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Abstract (~125 words)
To develop a comprehensive resource for the adult brainOur molecular-level understanding of how genomic variants relate to brain disorders is limited.  Addressing this challenge, the PsychENCODE consortium has generated ~5,500 genotype, transcriptome, chromatin, and single-cell datasets from 1,866 individuals. Adding and, b y uniformly processing and analyzing them together with publicallypublicly available data, has developed a comprehensive resource for the adult brainand (available via Adult.PsychENCODE.org). In particular, we deconvolved the gene expression of bulk tissuethrough the use of  using single-cell data, we , finding that differences in the proportions of cell types explain >85% of the cross-population variation observed. Moreover, using chromatin and Hi-C data from reference prefrontal-cortex samples, we found ~79,000 brain-active enhancers and linked them to genes and transcription factors in an extended regulatory network. We identified ~2.5M eQTLs (comprising ~238K linkage-disequilibrium-independent SNPs) and many additional QTLs associated with expression, chromatin, splicing and cell-type-proportion changes. We, also, leveragedLeveraging our QTLs, Hi-C datasets and regulatory networkwe to connected more genes and epigenetic changes to GWAS variants for psychiatric disorders than possible before (e.g., 304 for schizophrenia). Finally, we developed a and with a deep-learning model we embedding the regulatory network in a framework connecteding genotype to observed traitsphenotype. Our model achieves a ~6X improvesment in disease prediction over an additive model, highlights key genes for disorders, and allows imputation of missing transcriptome information from genotype data alone.
 
Introduction
Disorders of the brain affect nearly one fifth of the world’s population (1). Decades of research has led to little progress in our fundamental understanding of the molecular causes of psychiatric disorders. This contrasts with cardiac disease, for which lifestyle and pharmacological modification of environmental risk factors has had profound effects on morbidity, or cancer, which is now understood to be a direct disorder of the genome (2-5). Although genome-wide association studies (GWAS) have identified many genomic variants associated with psychiatric disease risk, for the vast majority of neuropsychiatric diseases we have little understanding of the molecular mechanisms affecting the brain (6).

To this end, aS number of studies have begun to elucidate the genetic and epigenetic molecular mechanisms connectingsteps on the path from genomic alteration to risk. For instance, the Psychiatric Genomics Consortium (PGC) has recently identified 142 GWAS loci associated with schizophrenia (7). Many of these lie in non-coding regions (7), suggesting roles in gene regulation. Other consortia have annotated non-coding regions across the genome using with expression quantitative-trait loci (eQTLs) from the Genotype-Tissue Expression (GTEx) project and enhancers from the ENCODE and Epigenomics Roadmap projects (references). However, none of these projects have focused specifically tailored their efforts toward the brain. FThe initial work focusing on identifying brain-specific genomic elements has provided greater insight into brain-specific functional genomics (8, 9), but still requires could be enhanced with larger sample sizes from both healthy and diseased samplesindividuals. Moreover, many new assays for functional elements, have been recently developed, such as Hi-C and single-cell sequencing, which have yet to be fully integrated with brain genomics data, at scale (10-13). 

Hence, the PsychENCODE Consortium has generated a large-scale dataset tofor provideing insights into the adult human brain and psychiatric disorders, including data derived through genotyping, bulk and single-cell RNA-seq, ChIP-seq, ATAC-seq, and Hi-C using of brains from 1866 individuals (14). All raw and uniformly processed data at both tissue and single-cell level have been placed into a central, publically available resource for brain functional genomics, that also integrates relevant re-processed data from other related projects, including ENCODE, CommonMind (CMC), GTEx, Epigenomics Roadmap, totaling with nearly ~12,000 data samples in total. By leveraging this resource, we were able to identifiedy functional elements and QTLs specific to the adult brain, including novel linking mpsychiatric GWAS results and genes linkages. Moreover, we combined these elements to build an integrated deep-learning model. This tool can utilize the richly structured data of the resource to identify interactions between genotype and molecular phenotypes at multiple layers, as well as predict high-level traits. 	Comment by Laura Zahn: It’s not clear to me what this means in this context. Please rephrase/ clarify.	Comment by Laura Zahn: What is a high-level trait? Please define.

Resource construction 
We designed the resource Adult.PsychENCODE.org as a large, coherently structured resource to provide coherent structure to a large amount of data ofn brain functional genomics (1). Broadly, it organizes data hierarchically, with a large base of raw data files (many of which individual genotyping and raw next-generation sequencing of transcriptomics and epigenomics have restricted access ?to maintain the privacy of the participants? But may be obtained by individuals who…….., such as individual genotyping and raw next-generation sequencing of transcriptomics and epigenomics), a middle layer of uniformly processed and easily shareable results (such as open chromatin regions and gene expression quantifications), and a compact cap that consists of a cap of an integrative model based onfrom imputed regulatory networks and QTLs. As shown in Fig. 1, tTo build the base layer we included all the adult data from PsychENCODE (~5,500 datasets derived from 1,866 individual brains) and merged these with relevant data from ENCODE, CMC, GTEx, Roadmap, and recent single-cell studies (~5,000 additional datasets) (Fig. 1) (11, 13). These data cover a representation of investigations and phenotypes and of a range of psychiatric disorders including Schizophrenia (SCZ), Bipolar Disease (BPD), and Autism Spectrum Disorder (ASD). Furthermore, the PsychENCODE project developed a specific "reference brain" project on adult prefrontal cortex (PFC); utilizing many matched assays on the same set of brain tissues, which we used (below) to develop an anchoring annotation (15).	Comment by Laura Zahn: I assume this access restriction is for privacy of the participants? Can you just say that here and briefly note here how one would be able to get access 

Transcriptome analysis: bulk and single-cell 
To identify the genomic elements associated with exhibiting transcriptional activities specific to the brain, we used the ENCODE pipeline to uniformly process RNA-seq data from PsychENCODE, GTEx and Roadmap. Using these data, we identified a wide variety of interpretable brain functional elements, such as non-coding regions of transcription, and sets of differentially expressed and co-expressed genes. From this we identified  - e.g., 12,080 genes were transcribed in the brains of 95% of the individuals surveyed and that over 16,000 protein-coding and 9,000 non-coding genes were detected in total (15, 16).

Brain tissues are composed of a variety of cell types, including neuronal and non-neuronal cells. Previous studies have suggested that gGene expression changes at the tissue level may be associated with changing proportions of basic cell types (17-21). However, it remains unknown studies have not systematically revealed how differing cell types can quantitatively contribute to population-level expression variation. Here, we address this question for expression over our cohort of 1,866 individuals.To address this question 
 
Wwe used two complementary strategies examining gene expression in our cohort of 1,866 individuals.

. First, we used the standard pipeline to uniformly process single-cell RNA-seq data in PsychENCODE, in conjunction with a number of other single-cell studies on the brain (11, 13), in order to assemble a list of brain cell types for the project. This includes previously identified neuronal types, major non-neuronal types, and a number of additional cell types involved in development (15). The results constitute a matrix, C of expression signatures, which are mostly concordant with what has been published (Fig. S2.4 and Conclusion). A number of genes had expression levels that varyiedng more substantially across these cell types than they did across individuals in a population (e.g., dopamine receptor DRD3, Fig. 2A). This implies that the changes in bulk expression may can readily result from variation in the absolute numbers of each cell typefraction variations.	Comment by Laura Zahn: Please see the checklist and supplemental template for formatting the supplemental materials Figures should be labeled sequentially as they appear in the text and in supplemental materials EG Fig 1A, 1B, 2, 3, S1, S2, S3. Please do not number them according to the sections of text with which they are associated. 
 
