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Abstract 
 
Enhancers are important noncoding elements, but they have been traditionally hard to 
characterize experimentally. Only a few mammalian enhancers have been validated, 
making it difficult to train statistical models for their identification properly. Instead, 
postulated patterns of genomic features were used heuristically for identification. The 
development of massively parallel assay allows the characterization of large numbers of 
enhancers for the first time. Here, we develop a framework that uses them to create 
shape-matching filters based on enhancer-associated meta-profiles of epigenetic 
features. These features are combined with supervised machine learning algorithms 
(i.e., SVMs) to predict enhancers. We demonstrated that our model can be applied to 
predict enhancers in mammalian species (eg, mouse and human). The predictions are 
comprehensively validated using a combination of in vivo and in vitro assays (133 
mouse transgenic enhancer assays in 6 different tissues and 25 human H1 hESC 
transduction-based reporter assays). The validation results confirm that our model can 
accurately predict enhancers in different species without re-parameterization. Finally, we 
predict enhancers in cell lines with many transcription-factor binding sites. This highlights 
distinct differences between the type of binding at enhancers and promoters, enabling 
the construction of a secondary model discriminating between these two. 
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Introduction 
 
Enhancers are gene regulatory elements that activate expression of target genes from a 
distance [1]. Enhancers are turned on in a space and time-dependent manner 
contributing to the formation of a large assortment of cell-types with different 
morphologies and functions even though each cell in an organism contains a nearly 
identical genome [2-4]. Moreover, changes in the sequences of regulatory elements are 
thought to play a significant role in the evolution of species[5-9]. Understanding 
enhancer function and evolution is currently an area of great interest because variants 
within distal regulatory elements are also associated with various traits and diseases 
during genome-wide association studies [10-12]. However, the vast majority of 
enhancers and their spatiotemporal activities remain unknown because it is not easy to 
predict their activity based on DNA sequence or chromatin state [13, 14]. 

Traditionally, the regulatory activity of enhancers and promoters were experimentally 
validated in a non-native context using low throughput heterologous reporter constructs 
leading to a small number of validated enhancers that function in the same mammalian 
cell-type [15, 16]. In addition to the small numbers, the validated enhancers were 
typically selected based on conserved noncoding regions [17] with particular patterns of 
chromatin [18], transcription-factor binding, [19] or noncoding transcription [20]. The 
small number and biases within the validated enhancers make them inappropriate for 
parameterizing tissue-specific enhancer prediction models [16]. As a result, most 
theoretical methods to predict enhancers could not optimally parameterize their models 
using a gold-standard set of functional elements. Instead, most of these models were 
parameterized based on certain heuristic features associated with enhancers, which 
were then utilized to predict enhancers [19, 21-30]. For example, two widely used 
methods for predicting enhancers were based on the fact that these elements are 
expected to contain a cluster of transcription factor binding sites [24] and their activity is 
often correlated with an enrichment of particular post-translational modifications on 
histone proteins [27, 30].  These predictions could not be comprehensively assessed as 
few putative enhancers could be validated experimentally due to the low throughput of 
validation assays and it remains challenging to assess the performance of different 
methods for enhancer prediction.  
 
