SABETI, TEWHEY, & FINUCANE LABS

ENCODE Functional Characterization Plan

Focus on genetic finemapping and MPRA

Application of human variation

5x Cell Lines: GM12878, K562, HepG2, IMR-90, SK-N-SH 3x Replicates

Jacob Ulirsch (Finucane/Sabeti Lab)

Leveraging natural variation to identify CREs most informative for learning regulatory grammar

Thinking like a geneticist:

From GWAS to gene to biology

Claussnitzer et al. 2015

Complex trait associations

Causal variant -> casual gene -> biological insight

Thinking like ENCODE: From GWAS to regulatory grammar

Claussnitzer et al. 2015 Ulirsch*, Nandakumar* et al. 2016

Complex trait associations

7

Linkage disequilibrium confounds causal variant identification

Kathiresan et al. 2009

Which one(s) are causal?

Most common variants underlying complex traits are non-coding regulatory variants

Maurano et al. 2012 Gusev et al. 2014

GWAS loci-based

Heritability-based

Can we learn regulatory grammar by functionally characterizing variants related to human health and disease?

Direct identification of CREs and noncoding regulatory variants via high-throughput reporter assays

Melnikov et al. 2012 Patwardhan et al. 2012 Ulirsch et al. 2016 Tewhey et al. 2016

Direct identification of CREs and noncoding regulatory variants via high-throughput reporter assays

MPRAs can identify functional variants at scale

Tewhey et al. 2016

From 29,173 candidates to 842 regulatory variants

Direct identification of CREs and noncoding regulatory variants via high-throughput reporter assays

From variant to regulatory grammar

Tewhey lab, unpublished

De novo reconstruction of regulatory grammar at **individual** elements

Genetic fine-mapping of complex traits and eQTLs

How can we be thoughtful about what variants to include? (massive ≠ infinite)

Genetic fine-mapping!

Genetic fine-mapping of complex traits and eQTLs

Building fine-mapping intuition through an example

Lareau*, Ulirsch*, Bao* et al. bioRxiv

Genetic fine-mapping of complex traits and eQTLs

Building fine-mapping intuition through an example

Lareau*, Ulirsch*, Bao* et al. bioRxiv

Big picture – how does fine-mapping work?

Genetic fine-mapping of complex traits and eQTLs

Our method (FINEMAP)

Benner et al. 2016 Benner et al. bioRxiv Lareau*, Ulirsch*, Bao* et al. bioRxiv

Genetic fine-mapping of complex traits and eQTLs

Overlap of fine-mapped blood cell trait variants with ChIP-seq and known motifs

Lareau*, Ulirsch*, Bao* et al. bioRxiv

Examples from fine-mapping 16 blood cell traits

Functions unclear for most fine-mapped variants Fine-mapping cannot resolve high LD regions

Direct identification of CREs and noncoding regulatory variants via high-throughput reporter assays

Overall experimental design

MPRA

5x Cell Lines: GM12878, K562, HepG2, IMR-90, SK-N-SH 3x Replicates

Direct identification of CREs and noncoding regulatory variants via high-throughput reporter assays

UK Biobank – many phenotypes

biobank

Public resource! ~500,000 genotyped individuals ~11,000,000 high quality variants ~2,000 phenotypes

Direct identification of CREs and noncoding regulatory variants via high-throughput reporter assays

GWAS test sets

~20 heritable phenotypes

• Diabetes, white blood cell count, BMI, education, CVD, etc.

Tier 1) Fine-mapped variants

All variants > 10% posterior probability

Tier 2) LD blocks for top associations

• All variants with R² > 0.8 for top 20 GWAS "hits" for each trait

Tier 3) Annotation nominated variants

• All variants > 1% posterior probability in ATAC-seq peaks

Tier 4) Sub-projects

 Haplotypes, regions with > 3 signals, pleiotropic regions, saturation mutagenesis, etc.

Direct identification of CREs and noncoding regulatory variants via high-throughput reporter assays

Control sets

Tier 1) Controls for fine-mapped variants

- Position matched to fine-mapped variants (< 2kb)
- Low LD to fine-mapped variant
- High p-value, low posterior probability

Tier 2) Distribution matched controls

- MAF
- Imputation quality
- ENCODE annotation matched
- LDscore

Tier 3) Random negative controls

- Not in LD with GWAS loci
- Not strong GTEx eQTL