To explore this further, wWe also used a second strategy: an unsupervised analysis to identify the primary components of bulk expression variation as they relate to different cell types. We decomposed the bulk gene-expression matrix, B, from our resource using non-negative matrix factorization (NMF), B≈VH, and then determined whether the top components capturing the majority of covariance (NMF-TCs, columns of V) were consistently associated with the single-cell signatures (Fig. 2B, and C) (15). We found that aA number of NMF-TCs were highly correlated with neuronal, non-neuronal, and development-related cell types,?respectively?,  demonstrating that an unsupervised analysis derived solely from bulk data roughly matches the single-cell signatures, partially corroborating them.
 
We then examined tried to understand how variation in proportions of cell types contributes to variation in bulk expression. In particular, wWe de-convolved the expression matrix of tissue, B using the single-cell signatures, C to estimate the cell-fractions W, solving the equation B≈CW (15) (Fig. 2B). As validation, our estimated fractions of NEU+/- cells matched the experimentally determined fractions from the reference brain samples (Median error = 0.04, Fig. S2.9). We also cComparinged our results with previous deconvolution methods (15). Overall, we found that single-cell expression signatures could explained much of the population-level variation (Fig. 2D, i.e., across tissue samples from different individuals 1-||B-CW||2/||B||2>85%) (15).

Finally, wWe also identified found that cell-fraction changes were associated with different observed phenotypes and disorders (Figs. 2E, S2.6 and S2.7). For example, particular excitatory and inhibitory neurons exhibited different fractions between male and female samples (i.e., Ex3 and In8). The fraction of Ex3 was also reduced in individuals with ASD (test used, statistic? p=0.0077), where non-neuronal cells (e.g., oligodendrocytes) were more represented in greater abundant than in controlsce. We also observed an Another interesting association was with age. In particular, the fractions of neuronal types Ex3 and Ex4 significantly increased with age; by contrast, some non-neuronal types (e.g. oligodendrocytes) decreased (Fig. S2.8). These changes may be are potentially associated with differentially expression of specific ed genes over time. For example,	Comment by Laura Zahn: ?Differed in number? If not please rephrase/ clarify
the promoter of the Somatostatin (SST) gene, which is associated with …..expression decreases with age whereas its , exhibits increases inpromoter methylation increasesover time which may explain why this gene’s expression decreases with age. ; oOther genes (e.g. EGR1 and CP) exhibit different trends such as (briefly give examples and why these ar eimportant genes) (Figs. 2F, S2.10 and S2.11) (15). 

Enhancers
Using an approach consistent with ENCODE, we used chromatin modification signals to identify enhancers active in the brain (15). We based this analysis on the our reference brain datasets(see above), supplemented by the DNase and ChIP-seq data of the same brain region from the Epigenomic Roadmap Epigenomics. Overall, we annotated a reference set of 79,056 enhancers active in the PFC, enriched in H3K27ac and depleted in H3K4me3 (Fig. 3A).
 
Assessing the variability of enhancers across individuals and tissues is more difficult than performing the an analogous comparison for gene expression. Not only does the chromatin signal change across the population, but ?variability in enhancers among individuals is high and relative across individuals? the boundaries of enhancers can grow and shrink, sometimes disappearing altogether (reference/s?)(Fig. 3A). To investigate chromatin variability across the population, we uniformly processed the H3K27ac data from PFC, temporal cortex (TC), and cerebellum (CB) on a cohort of 50 individuals (15). Aggregating ChIP-seq data across the cohort resulted in a total of 37,761 H3K27ac "peaks" (enriched regions) in PFC, 42,683 in TC, and 26,631 in CB -- each ?peak is? of them present in more than half of the populationindividuals surveyed. Comparing aggregate sets for these three brain regions, the PFC was more similar to TC than CB (~90% vs 34% overlap in H3K27ac peaks), consistent with previous reports (22).	Comment by Laura Zahn: Are they a mix of populations or primarily people of European descent? This is information that would be worth noting
 
We also examined the overlap of the reference brain enhancers with H3K27ac in each of the individuals. As expected, not every active enhancer in the reference annotation was active in every individual in the cohort. In fact, on average ~70% ± 15% (~54,000) of the enhancers in the reference brain were active in another individual in the cohort (Fig. 3B). As expected, only a core set of reference enhancers was ubiquitously active in every person, with a larger fraction (~68%) being active in more than half of the population. To estimate the total number of enhancers in PFC, we calculated the cumulative number of active regions across the cohort (Fig. S3.2). This number increased dramatically for the first 20 individuals sampled, but saturated at the 30th. Thus, we hypothesize that pooling the identified PFC enhancers from 30 individuals is sufficient to cover nearly all potential enhancers in PFC, estimated at ~120,000.
 
Consistent comparison: transcriptome and epigenome 
As we uniformly processed the transcriptomic and epigenomic data across PsychENCODE, ENCODE, GTEx, and Roadmap datasets, we could compare the brain to other organs in a consistent fashion and also to compare across the transcriptome and epigenome. We tried sSeveral approaches, including PCA, t-SNE, and reference component analysis (RCA) were tested to determine the most for an appropriate comparisons. We found that, aAlthough popular, PCA de-emphasizes local structure and can be easily is influenced by outliers; in contrast, t-SNE preserves local relationships but “shatters” global structure (15). We thus used RCA which is a compromise: it projects gene expression in an individual sample against a reference panel, and then reduces the dimensionality of the projections.

For gene expression, our RCA comparison revealed that the brain separates from the other tissues in the first component (Fig. 3E). Inter-tissue comparisons exhibits more differences were larger than intra-tissue ones assessments (Fig. S4.1-4). A different picture emerged for chromatin. : cComparisons showed that the chromatin levels at all regulatory positions were, overall, less distinguishable between brain and other tissues (Fig. 3C) (15). At first glance, this is surprising as one expects great differences in epigenetic markss between tissues. Note, hHowever, our analysis compares chromatin signals over all non-coding regulatory elements from ENCODE (including enhancers and promoters), which is consistent with our expression comparison across all protein-coding genes (Fig. 3F vs. 3C). The total number of regulatory elements is much larger than brain-active enhancers (~1.3M vs. ~79K), so our results likely reflect that there are proportionately fewer brain-active regulatory elements than protein-coding genes (6% vs. 60%). 	Comment by Laura Zahn: Does RCA use Principle components- the axis of Fig 3E suggests this and to avoid confusion I’d make this clear above when it is described

Our analysis focused on inter-tissue differences in annotated regions (i.e., genes, promoters, and enhancers). However, in addition to the canonical expression differences in protein-coding genes, we also found differences in unannotated non-coding and intergenic regions. In particular, testes and lung have exhibit the largest amount of transcriptional diversity overall for protein-coding genes (i.e., the most genes transcribed, Fig. 3D); however, when we shift to unannotated regions for, brain tissues, such as cortex and cerebellum, show now have a greater extent of transcription than any other tissue.

QTL analysis 
We used the PsychENCODE data to identify QTLs affecting gene expression and chromatin activity. In particular, wWe calculated expression, chromatin, splicing-isoform, and cell-fraction QTLs (eQTLs, cQTLs, isoQTLs and fQTLs, respectively). For eQTLs, we adopted a standard approach, adhering closely to the established GTEx pipeline (reference). In PFC, we identified ~2.5M cis-eQTLs (~238K independent SNPs after linkage-disequilibrium (LD) pruning) and ~33K eGenes (including non-coding ones) with FDR<0.05 (Fig. 4). We found ~1.3M SNPs involved in these from 5,297,875 tested in a 1 Mb window around genes. This conservative estimate has a identified substantially larger more number of eQTLs and eGenes than previous studies (references) and reflects the large PsychENCODE sample size (15). The number of ?variably expressed? eGenes, in fact, is approachesing the total number of genes estimated to be expressed in brain. We evaluated tThe similarity of GTEx and CMC eQTLs to our eQTL set using the π1 statistic (23), finding a demonstrated a high replication rate when tested with the π1 statistic (23) (Fig. 4A). We also applied the same QTL pipeline to splicing variants and , identifiedying ~160K isoQTLs (15).	Comment by Laura Zahn: This is not clear do you mean to say soemthign along the lines of We found 1.3M snps of ~5.3 measured in a 1Mb window that exhibit a correlation with a differentially expressed gene or epigenetic mark….