In recent times, due to the advent of next-generation sequencing, a number of 
transfection and transduction-based assays were developed to experimentally test the 
regulatory activity of thousands of regions simultaneously in a massively parallel fashion 
[31-37]. In these experiments, several plasmids that each contains a single core 
promoter upstream of a luciferase or GFP gene are transfected or transduced into cells. 
These plasmids are used to test the regulatory activity of different regions by placing one 
region within the screening vector in each plasmid as differences in the gene’s 
expression occur due to the differences in the activity of the tested region. STARR-seq 
was one such massively parallel reporter assay (MPRA) that was used to test the 
regulatory activity of the Drosophila genome by inserting candidate fragments from the 
genome within the 3’ untranslated region of the luciferase gene. STARR-seq identified 
thousands of cell-type specific enhancers and promoters within the Drosophila genome 
[31, 38]. MPRAs have confirmed that active enhancers and promoters tend to be 
depleted of histone proteins and contain accessible DNA on which various transcription 
factors and cofactors bind [39, 40]. These regulatory regions also tend to be flanked by 
nucleosomes that contain histone proteins with certain characteristic post-translational 
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modifications. These attributes lead to an enriched peak-trough-peak (“double peak”) 
signal in different ChIP-Seq experiments for various histone modifications such as 
acetylation on H3K27 and methylations on H3K4. The troughs in the double peak ChIP-
seq signal represent the accessible DNA that leads to a peak in the DNase-I 
hypersensitivity (DHS) at the enhancers [41]. However, the optimal method to combine 
information from multiple epigenetic marks to make cell-type specific regulatory 
predictions remains unknown. For the first time, using data from several MPRAs, we 
have the ability to properly train our models based on a large number of experimentally 
validated enhancers and test the performance of different models for enhancer 
prediction using cross validation.  
 
Here we develop a framework for making supervised enhancer prediction models using 
MPRA datasets. We make use of all published data resources to provide a 
comprehensive model for enhancer prediction that can be applied across different 
contexts (i.e., different species and tissue types); we validate our model in a variety of 
different contexts. In particular, we utilized extensive datasets from STARR-seq 
experiments performed on Drosophila cell lines to create and parameterize our model. 
Unlike previous prediction methods that focused on the enrichment (or signal) of 
different epigenetic datasets, we developed a method to also take into account the 
enhancer-associated pattern within different epigenetic signals. As the epigenetic signal 
around each enhancer is noisy, we aggregated the signal around thousands of 
enhancers identified using MPRAs to increase signal-to-noise ratio, and identified the 
shape associated with active regulatory regions. Previous ENCODE and modENCODE 
efforts showed that the chromatin modifications on active promoters and enhancers 
were conserved across higher eukaryotes [42-48]. The signal of different chromatin 
modifications upstream of a gene have been used to create a universal model for 
predicting its expression and the parameters of the model were transferable across 
humans, flies, and worm. Here, we further explored this conservation of epigenetic 
signal shapes for constructing simple-to-use transferrable statistical models with six 
parameters that were used to predict enhancers and promoters in diverse eukaryotic 
species including fly, mouse, and human. We showed that the enhancer predictions from 
our transferrable model was comparable to the prediction accuracy of species-specific 
models.  
 
Working across organisms also allowed us to take advantage of different assays to 
validate our predictions in a robust fashion using multiple experimental approaches. In 
the first stage, we predicted enhancers in six different embryonic mouse tissues and 
tested the activity of these predictions in vivo with transgenic mouse assays. Due to the 
obvious ethical considerations of performing such transgenic assays in human embryos, 
we then proceeded to test the activity of these elements in a human cell-line in vitro.  
 
H1-hESC is a highly studied human cell-line in which a comprehensive set of 
transcription factor (TF) binding experiments are available. After validating our 
predictions, the many TFs provided us with the opportunity to differentiate between the 
enhancers and promoters. The pattern of TF and co-TF binding at active enhancers is 
much more heterogeneous than the corresponding patterns on promoters, which can be 
used to distinguish enhancers from promoters with high accuracy. Thus, our methods 
provide a framework that utilizes different epigenetic genomics datasets to predict active 
regulatory regions in a cell-type specific manner. Further functional genomics datasets 
can be utilized to identify key TFs associated with active regulatory regions within these 
cell types. 
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Results 
 
Aggregation of epigenetic signal (in Drosophila) to create metaprofile: 
 
We developed a framework to predict active regulatory elements using the epigenetic 
signal patterns associated with experimentally validated promoters and enhancers [31]. 
We aggregated the signal of histone modifications on MPRA peaks to remove noise in 
the signal and created a metaprofile of the double peak signals of histone modifications 
flanking enhancers and promoters. MPRA peaks typically consist of a mixture of 
enhancers and promoters, and at this stage, we do not differentiate between the two 
sets of regulatory elements. As STARR-seq quantifies enhancer activity in an episomal 
fashion, not all STARR-seq peaks would be active in the native chromatin environment. 
Arnold C. et al showed that the STARR-seq peaks that occur in enriched DNase 
hypersensitivity or H3K27ac modifications tend to be near active genes while other 
STARR-seq peaks tend to be associated with enrichment of repressive marks such as 
H3K27me3. Hence, we took the overlap of the STARR-seq enhancers with H3K27ac 
and/or DHS peaks to get a high confident set of enhancers that are active in vivo, based 
on which the metaprofiles were created. These metaprofiles were then utilized in a 
pattern recognition algorithm for predicting active regulatory elements in a cell-type 
specific manner. 
 
