core tasks in genomic pipelines has also led to discarding parts of datasets 
considered ‘dirty’ or of ‘unknown’ status. More recently, the field of single-cell genomics 
(SCG) has introduced a new set of challenges at the cellular level with datasets 
containing as little as 5-10% of the signal in many cases \cite{Nature paper here}. Data 
imputation is currently a central area in SCG research and is expected to maintain its 
position as the field evolves \cite{Nature Methods paper here}. More generally, data 
preprocessing, including data cleaning, has been an integral part of computational 
biology among other fields and has significant effects on downstream analyses. 
5. The tripartite aspects (measurement, mining, and meaning) of genomics as a data science 
branch. 
Genomics is vastly based on the collection of large amounts of data via sensors and the 
statistical and computational analytics to this data. Different from social sciences, 
economics, and even consumer datasets, most of the genomics data is strictly derived 
from sensors. A good analogy for the future of genomics is what has been achieved in 
weather forecasting, where the collection of large-scale sensor data around the globe 
and the fusion of this data to physical models has achieved great success. It seems 
reasonable that a way forward for genomics is to aim at using genetic data for forecast 
phenotype likelihoods, very similar to weather forecasters. Furthermore, the way that 
weather forecast is presented in terms of simple, probabilistic models suggests that the 
public also provides a model of, perhaps, how the underlying statistical predictions 
made by genomics may be useful in the future. 

Genomics is unlike other branches of data science in that in addition to accumulating 
large amounts of data and mining it, there is also the notion in genomics of connecting 
the mining of the data to physically based models that describe molecules and 
biological processes. In that sense, there is a remarkable resemblance to the weather 
forecast. 

Weather forecasting was one of the first applications of large-scale computing in the 
1950s. This was done by XXX. At that time this was an abject flop. People tried to 
predict the weather solely based on physical models. As a result, they quickly found 
predictions were only correct in a very short degree into the future, mostly because of 
the great necessity to incorporate initial conditions. 
This far from ideal attempt led to the development of the field of nonlinear dynamics, 
chaos and the coining of the term butterfly effect. However, the subsequent years' 
weather prediction was dramatically improved and is now weather prediction is a great 

https://academic.oup.com/nar/article/38/6/1767/3112533
https://www.nature.com/articles/nrg.2015.16
https://www.nature.com/articles/nmeth.4220


success story. Users routinely check their phones and TVs to get a probabilistic 
prediction about the weather. And these predictions are used in terms of what they are 
going to wear or how they are going to behave in the next short period of time. The 
improvement in weather forecasting had to do with synthesizing these physically based 
models with large-scale data gathering and data mining where the data is coming from 
satellites, weather balloons, and other sensors. This fusion of large-scale data 
collection, data mining and then connecting it to physically-based models is a model for 
the success that one might imagine in genomics. Today, as a community, genomics has 
displayed great aptitude to data collection and data mining. However, the predictive 
aspect of genomics, in particular when integrating physical models, is still lacking.  

Pushbacks 
[[Maybe? I like the idea of including a discussion of some of the pushbacks that 
genomics has had over the time because it is a data-driven discipline as opposed to an 
older view of genetics where whoever generated the data is the owner of the data. 
The conflict and push backs from genomics being data-driven 

-- Research parasitism and the major role played by genomics in the open data, open 
science scene.  
]] 
[[http://blogs.nature.com/naturejobs/2017/06/19/ask-not-what-you-can-do-for-open-data-ask-what-
open-data-can-do-for-you/ 

http://blogs.sciencemag.org/pipeline/archives/2016/01/22/attack-of-the-research-parasites 

https://www.forbes.com/sites/davidshaywitz/2016/01/21/data-scientists-research-parasites/2/]] 
Concerns with privacy 
[[GG? to add 1para]] 
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