For cQTLs, the situation is more complicated: no established methods exist for calculating differences these on a large scale, although there have been a variety of previous efforts (24, 25). To identify cQTLs, we focused on our reference set of enhancers and then examined how H3K27ac chromatin activity varied in at these loci across 292 individuals (Fig. 4B) (15). Overall, we identified ~2,000 cQTLs in addition to the 6,200 identified using from individuals from within the CMC cohort (26).

Next, we determined if any SNPs were associated with changes in the relative fractions of cell types across individuals (fQTLs). In total, we identified 1672 distinct SNPs constituting 4199 fQTLs (Fig. S5.3). Of these, the most fQTLs were associated with proportions of excitatory neuron Ex4 and Ex5 were associated with the most. After factoring out these cell-type differences, we identified 200,729 SNPs significantly associated with gene expression changes across individual tissues; these "residual trans-eQTLs" represent variant-expression associations that cannot be largely unexplained by changing proportions of cell types across individuals.

To further dissect the associations between genomic elements and the QTLs, we intersected our QTL lists ?across QTL types? with each other and a set of genomic annotations (Fig. 4D). As expected, eQTLs tended to be enriched at promoter regions, and cQTLs, at enhancer and TF-binding regions; fQTLs were spread over many different elements. Also, an appreciable number of eQTLs were enriched on the promoter of a different gene than the one regulated, suggesting e-promotor activity (27). For the overlap among different QTLs, we expected that most cQTLs, isoQTLs and fQTLs would be a subset of the much larger number of eQTLs; somewhat surprisingly, an appreciable number of these did not overlap (Fig. 4C). We calculated π1 statistics to evaluate the sharing among eQTLs with other QTLs. We found that the eQTL sharing with cQTLs was the highest while that with fQTLs was lowest (0.89 vs 0.11). Moreover, the shared cQTLs often suggested that the expression-modulating function of an eQTL derived from chromatin changes (for example for the MTOR gene, Fig. 4C). Finally, there were 119 SNPs that functioned as QTLs in more than 3 different capacities (e.g. as eQTLs, cQTLs and isoQTLs), which we dubbed multi-QTLs. 	Comment by Laura Zahn: All types of QTLs or some specific set? Please clarify.	Comment by Laura Zahn: Please briefly define what this means

Regulatory networks
We next integrated the genomic elements described above at the regulatory-network level. We created a network revealing how the genotype and regulators likely interact relate to target affect gene expression. We first processed a Hi-C dataset for adult brain in the same reference samples used for enhancer identification, providing a physical basis for interactions between enhancers and promoters (Fig. 5A) (10, 15). In total, we identified 2,735 topologically associating domains (TADs) and ~90K enhancer-promoter interactions (Fig. S6.1). Our adult Hi-C dataset substantially differed from a n earlier fetal-brain Hi-C dataset in that (e.g. only ~31% of the interactions were detected in the fetal dataset) (10), highlighting the importance of investigating multiple |the developmental stage to identify changes affecting for chromatin (Fig. S6.2 and S6.3).
 
As expected, ~75% of enhancer-promoter interactions occurred within the same topologically associated domain (TAD), and genes with more associated enhancers tended to have higher expression (Figs. 5B and S6.1). We next integrated the Hi-C data with the eQTLs and isoQTLs and observed that, . Ssurprisingly, QTLs involving SNPs distal to the eGene but linked by Hi-C interactions showed significantly stronger associations than QTLs involving SNPs on the exons and promoters of the eGene (Figs. 5C and S6.4).
 
In addition to Hi-C and QTLs, we tried to predict further regulatory relationships based on by directly relating the activity of transcription factors (TFs) to target genes (Fig. 5A). In particular, for each potential target of a TF, we required that (i) it has a "good binding site" (matching the TF's motif) in open chromatin regions near a gene (either in promoters or brain-active enhancers) and that (ii) it has a high coefficient in a regularized, elastic-network regression relating TF activity to target expression (15). Overall, we found the subset of interactions meeting these criteria could predict the expression of 8,930 genes with MSE< 0.05 (mean-square error, Fig. S6.5). For example, we could predict the expression of the ASD risk gene CHD8 with MSE=0.034 (15). Moreover, the subset of these interactions involving TFs binding to enhancers, necessarily instantiated a third set of putative enhancer-to-gene links.	Comment by Laura Zahn: It’s not clear to me what you are trying to say here. Please rephrase/ clarify

Collectively, we generated a full regulatory network, linking enhancers, TFs, and target genes. It contained ~43k proximal linkages (TF-to-target gene via promoters), and ~37k distal linkages (enhancer-target-gene) that are supported by at least two of the three data sets we examined evidence sources (Hi-C, QTLs, or activity relationships)(15).

Linking GWAS variants to genes
We used our above regulatory network to connect non-coding GWAS loci to potential genes with . We exploited all three possible evidence sources including Hi-C, QTLs, and activity relationships. For the newly identified 142 schizophrenia GWAS loci (28), we identified a set of 1,097 putative schizophrenia-associated genes, covering 119 loci (hereby referred as "SCZ-genes," Fig. 5E). 304 of these constitute a “high-confidence” set supported by more than two evidence sources (e.g., QTL and Hi-C, Figs. 5D-F and S7.1), exemplified by CACNA1C, which is regulated by multiple neuronal TFs via enhancers. The SCZ-genes represent an substantial increase from the previously reported 22 genes across 19 loci based on from a smaller QTL set (8, 28) and also a much larger number than can be linked by simple genomic proximity (176, Fig. 5D). The majority of the 734 SCZ-genes were not in linkage disequilibrium with the  index SNPs (734 genes [~66%, ] with r2<0.6, Fig. S7.1), consistent with previous observations that regulatory relationships often do not follow linear genome organization (10). 	Comment by Laura Zahn: What is this number- your genes, or those previously associated? Please clarify.
 
We then looked at the characteristics of the SCZ-genes we identified. As expected, tThey shared many characteristics with known schizophrenia-associated genes (references). In particular,our set was  they were enriched for genes intolerant to loss-of-function mutations (28), translational regulators, cholinergic receptors, calcium channels, synaptic genes, and genes that are known to be differentially expressed genes in schizophrenia (Fig. S7.1). Next, we integrated SCZ-genes with single-cell profiles and found that they are highly expressed in neurons with the highest expression in excitatory neurons (Fig. 5G). 

Finally, in a more general context, we found aggregate associations between our eQTLs and many brain-disorder GWAS variants, not just those for schizophrenia. In particular, cCompared to the GWAS-SNPs for non-brain related disorders, we found more significant enrichment for cis-eQTL SNPs and GWAS SNPs for many brain disorders (Fig. 4E) and . We find a similar and, and, in fact, stronger enrichment for our brain-active enhancers (Fig. 4E).
 
Integrative deep-learning model
The full interaction between genotype and phenotype involves many levels, beyond those encapsulated in the regulatory network. We addressed this by embedding our regulatory network into a larger multilevel model. For this purpose, we developed an interpretable deep-learning framework, a Deep Structured Phenotype Network (DSPN) (15). This model combines a Deep Boltzmann Machine architecture (reference) with conditional and lateral connections derived from the gene regulatory network. As shown in Fig. 6A, traditional classification methods such as logistic regression predict phenotype directly from genotype, without inferring intermediates such as the transcriptome. In contrast, the DSPN (Fig. 6B) is constructed via a series of intermediate models that add layers of structure; these include intermediate molecular phenotypes (i.e., gene expression and chromatin state) and defined groupings of these (cell-type marker genes and co-expression modules), multiple higher layers for inferred groupings (hidden nodes), and a top layer for observed phenotypes (psychiatric disorders and other traits). Finally, we used special multiple types of connectivity, including sparsity and lateral, intra-level relationships, to integrate our knowledge of QTLs, regulatory networks, and co-expression modules from the sections above. By using a generative architecture, we ensure that the model is able to impute intermediate phenotypes, as well as provide forward predictions from genotypes to observed phenotypes. 