The STARR-seq studies on Drosophila cell-lines provide the most comprehensive 
MPRA datasets as the whole genome was tested for regulatory activity within these 
assays and these assays were performed with multiple core promoters [31, 49]. Hence, 
we chose to create metaprofiles using the histone modification H3K27ac at active 
STARR-seq peaks (see Figure 1 and Methods) identified within the Drosophila S2 cell-
line. Approximately 70% of the active STARR-seq peaks contain an easily identifiable 
double peak pattern even though there is a lot of variability in the distance between the 
two maxima of the double peak in the ChIP-chip signal (Figure S1). While the minimum 
tends to occur in the center of these two maxima on average, the distance between the 
two maxima in the double peaks can vary between 300 and 1100 base pairs. During 
aggregation, we aligned the two maxima in the H3K27ac signal across different STARR-
seq peaks, followed by interpolation and smoothening the signal before calculating the 
average metaprofile. In addition, an optional flipping step was performed to maintain the 
asymmetry in the underlying H3K27ac double peak because it may be associated with 
the directionality of transcription [50]. We also calculated the dependent metaprofiles for 
thirty other histone marks and DHS signal by applying the same set of transformations to 
these datasets. The metaprofile for the histone marks associated with active regulatory 
regions were also double peak signals, and the maxima across different histone 
modification signals tended to align with each other on average (Figure S2). This 
indicates that a large number of histone modifications tend to simultaneously co-occur 
on the nucleosomes flanking an active enhancer or promoter. In contrast, as expected, 
the DHS signal displayed a single peak at the center of the H3K27ac double peak 
(Figure 1). In addition, repressive marks such as H3K27me3 were depleted in these 
regions, and the metaprofile for these regions did not contain a double peak signal 
(Figure S2). 
 
Match of a metaprofile is predictive of regulatory activity: 
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We evaluated whether these metaprofiles can be utilized to predict active promoters and 
enhancers using matched filters, a well-established algorithm in template recognition.  A 
matched filter is the optimal pattern recognition algorithm that uses a shape-matching filter 
to recognize the occurrence of a template in the presence of stochastic noise [51]. We 
evaluated whether the occurrence of the epigenetic metaprofiles identified for the histone 
marks and DHS can be used to predict active enhancers and promoters using receiver 
operating characteristic (ROC) and precision-recall (PR) curves. PR curves are 
particularly useful to assess the performance of classifiers in skewed or imbalanced data 
sets in which one of the classes is observed much more frequently compared to the other 
class, as it plots the fraction of true positives among all predicted positives. If the area 
under a PR curve is higher, the corresponding model has a low false discovery rate and 
can easily distinguish between the positives from the negatives. On the other hand, in 
skewed datasets, the area under ROC curves could be high even when the FDR is high 
even. This is because, in these cases, even if a small fraction of negatives are predicted 
to be positive by the model, the false discovery rate can be high as the total number of 
true positives are much smaller than the total number of true negatives [52]. The matched 
filter score is higher in genomic regions where the template pattern occurs in the 
corresponding signal track while it is low when only noise is present in the signal (Figure 
1). Due to the aforementioned variability of the distance between the double peaks, 
we allow the widths of scanned regions to vary between 300-1100 basepairs (at 
steps of 25 basepairs). A single H3K27ac metaprofile was applied to match 
different width and the highest score was used to rate the regulatory potential of 
this region (see Methods). The dependent profiles are subsequently used on the 
region of the same width to score the corresponding genomic tracks. 
 