Using the full model with the genome and transcriptome data provided, we demonstrated that the extra layers of structure in the DSPN allowed us to achieve substantially better prediction of diseases and traits than traditional additive models. Furthermore, ; further, the transcriptome carries additional information, which the DSPN is able to extract (Fig. 6D). For instance, a logistic predictor was able to gain a 2.4X improvement when using the transcriptome vs. the genome alone (+9.3% for transcriptome vs. +3.8% for the genome, above a 50% random baseline). In comparison, the DSPN was able to gain a larger 6X improvement (+22.9% vs. +3.8%), which may reflect its ability to incorporate non-linear interactions between intermediate phenotypes. Moreover, the DSPN also allows us to perform joint inference and imputation of intermediate phenotypes (i.e., transcriptome and epigenome, Fig. S8.1) and observed traits from just genotype alone, achieving a ~3.4X improvement over a logistic predictor in this context (Fig. 6D). These results demonstrate the usefulness of how even a limited amount of functional genomic information for can unravelling gene-disease relationships and show that the structure learned from such data can be used to make more accurate predictions of observed traits, even when absent.	Comment by Laura Zahn: This is confusing by “even when absent” do mean this is predictive assessment suggesting a later onset of the observed phenotype? Please rephrase/ clarify
 
We transformed our results to the liability scale for comparison with narrow-sense heritability estimates (Fig. 6D) (15). Prior studies have estimated that common SNPs explain 25.6%, 20.5%, and 19% of the genetic variance for SCZ, BPD and ASD, respectively (29). These may be taken as upper bounds for additive predictive models, given unlimited common-variant data. B; by contrast, non-linear predictors can potentially exceed these limits. Our best liability scores (based on from just the genotype at QTL-associated variants) are substantially below these bounds, implying that additional data will be is beneficial? for predictive analyses?. In contrast, the variance explained by the full DSPN model exceeds that explained by common SNPs (32.8%, 37.4%, and 14.4%, respectively for the three conditions), possibly reflecting the influence of rare variants and epistatic interactions; the degree to which this variance may be captured through improved imputation however is limited by the proportion of total variance in the imputed variables which is genetically determined (Fig. S8.2).
 
A key aspect of the DSPN is its interpretability. In particular, we examined the specific connections learned by the DSPN between intermediate and high-level phenotypes. We included known co-expression modules in the model (DSPN-mod) and examined which of these the DSPN prioritized, as well as new sets of genes associated with latent nodes that were uncovered at each hidden layer (Fig. S8.3 and Table S8.1) (15). We provide a full summary of the enrichment analysis for the prioritized modules and highlight some of the associations found using the schizophrenia model (Fig. 6C and S8.4). Overall, we show that the modules prioritized by the DSPN were enriched for known SCZ and BPD GWAS variants (Fig. S8.5). In particular, among the highest schizophrenia-prioritized modules and higher-order groupings, we found enrichments for (i) glutamatergic-synapse pathway genes, (ii) calcium-signaling pathways and astrocyte-marker genes, and (iii) complement cascade pathway genes including C4A, C4B, and CLU -- confirming and extending previous analyses (30). Furthermore, for groupings prioritized for aging, we found enrichment in Ex4 cell-type genes and the specific gene NRGN (in a module associated with synaptic and longevity functions), both consistent with differential expression analysis (Figs. S8.4 and S2.10).

Conclusion
Here, we uniformly integrated PsychENCODE datasets with other datasets, developing a comprehensive resource for functional genomics of the adult brain. Overall, our study identified a set of eQTLs several fold greater than previous studies, achieving a resolution close to saturation for protein-coding genes. Our data are consistent with the stage and tissue specific nature of gene regulation, indicating that it will be valuable to profile different regions and developmental stages at similar scales. It also indicates that increasing individual sample size and quality of chromatin data, such as identifying enhancers via STARR-seq (reference), will help identify with cQTLs. More fundamentally, one-dimensional fluctuations in chromatin signal reflect changes in three-dimensional changes in architecture and new metrics beyond cQTLs may need to be developed to better measure variation in chromatin within and among individualsvariation better. In addition, some other epigenetic marks might exhibit distinguishable patterns in the brain, e.g. the methylation landscape. Likewise, inter-tissue expression comparisons might be boosted by including microRNAs. Nevertheless, using current approaches, we were able to identify over 300 high confidence SCZ risk genes, implicated by 142 published genome wide significant loci and supported by at least two independent methods. This is more than an order of magnitude higher number of SCZ-genes than identified in previous studies, highlightsing the power of our sample size and integrative approach.

We also anticipate additional resolution from the application of Another area for future development is single-cell analysis. In this study, we found that varying proportions of basic cell types (with different expression signatures) could explained a large fraction of expression variation across the human individualspopulation. This assumes that expression signatures, at least for biomarker genes, are fairly constant over same cell types. Larger-scale single cell studies will allow us to examine this assumption in greater detail, perhaps quantifying and bounding environment-associated transcriptional variability. In addition, current single-cell techniques suffer from low capture efficiency; thus, it remains challenging to reliably quantify low-abundance transcripts (12, 31). This is particularly the case for specific cell sub-structures such as axons and dendrites (12). 

Further, we envision how our DSPN deep-learning approach can be readily extendedable to modeling genotype-phenotype relationships involving other kinds of intermediate phenotypes (e.g., from brain imaging); we can naturally embed new types of QTLs and phenotype-phenotype interactions. Comparison of the variance explained in terms of liability when particular intermediate phenotypes are imputed versus known provides natural bounds on the variance in observed traits mediated by these phenotypes. Finally, although our focus has been on common SNPs, the DSPN may be able to captureing the effects of rare variants through their influence on intermediate phenotypes with; the interpretable structure of the model may helping to identify such variants by their association with prioritized phenotypes and higher-order groupings.

In summary, our integrative analyses here and with respect to the disease and developmental transcriptome (16, 32) demonstrate that functional annotation of gene regulatory elements is useful for unraveling molecular mechanisms in the brain.

Please add a brief materials and methods here
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Figure 1. Comprehensive data resource for functional genomics in the adult brain. The functional genomics data generated by the PsychENCODE consortium (PEC) constitute a multidimensional exploration across tissue, developmental stage, disorder, species, assay, and sex. From theis larger corpus of PEC samples, we focused on adult datasets, integrated with those from consortia such as GTEx, the Roadmap Epigenomics Consortium, ENCODE, CMC and Human Brain Collection Core studies, and previously published single-cell transcriptomic data (References). The central data cube represents the results of this integration for the three dimensions of disorder, assay, and tissue, where only the numbers of datasets used in the current analysis are depicted. Projections of the data onto each of these three parameters are shown in graph form for assay and disorder, and in schematic form for the primary brain regions of interest. Assay: The bars represent datasets across a subset of the assay types, including RNA-seq (N = 2040 PEC + 1632 uniformly processed GTEx samples), genotypes (N = 1362 PEC + 25 GTEx = 1387 individuals matched to RNA-seq samples for eQTL analysis), scRNA-seq (N = 932 PEC + 3693 external datasets), and H3K27ac ChIP-seq (= 408 PEC + 5 uniformly processed Roadmap samples). Disorder: The number of individuals under the control category include the 113 from GTEx and 926 from PEC, while individuals from PEC provide data on the remaining disorders of schizophrenia (SCZ, N = 558), bipolar disorder (BPD, N = 217), ASD (N = 44), and affective disorder (AFF, N = 8), resulting in a total of 1,866 individuals examined. Tissue: In tThis schematic, we focuses on the datasets derived from three primary brain regions evaluated in our integrative study: the prefrontal cortex (PFC, N = 3521), the temporal cortex (TC, N = 2153), and the cerebellum (CB, N = 348). See supplement (15) and Adult.psychencode.org for more details.	Comment by Laura Zahn: Some of the numbers are a bit difficult to read, even when I expand the figure. Please see if you can increase the resolution on the image
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Figure 2. Deconvolution analysis of bulk and single-cell transcriptomics reveals cell fraction changes across the population. (A) Genes had significantly higher expression variability across single cells, sampled from different types of brain cells, than equivalent tissue samples, taken from a population of individuals. Left: dopamine gene, DRD3. (B) Top: the bulk tissue gene expression matrix (B, genes by individuals) can be decomposed by NMF into the product of two matrices: an NMF component matrix (V, genes by top NMF components; i.e., NMF-TCs) and a component fraction matrix (H, top NMF components by individuals); i.e., B≈VH. Bottom: the bulk tissue gene expression matrix B can be also deconvolved by the single-cell gene expression matrix (C, genes by cell types) to estimate the cell fractions across individuals (the matrix, W); i.e., B≈CW. The Three three major cell types analyzed are depicted with were neuronal cells (blue), non-neuronal cells (red), and developmental (dev) cells (green), as highlighted by columns groups in C (also row groups in W). (C) The heatmap shows the Pearson correlation coefficients of gene expression between the NMF-TCs and single-cell signatures (for N=457 biomarker genes, see (15)). For example, NMF-7 is highly correlated with the Ex3 cell type (r=0.66). (D) The estimated cell fractions can explain >85% of bulk tissue expression variation across the population; i.e., 1-||B-CW||2/||B||2>0.85. (E) The cCell fractions changesd across genders (just control samples) and brain disorders. In particularShown, are the neuronal cell types and (e.g. In8) had a significantly higher fraction in female than male samples (p<1.2e-4). Disorder types that showing significant changes among disorders compared to control samples (using what test, where are the specific results? This should be in the main text but also give or refer to where the reader can find the test specifics) after accounting for age distributions are labeled (**). For example, Ex3 neuronal cells and oligodendrocytes had lower fractions in ASD than other cell types. (F) Across age, changing cell fractions (for Ex3), gene expression (for SST) and promoter methylation level (median level, for SST) are shown. Note, the excitatory neuronal cell type Ex3 had a significant increase with age (trend analysis p<6.3e-10).
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Figure 3. Comparative analysis for transcriptomics and epigenomics between brain and other tissues. (A) Chromatin features of the reference brain (purple dot) were used to identify active enhancers, located in the open chromatin regions (as manifest by ATAC-seq peaks), with strong H3K27ac/H3K4me1 signal and low H3K4me3 signal. Enhancer activity varied among individuals, as indicated by the varying H3K27ac peaks at the enhancer region in the population. Each row corresponds to an individual in the cohort (green), with the gradient showing the normalized signal value for each peak (B) The overlap of individual H3K27ac peaks with reference brain enhancers in the population is shown as the Venn diagram. The histogram (center to the circles) shows the varying percentage of H3K27ac peaks across individuals. (C) The tissue clusters of RCA coefficients (PC1 vs. PC2) for chromatin data of any potential regulatory elements are shown. Clusters of PsychENCODE samples (dark green ellipses), Roadmap Epigenomics brain samples (light green ellipses), and other non-brain tissues (magenta ellipses) are plotted. The reference brain is shown as the purple dot (same in E and F). Panels E and F are drawn similarly to D, but now for transcription rather than epigenetics. (E) Panels are drawn similarly to D, but for transcription rather than epigenetics. The coefficients (PC1 vs. PC2) of RCA analysis for gene expression data of PsychENCODE samples are shown in dark green. The brain samples from GTEx are shown in light green, and other tissue samples are shown in magenta. (F) The center (cross) and ranges of transcription for different tissue clusters (dashed ellipses) are shown on an RCA scatterplot of (E). Finally, (D) The transcriptional diversity for coding (circle) and non-coding (triangle) regions among the tissue samples (inter-sample on x-axis) is shown compared to the diversity on cumulative tissue samples (y-axis) for select tissue types including cerebellum, cortex, lung, skin, and testes, using from PolyA RNA-seq data.	Comment by Laura Zahn: These greens are difficult to distinguish on my display, perhaps a different color choice (keeping in mind potentially color vision deficient individuals) for one will help with the visualizations?	Comment by Laura Zahn: D should be listed before E and F, both here and in the text
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Figure 4. Summary of QTLs in adult brain PFC. (A) Numbers of genes with at least one eQTL (eGenes) are shown compared to the sample size in across different studies. The number of eGenes increased as the sample size increased. The eGenes of PsychENCODE is close to saturation for protein coding genes. The estimated replication π1 values of GTEx and CMC eQTLs versus PsychENCODE are shown 0.93 and 0.90 respectively (23). (B) Example of an H3K27ac signal oacross f individual brains in a representative genomic region showing largely congruent identification of regions of open chromatin. The rRegion in the dashed frame represents a chromatin QTL; the signal magnitudes of individuals with a G/G or G/T genotype were lower than the ones with a T/T genotype. (C) Numbers of identified QTLs, associated elements (eGenes, enhancers, and cell types) and QTL SNPs are shown in the bottom left table. *For cQTLs we only show the number of top SNPs for each enhancer. Overlap of eQTL, isoQTL, fQTL, and cQTL SNPs and overlap of eQTL and isoQTL eGenes are shown to the right. Overlap numbers are shown in heatmaps while overlap percentage are shown with pies. Sharing of the QTLs vs. eQTLs are shown using π1 values in the orange bar plot indicating the highest sharing is between cQTLs vs. eQTLs. An example on the right for the MTOR gene shows the overlapping (based on from co-localization analysis) of eQTL SNPs for expression of the gene and cQTL SNPs for the H3K27ac signal on an enhancer ~50kb upstream of the gene. Hi-C interactions (bottom of the plot) demonstrate indicate that the enhancer interacts with the promoter of MTOR, indicating  suggesting that the cQTL SNPs potentially mediate the expression modulation manifest by the eQTL SNPs. (D) Enrichment of genomic regions annotations of QTLs is shown (what are the colored circles?). (E) Brain disorder GWAS show stronger heritability enrichment in brain regulatory variants (eQTLs) and elements (enhancers) than non-brain disorder GWAS. ADHD, attention-deficit/hyperactivity disorder; T2D, type 2 diabetes; CAD, coronary artery disease; IBD, inflammatory bowel disease.	Comment by Laura Zahn: I’m not sure what these pies designate, pelase clarify.	Comment by Laura Zahn: I don’t see this are you referring the linked circles?
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Figure 5. Data integration and modeling predicts a gene regulatory network, linking additional GWAS genes for psychiatric disorders. (A) A full Hi-C data from adult brain reveals the large-scale structure of the genome, ranging from contact maps (top), TADs, and promoter-based interactions. Bottom shows a schematic of how We we leveraged gene regulatory linkages involving TADs, TFs, enhancers, and target genes to build a full gene regulatory network consisting of ~150,000 Hi-C interactions, ~2.5 million eQTL-eGene linkages, ~211k TF-to-target and ~448k enhancer-to-target-promoter linkages based on the basis of activity relationships. (B) We compared the number of genes (left y-axis, dotted line) and the normalized gene expression levels (right y-axis, boxes) with the number of enhancers that interact with the gene promoters. (C) QTLs that were supported by Hi-C evidence showed more significant P-values than those that were not. (D) The number of schizophrenia GWAS loci and their putative target genes (SCZ-genes) annotated by each assignment strategy. SCZ-genes with more than 2 evidence sources were defined as SCZ high-confidence (high conf.) genes. The overlap between SCZ-genes defined by QTL associations (QTL), chromatin interactions (Hi-C), and activity relationships (Activity) is depicted in a Venn diagram (at the bottom). (E) A gene regulatory network of TFs (cyan), enhancers (purple), and 304 highly confident SCZ high-confidence genes (blue) as targets, based on the basis of TF activity linkages. A subnetwork including multiple neuronal TFs targeting the SCZ gene CACNA1C via enhancers is highlighted on the left. (F) An example of the Evidence evidence depicting that GWAS SNPs that overlap with CHRNA2 eQTLs also have chromatin interactions and activity correlations with the same gene. (G) SCZ-genes show higher expression levels in neuronal cell types (particularly excitatory neurons) than others cell types. 
[image: ]
Figure 6. Deep-learning model predicts genotype-phenotype relations and reveals intermediate molecular mechanisms. (A) The schematic outlines the model structures for Logistic Regression (LR), conditional Restricted Boltzmann Machine (cRBM), conditional Deep Boltzmann Machine (cDBM), and Deep Structured Phenotype Network (DSPN) models. Nodes are partitioned into four possible layers (L0-L3) and colored according to their status as (i) conditioning nodes visible during training and testing (light blue); (ii) nodes visible during training and visible or imputed during testing (dark blue); or (iii) hidden nodes (grey). (B) The DSPN structure is shown in further detail, with the biological interpretation of layers L0, L1, and L3 highlighted. The gene regulatory network (GRN) structure learned previously (Fig. 5) is embedded in layers L0 and L1, with different types of regulatory linkages and functional elements shown. (C) Shown are examples of associations found: model traces are shown for three co-expression modules and associated higher-order groupings prioritized by the DSPN schizophrenia model, along with functional annotations enriched at each level. Genes, enhancers, and SNPs associated with each module are shown. (D) The performance of different models is summarized, comparing performance (i) across models of different complexity, and (ii) using transcriptome vs. genome predictors, corresponding to with/without imputation for the DSPN (colors highlight relevant models for each comparison). Performance accuracy on a balanced sample is shown first, with variance explained on the liability scale shown in brackets. LR-gen and LR-trans are logistic models using the genotype and transcriptome as predictors respectively; DSPN-imput and DSPN-full are the DSPN model with imputed intermediate phenotypes (genotype predictors only) and fully observed intermediate phenotypes (transcriptome predictors) respectively. Differential performance of models is shown in terms of improvement above chance, for instance comparing LR-gen and DSPN-imput accuracy improves from 53.8% to 62.9%, which can be expressed as a 3.4X improvement above chance (+12.9% vs. +3.8%, blue). Corresponding improvements in liability variance scores are shown in brackets. Disorders are abbreviated as in the main text, and GEN=Gender, ETH=Ethnicity, AOD=Age of death.