We used 10-fold cross validation to assess the performance of matched filters for 
individual histone marks to predict active STARR-seq peaks. In Figure 2, we observe 
that the H3K27ac matched filter is the single most accurate feature for predicting active 
regulatory regions (AUROC=0.92, AUPR=0.72) identified using STARR-seq. This is 
consistent with the literature as H3K27ac enriched peaks are often used to predict active 
promoters and enhancers [23, 53, 54]. In general, several histone acetylations 
(H3K27ac, H3K9ac, H4K12ac, H2BK5ac, H4K8ac, H4K5ac, H3K18ac) marks as well as 
the H1, H3K4me2, and DHS are the most accurate prediction features (Table S1) 
because the matched filter scores for these features are higher on the STARR-seq 
peaks. The degree to which the matched filter scores for promoters and enhancers are 
higher than the matched filter scores for the rest of the genome is a measure of the 
signal to noise ratio for regulatory region prediction in the corresponding feature’s 
genomic track. The larger the separation between positives and negatives, the greater 
the accuracy of the corresponding matched filter for predicting active regulatory regions. 
Interestingly, the distribution of matched filter scores for STARR-seq peaks are unimodal 
for each histone mark except for H3K4me1, H3K4me3, and H2Av, which are bimodal 
(Figure S3). We also show that the matched filter scores are more accurate for 
predicting active STARR-seq peaks than the enrichment of signal alone as they 
outperform histone peak calling on ROC and PR curves (Figure S4). 
 
While a single STARR-seq experiment identifies thousands of active regulatory regions, 
these regions display core-promoter specificity, and different sets of enhancers are 
identified when different core promoters are used in the same cell-type [55-59]. As we 
wanted to create a framework to predict all the enhancers and promoters active in a 
particular cell type, we combined the peaks identified from multiple STARR-seq 
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experiments in the S2 cell-type and reassessed the performance of the matched filters at 
predicting these regulatory regions. Merging the STARR-seq peaks from multiple core 
promoters in the S2 cell-type leads to higher AUROC and AUPR for the matched filters 
from most histone marks (Figure 2 and Table S2).  
 
Machine learning can combine matched filter scores from different epigenetic 
features 
 
We built an integrated model with combined matched filter scores of the most 
informative epigenetics marks (H3K27ac, H3K4me1, H3K4me2, H3K4me3, H3K9ac, 
and DHS) associated with active regulatory regions using a linear SVM [54] [60]. The 
selection of these six features is based on their matched filter score performance, their 
importance in the integrated model and the data availability (See Methods). Particularly, 
the combination of these six features allows the integrated model be applied to a variety 
of cell lines and tissues, as many relevant ChIP-seq and DNase experiments have been 
performed by the Roadmap Epigenomics Mapping [61] and the ENCODE [62] Consortia 
in a wide variety of samples. We also assessed the performance of other statistical 
approaches including a nonlinear SVM for combining the features. While all these 
approaches performed similarly (Figure S5), a linear SVM is used in our framework for 
its better interpretability.  
 
During integration, the normalized matched filter score for each epigenetic feature in a 
particular region is scaled by its optimized weight and added together to form a 
discriminant function. The sign of the discriminant function is then used to predict 
whether the region is regulatory. The features with large positive and negative weights 
are predicted to be important for discriminating regulatory from non-regulatory regions. 
The optimized weights can also be used to measure the amount of non-redundant 
information added by each feature in the integrated model. According to the model, the 
acetylations (H3K27ac and H3K9ac) are the most important feature for predicting active 
regulatory regions. The DHS matched filter performed well as an individual feature 
(AUPR in Figure 2) to predict enhancers, but had a lower weight among the six features 
likely due to the fact that the information in DHS is redundant with the information 
contained within the histone mark, eg. the DHS peaks usually occur at the trough region 
between two maxima in the histone signal. Despite the redundancy, combination of the 
DHS and histone signals is more predictive of regulatory activity as the reinforcing 
signals are strengthened compared to the uncorrelated noise in each signal track. The 
integrated model, as expected, achieved a higher accuracy than the individual matched 
filter scores (Figure 2), as they can leverage information from multiple epigenetic marks. 
We also trained a 6-parameter SVM model using STARR-seq data in BG3 cell-line. The 
model is highly accurate at predicting active enhancers and promoters in the S2-cell line 
(Figure S6), indicating our framework of combining epigenetic features with a linear SVM 
model to predict enhancers is applicable across species of great evolutionary distance.  
 