References
1.	R. C. Kessler et al., Design and field procedures in the US National Comorbidity Survey Replication Adolescent Supplement (NCS-A). Int J Methods Psychiatr Res 18, 69-83 (2009).
2.	P. W. Wilson et al., Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837-1847 (1998).
3.	N. Cancer Genome Atlas Research et al., The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45, 1113-1120 (2013).
4.	D. M. Lloyd-Jones et al., Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 113, 791-798 (2006).
5.	M. R. Stratton, P. J. Campbell, P. A. Futreal, The cancer genome. Nature 458, 719-724 (2009).
6.	G. C. C. C. Psychiatric et al., Genomewide association studies: history, rationale, and prospects for psychiatric disorders. Am J Psychiatry 166, 540-556 (2009).
7.	D. H. Geschwind, J. Flint, Genetics and genomics of psychiatric disease. Science 349, 1489-1494 (2015).
8.	M. Fromer et al., Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci 19, 1442-1453 (2016).
9.	C. Colantuoni et al., Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478, 519-523 (2011).
10.	H. Won et al., Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538, 523-527 (2016).
11.	B. B. Lake et al., Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586-1590 (2016).
12.	A. E. Saliba, A. J. Westermann, S. A. Gorski, J. Vogel, Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42, 8845-8860 (2014).
13.	S. Darmanis et al., A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A 112, 7285-7290 (2015).
14.	E. C. Psych et al., The PsychENCODE project. Nat Neurosci 18, 1707-1712 (2015).
15.	Materials and methods are available as supplementary materials.
16.	M. J. Gandal, e. al., Dysregulation of cortical splicing, isoform and noncoding gene regulatory networks in ASD, schizophrenia, and bipolar disorder. submitted.
17.	I. Voineagu et al., Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380-384 (2011).
18.	M. J. Gandal et al., Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693-697 (2018).
19.	M. C. Oldham et al., Functional organization of the transcriptome in human brain. Nat Neurosci 11, 1271-1282 (2008).
20.	T. E. Bakken et al., A comprehensive transcriptional map of primate brain development. Nature 535, 367-375 (2016).
21.	A. E. Jaffe et al., Developmental regulation of human cortex transcription and its clinical relevance at single base resolution. Nat Neurosci 18, 154-161 (2015).
22.	W. Sun et al., Histone Acetylome-wide Association Study of Autism Spectrum Disorder. Cell 167, 1385-1397 e1311 (2016).
23.	J. D. Storey, R. Tibshirani, Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100, 9440-9445 (2003).
24.	R. C. del Rosario et al., Sensitive detection of chromatin-altering polymorphisms reveals autoimmune disease mechanisms. Nat Methods 12, 458-464 (2015).
25.	F. Grubert et al., Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions. Cell 162, 1051-1065 (2015).
26.	J. Bryois et al., Evaluation Of Chromatin Accessibility In Prefrontal Cortex Of Schizophrenia Cases And Controls. bioRxiv,  (2017).
27.	L. T. M. Dao et al., Genome-wide characterization of mammalian promoters with distal enhancer functions. Nat Genet 49, 1073-1081 (2017).
28.	A. F. Pardinas et al., Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet 50, 381-389 (2018).
29.	V. Anttila et al., Analysis of shared heritability in common disorders of the brain. bioRxiv,  (2017).
30.	A. Sekar et al., Schizophrenia risk from complex variation of complement component 4. Nature 530, 177-183 (2016).
31.	S. Liu, C. Trapnell, Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Res 5,  (2016).
32.	M. Li, e. al., Integrative Functional Genomic Analysis of Human Brain Development and Neuropsychiatric Risk. submitted.