 
To assess the information contained in other epigenetic marks, we combined the 
matched filters from all 30 measured histone marks along with the DHS matched filter in 
separate statistical models (Figure S7) and these models displayed higher accuracy 
(AUROC=0.97, AUPR=0.93 for SVM model with multiple core promoters) than the 6 
feature model presented in Figure 2. The feature weights in this model indicated that 
H3K27ac contains the most information regarding the activity of regulatory regions. 
However, we found that a few other acetylations such as H2BK5ac, H4ac, and H4K12ac 
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contain additional non-redundant information regarding the activity of these regulatory 
regions and might improve the accuracy of promoter and enhancer prediction from 
machine learning models. 
 
To evaluate the impact of the training sample size on model performance, we did a 
saturation analysis where we down sampled the training data to different levels of fractions 
and evaluated the model performance on the remaining data. For each fraction level, we 
did a 10-fold cross-validation (see methods) and then took the average of the ten outputs. 
The result shows that the average AUPR increases with increasing size of training data, 
and it starts to saturate for our SVM model with 80%-90% of the experimental data for 
training. In contrast to that, the average AUROC remain comparable with varying training 
size, but the performance variances decrease with increasing training data size. This 
indicates that a 5-fold cross validation might be sufficient with this size of data, as a 5-fold 
cross validation uses 80% of the data for training and the remaining 20% of the data for 
testing. In fact, even a 2-fold cross validation could work as the AUPR is close to saturation 
with 50% of the data for training. 
 
 
Distinct epigenetic signals associated with promoters and enhancers  
 
We proceeded to create individual metaprofiles and machine learning models for the two 
classes of regulatory activators – promoters (or proximal) and enhancers (or distal). We 
divided all the active STARR-seq peaks into promoters or enhancers based on their 
distance to the closest transcription start site (TSS) to delineate their likely function in the 
native context. Due to the conservative distance metric used in this study (1kb upstream 
and downstream of TSS in Drosophila genome), the enhancers are regulatory elements 
that are not close to any known TSS and could be considered to enhance gene 
transcription from a distance. However, a few of the promoters may also regulate distal 
genes in addition to their promoter activity. We then created metaprofiles of the different 
epigenetic marks on the promoters and enhancers and assessed the performance of the 
matched filters for predicting active regulatory regions within each category (Figure 3). 
The highest matched filter scores are typically observed on promoters, and the matched 
filters for each of the six features tended to perform better for promoter prediction. The 
H3K27ac matched filter continues to outperform other epigenetic marks for predicting 
active promoters and enhancers. In addition, the DHS, H3K9ac, and H3K4me2 matched 
filters also performed reasonably for promoter and enhancer prediction. Similar to 
previous studies [63, 64], we observed that the H3K4me1 metaprofile performs better for 
predicting enhancers while it is close to random for predicting promoters. In contrast, the 
H3K4me3 metaprofile can be utilized to predict promoters and not enhancers. The 
histogram for matched filter scores shows that H3K4me1 matched filter score is higher 
near enhancers while the H3K4me3 matched filter score tends to be higher near 
promoters (Figure S8). The mixture of these two populations lead to bimodal 
distributions for H3K4me1 and H3K4me3 matched filter scores when calculated over all 
regulatory regions (Figure S3). 
 