‡The PsychENCODE Consortium:
Alexej Abyzov, Mayo Clinic Rochester; Ashley Adams, The University of Chicago; Schahram Akbarian, Mount Sinai; Majd Alsayed, The University of Chicago; Anahita Amiri, Yale University; Joon Yong An, University of California, San Francisco; Alexander Arguello, NIMH; Christoper Armoskus, University of Southern California; Allison Ashley-Koch, Duke University; Lora Bingaman, NIMH; Miguel Brown, The University of Chicago; Mimi Brown, The University of Chicago; Julien Bryois, Karolinska Institutet; Adrian Camarena, University of Southern California; Becky Carlyle, Yale University; Alexander Charney, Mount Sinai; Chao Chen, Central South University; Lijun Cheng, The University of Chicago; Jinmyung Choi, Yale University; Declan Clarke, Yale University; Leonardo Collado-Torres, Lieber Institute; Gianfilippo Coppola, Yale University; Greg Crawford/Sullivan, Duke University; Diane DelValle, Mount Sinai; Stella Dracheva, Mount Sinai; Tara Dutka, NIMH; Prashant Emani, Yale University; Oleg Evgrafov, SUNY Downstate Medical Center; Peggy Farnham, University of Southern California; Dominic Fitzgerald, The University of Chicago; Nancy Francoeur, Mount Sinai; Mike Gandal, University of California, Los Angeles; Tianliuyun Gao, Yale University; Mark Gerstein, Yale University; Dan Geschwind, University of California, Los Angeles; Gina Giase, University of Illinois at Chicago; Kiran Girdhar, Mount Sinai; Fernando Goes, Johns Hopkins University; Kay Grennan, SUNY Upstate Medical University; Mengting Gu, Yale University; Gamze Gursoy, Yale University; Evi Hadjimichael, Mount Sinai; Liza Herendeen, The University of Chicago; Gabriel Hoffman, Mount Sinai; Thomas Hyde, Lieber Institute; Nikolay Ivanov, Lieber Institute; Andrew Jaffe, Lieber Institute; Yan Jiang, Mount Sinai; Yi Jiang, Central South University; Amira Kefi, University of Illinois at Chicago; Yunjung Kim, University of North Carolina - Chapel Hill; James Knowles, SUNY Downstate Medical Center; Alexey Kozlenkov, Mount Sinai; Thomas Lehner, NIMH; Mingfeng Li, Yale University; Zhen Li, Yale University; Shuang Liu, Yale University; Chunyu Liu, SUNY Upstate Medical University; Lara Mangravite, Sage Bionetworks; Eugenio Mattei, University of Massachusetts; Angus Nairn, Yale University; Fabio Navarro, Yale University; Mingming Niu, St. Jude Children's Hospital; Temi Okubadejo, University of Chicago; Xinghua Pan, Yale University; David Panchision, NIMH; Junmin Peng, St. Jude Children's Hospital; Mette Peters, Sage Bionetworks; Dalila Pinto, Mount Sinai; Sirisha Pochareddy, Yale University; Damon Polioudakis, University of California, Los Angeles; Amanda Price, Lieber Institute; Michael Purcaro, University of Massachusetts; Tim Reddy, Duke University; Suhn Rhie, University of Southern California; Panagiotis Roussos, Mount Sinai; Tanmoy Roychowdhury, Mayo Clinic Rochester; Stephan Sanders, University of California, San Francisco; Gabriel Santpere, Yale University; Soraya Scuderi, Yale University; Geetha Senthil, NIMH; Nenad Sestan, Yale University; Xu Shi, Yale University; Annie Shieh, SUNY Upstate Medical University; Mario Skarica, Yale University; Andre Sousa, Yale University; Valeria Spitsyna, University of Southern California; Matthew State, University of California, San Francisco; Patrick Sullivan, University of North Carolina - Chapel Hill; Vivek Swarup, University of California, Los Angeles; Jin Szatkiewicz, University of North Carolina - Chapel Hill; Anna Szekely, Yale University; Junko Tsuji, University of Massachusetts; Flora Vaccarino, Yale University; Ramu Vadukapuram, SUNY Upstate Medical University; Harm van Bakel, Mount Sinai; Daifeng Wang, Yale University; Xusheng Wang, St. Jude Children's Hospital; Jonathan Warrell, Yale University; Sherman Weissman, Yale University; Zhiping Weng, University of Massachusetts; Donna Werling, University of California, San Francisco; Kevin White, University of Chicago; Jeremy Willsey , University of California, San Francisco; Heather Witt, University of Southern California; Hyejung Won, University of California, Los Angeles; Shannon Wood, University of Southern California; Susan Wright, NIMH; Feinan Wu, Yale University; Yan Xia, SUNY Upstate Medical University; Min Xu, Yale University; Yucheng Yang, Yale University; Peter Zandi, Johns Hopkins University; Ying Zhu, Yale University.
1
image1.png




image2.(null)



**** **
**



**



F
M



CTL
SCZ
BPD
ASDD



is
or
de
r



Cell fractions
0.050 0.1 0 0.02 0 0.2



80-
60-80
40-60
20-40
0-20



A
ge
(y
ea
rs
)



Cell fractions Gene expression
0.050 0.1 0.15 4 8 0.76 0.77 0.78



Methylation level



NonNeuronInhibitory Neuron NeuronNonNeuron



M
ic



ro
Pe



ri



In
8



In
6



In
7



In
5



In
3



In
2



In
1



In
4



Ex
1



Ex
3



Ex
4



Ex
2



Ex
7



Ex
5



Ex
6



Ex
8



Q
ui



es
Re



pl



O
PC



O
lig



o
As



tro



M
ic



ro
O



PC
En



do



O
lig



o
As



tro



10
19



3
17



9
5
1
6
8



13
22
24
11
14
20
23
15



7
4



12
25



2
16
18
21



En
do



Excitatory Neuron



DevelopmentalAdult



NM
F top com



ponents



Tissue Cell



0



1



2



3



G
en



e 
ex



pr
es



si
on



 le
ve



l



DRD3



G
en



e 
Ex



pr
es



si
on



(lo
gT



PM
)



DRD3



Al
lg



en
es



(�
20



K)



1866 individuals



Bulk
expression



(B)



1866 individuals



≈
Cell fractions (W)



24 selected cell types
(Neuronal, NonNeuronal, Developmental)



×



Single cell expression (C)



Al
lg



en
es



24
se



le
ct



ed
 c



el
lt



yp
es



NMF comp
fractions



(H)



NMF
comp



(V)



25 top components
1866 individuals



25
to



p
co



m
po



ne
nt



s



Al
lg



en
es



×



Deconvolution



B CW−−1 / B >	85%



2



2



Ex3
NMF-7 𝛒(Ex3,NMF-7)=0.66



A



B



C



D
E



F



0



0.4



0.2



0.6



-0.2



-0.6



-0.4



Pe
ar



so
n 



co
rre



la
tio



n
(fo



rC
)



Standardized
gene expression



(forD
)



0



2



1



3



-1



-3



-2



SST



Ex3 In8 Oligo



Ex3










*

*

*

*

*

*

*

*

*

*

F

M

CTL

SCZ

BPD

ASD

D

i

s

o

r

d

e

r

Cell fractions

0.05 0 0.1 0 0.02 0 0.2

80-

60-80

40-60

20-40

0-20

A

g

e

(

y

e

a

r

s

)

Cell fractions Gene expression

0.05 0 0.1 0.15 4 8 0.76 0.77 0.78

Methylationlevel

NonNeuron InhibitoryNeuron

Neuron

NonNeuron

M

i

c

r

o

P

e

r

i

I

n

8

I

n

6

I

n

7

I

n

5

I

n

3

I

n

2

I

n

1

I

n

4

E

x

1

E

x

3

E

x

4

E

x

2

E

x

7

E

x

5

E

x

6

E

x

8

Q

u

i

e

s

R

e

p

l

O

P

C

O

l

i

g

o

A

s

t

r

o

M

i

c

r

o

O

P

C

E

n

d

o

O

l

i

g

o

A

s

t

r

o

10

19

3

17

9

5

1

6

8

13

22

24

11

14

20

23

15

7

4

12

25

2

16

18

21

E

n

d

o

ExcitatoryNeuron

Developmental Adult

N

M

F

 

t

o

p

 

c

o

m

p

o

n

e

n

t

s

Tissue Cell

0

1

2

3

G

e

n

e

 

e

x

p

r

e

s

s

i

o

n

 

l

e

v

e

l

DRD3

G

e

n

e

 

E

x

p

r

e

s

s

i

o

n

(

l

o

g

T

P

M

)

DRD3

A

l

l

g

e

n

e

s

(

2

0

K

)

1866individuals

Bulk

expression

(B)

1866individuals

≈

Cellfractions(W)

24selectedcelltypes

(Neuronal, NonNeuronal, Developmental)

×

Singlecellexpression(C)

A

l

l

g

e

n

e

s

2

4

s

e

l

e

c

t

e

d

 

c

e

l

l

t

y

p

e

s

NMFcomp

fractions

(H)

NMF

comp

(V)

25topcomponents

1866individuals

2

5

t

o

p

c

o

m

p

o

n

e

n

t

s

A

l

l

g

e

n

e

s

×

Deconvolution

B

CW

−

−

1

/

B

>	

85%

2

2

Ex3

NMF-7 �

(Ex3,NMF-7)=0.66

A

B

C

D

E

F

0

0.4

0.2

0.6

-0.2

-0.6

-0.4

P

e

a

r

s

o

n

 

c

o

r

r

e

l

a

t

i

o

n

(

f

o

r

C

)

S

t

a

n

d

a

r

d

i

z

e

d

g

e

n

e

 

e

x

p

r

e

s

s

i

o

n

(

f

o

r

D

)

0

2

1

3

-1

-3

-2

SST

Ex3 In8 Oligo

Ex3


image3.jpeg
Reforonce Brain

Cohort H3K27ac peaks

Cumulative Sample Transcriptome Diversity

on mase | wgoe | wgse | same
[ - -
s bt a4 kb e

Hxamea

ST NSRS T SR Sirees

ExtBrains
Cortex
Cerebellum
Other tssues
Lung

M skin

I estis

I
Intér Sample Transcriptome Diversity

© Reference Brain
I PsychENCODE Brains

Reference Brain

79056 enhancers

Average
overlap

PC2

o
PC1





image4.jpeg
A PsyChENCODE all eGe L het 200 L oR
S0 " T (] oo U
[N oo
o S, Y @0 o
s ) ¥
§ oo i oS ol @ @ ® 0|5
H A 225
H | @ @ o e O
H A
T £ § tsen
s I £ : s
£ i 20 peonn
- EA Bt
A f Ao
200 400 600 800 1000 1200 1400 rs12660177 e ———
SarloSzs
TR ——
c # eGenes E
; A IR = T
T kg0t g ri AsD
H
oo
i et °_ £ i
£ P o
v Edcaion

- .000@@@@@

Inteigence.
Numbars | _<Genes s
W s s Lol
ofls | olee - Parkinson
2200 |1an1e2| @ 0
| szau | rans . v
s | om0 ' ) Gl |
s | 7o \ HiCintsracion 80
on | s | s | e e = = — _logto FoR Zot00R




image5.png
B c
e
o
. a0 §
H S
& o0 § 2
: Wi
L= I ) \HI\I\\II\IIHIHIIHIII\I\I E g %
™o — i w§ §
WMWW o H
— — P
e e [T M M st s s
- | ] —emwte —EmoT ||
T m
W76 (200 i - Gene Model CHRNAZ

TE@I0 SCZtigh cont (204

—iog 0(Pvae)

HLG nteracions

aciviy
e

par

anor





image6.(null)



GEN ETH AGE



50.0% 99.0% 61.9%(AOD)



69.7% 86.0% 81.2%



71.5% 89.0% 83.1%



71.5% 94.3% 86.9%



cQTL



SNPs



LR cRBM cDBM



L0
(conditioning	



units)



AGEBPD



fQTL modQTL



SCZ
Traits



Genes



Co-expression modules



Higher-order 
groupings



A



Embedded 
GRN layers



AGEBPDSCZAGEBPDSCZ



GRIN1



C4A



C4B



2 SNPs



Glutamatergic synapse
Synaptic vesicle cycle
Ex1, Ex4, Ex6 neurons



Complement cascade



DSPN
Full connectivity



Sparse connectivity



Lateral connectivityL2b



L2a



L1a



L1b



B C



D
Method SCZ BPD ASD AVG (SCZ+BPD+ASD)



LR-gen 54.6% ( 0.5%) 56.7% ( 2.5%) 50.0% ( 0.0%) 53.8% ( 1.0%)



LR-trans 63.0% ( 4.8%) 63.3% ( 6.3%) 51.7% ( 1.8%) 59.3% ( 4.3%)



cRBM 70.0% (31.0%) 71.1% (22.6%) 56.7% ( 3.8%) 65.9% (19.1%)



DSPN-imput 59.0% ( 1.8%) 67.2% (10.7%) 62.5% ( 2.6%) 62.9% ( 5.0%)



DSPN-full 73.6% (32.8%) 76.7% (37.4%) 68.3% (14.4%) 72.9% (28.2%)



Layer
Sublayer



Sub-sublayer



Boundaries:



Mineral absorption
Calcium signaling



Ex6 neurons 
Astrocytes



Gap junction



CLU



Enhancers



Cell Fractions



… … …



eQTL



Edges:



GRN linkages



QTL linkages



X	
6.
0



(X
28
.2
)



X	
3.
4	
(X
5.
0)



X	
2.
5



(X
	6
.6
)



X	
1.
8	
(X
5.
6)



L1
(visible	units)



L2
(hidden	units)



L3
(output	units)



EH37E0947082



1 SNP



1 SNP



X	
2.
4	
(X
4.
3)



…



Unbracketed figures show test-set performance 
accuracy, with chance at 50%; bracketed figures 
show variance explained on liability scale



Model complexity increasing increasing constant increasing
Predictors genotype transcriptome genotype->transcriptome genotype->transcriptome










GEN ETH AGE

50.0% 99.0% 61.9%(AOD)

69.7% 86.0% 81.2%

71.5% 89.0% 83.1%

71.5% 94.3% 86.9%

cQTL

SNPs

LR cRBM cDBM

L0

(conditioning	

units)

AGE

BPD

fQTL

modQTL

SCZ

Traits

Genes

Co-expression modules

Higher-order 

groupings

A

Embedded 

GRN layers

AGE

BPD

SCZ

AGE

BPD

SCZ

GRIN1

C4A

C4B

2 SNPs

Glutamatergic synapse

Synaptic vesicle cycle

Ex1, Ex4, Ex6 neurons

Complement cascade

DSPN

Full connectivity

Sparse connectivity

Lateral connectivity

L2b

L2a

L1a

L1b

B

C

D

Method SCZ BPD ASD AVG (SCZ+BPD+ASD)

LR-gen 54.6% ( 0.5%) 56.7% ( 2.5%) 50.0% ( 0.0%) 53.8% ( 1.0%)

LR-trans 63.0% ( 4.8%) 63.3% ( 6.3%) 51.7% ( 1.8%) 59.3% ( 4.3%)

cRBM 70.0% (31.0%) 71.1% (22.6%) 56.7% ( 3.8%) 65.9% (19.1%)

DSPN-imput 59.0% ( 1.8%) 67.2% (10.7%) 62.5% ( 2.6%) 62.9% ( 5.0%)

DSPN-full 73.6% (32.8%) 76.7% (37.4%) 68.3% (14.4%) 72.9% (28.2%)

Layer

Sublayer

Sub-sublayer

Boundaries:

Mineral absorption

Calcium signaling

Ex6 neurons 

Astrocytes

Gap junction

CLU

Enhancers

Cell Fractions

…

…

…

eQTL

Edges:

GRN linkages

QTL linkages

X

	

6

.

0

(

X

2

8

.

2

)

X

	

3

.

4

	

(

X

5

.

0

)

X

	

2

.

5

(

X

	

6

.

6

)

X

	

1

.

8

	

(

X

5

.

6

)

L1

(visible	units)

L2

(hidden	units)

L3

(output	units)

EH37E0947082

1 SNP

1 SNP

X

	

2

.

4

	

(

X

4

.

3

)

…

Unbracketed figures show test-set performance 

accuracy, with chance at 50%; bracketed figures 

show variance explained on liability scale

Model complexity increasing increasing constant increasing

Predictors genotype transcriptome genotype->transcriptome genotype->transcriptome