We created different integrated models to learn the combination of features associated 
with promoters and enhancers respectively. These integrated models outperformed the 
individual matched filters at predicting active enhancers and promoters (Figures 3 and 
S9). In addition, the weights of the individual features identified the difference in roles of 
the H3K4me1 and H3K4me3 matched filter scores at discriminating active promoters 
and enhancers from inactive regions in the genome. The promoter-based (enhancer-

Formatted: Font:(Default) Arial, 11 pt

Formatted: Font:11 pt

Formatted: Font:11 pt
Formatted: Font:(Default) Arial, 11 pt
Deleted: 



	 9	

based) model performed much more poorly at predicting enhancers (promoters) 
indicating the unique properties of these regions (Figures S10 and S11). We also 
created two integrated models utilizing matched filter scores of all thirty histone marks as 
features for predicting enhancers and promoters. The additional histone marks provided 
independent information regarding the activity of promoters and enhancers as these 
features increased the accuracy of these models (Figure S12). The weights of different 
features indicate that H2BK5ac again displays the most independent information for 
accurately predicting active enhancers and promoters. We observe similar trends and 
accuracy with several different machine learning methods (Figures S9 and S12). To 
investigate in the impact of different distance metrics used to segregate enhancers and 
promoters, we repeated our analysis with different distance metrics (0.5kb, 1.5kb, 2.0kb 
and 2.5kb). While the accuracy as measured by the AUROC of different features and the 
integrated model slightly reduces as the distance cutoff increases, the importance of 
each feature in the integrated model as measured by the GINI score remains similar 
(Figure SXX).  
 
 
Application of STARR-seq model to predict enhancers in mammalian species 
 
One of the important findings of previous ENCODE and model organism ENCODE 
efforts is the conservation of chromatin marks close to regulatory elements across 
hundreds of millions of years of evolution [42-48]. The relationship of chromatin marks to 
gene expression was very similar, for instance, in worms, flies, mice and human, so 
much that one could build a statistical model relating chromatin modification to gene 
expression that would work without re-parameterization across different organisms. This 
motivated us to apply our well-parameterized model based on the STARR-seq data from 
flies to mammalian systems -- eg. mouse and human -- and test our model performance.  
 
We started with genome-wide predictions of regulatory regions in mouse. Tissue-specific 
epigenetic signals were processed and applied to our model to account for the tissue 
specificity of enhancers. Predictions are made in six different tissues (forebrain, 
midbrain, hindbrain, limb, heart and neural tube) at mouse e11.5 stage (Genome-wide 
predictions are available through our website at https://goo.gl/E8fLNN). These tissues 
are selected as their epigenetic signals are highly studied in mouse ENCODE, providing 
us with a rich source of raw data that can be utilized for making enhancer and promoter 
predictions. In addition, the VISTA database contains close to 100 validated enhancers 
that can be used for test for each of these tissues. Using our model, we predicted 31K to 
39K regulatory regions in individual tissues in mouse, with each region ranging from 
300bp to 1100bp. Notably, a consistent proportion of two-thirds (66%~70%) of these 
predicted regulatory regions are distal regulatory elements for all six tissues, with the 
other one-third (30%~34%) being proximal regulators (Table S3). These numbers agree 
with a previous enhancer evolution study [8], and suggest that the amount of enhancers 
and promoters are likely comparable in different tissues.  
 
 
Similarly, we did genome wide prediction of regulatory regions in ENCODE top tier 
human cell lines, including H1-hESC, GM12878, K562, HepG2 and MCF-7 (all available 
through our website). For each cell line, we utilized the 6-parameter integrated model to 
predict active enhancers and promoters based on the epigenetic datasets measured by 
the ENCODE consortium [62]. In H1-hESC, for example, we predicted 43463 active 
regulatory regions, of which 22828 (52.5%) are within 2kb of the TSS and are labeled as 
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promoters. A large proportion of the predicted enhancers are found in the introns 
(30.41%) and intergenic regions (13.93%) (Figure S13). The predicted promoters and 
enhancers are significantly closer to active genes than might be expected randomly 
(Figure S14).  
 
Whole genome STARR-seq enables proper training of enhancer prediction model 
 
We next tried to evaluate how well the STARR-seq model did on predicting mammalian 
enhancers. Particularly, we want to compare the current mouse enhancer predictions 
with predictions from models directly trained on mouse data. The relatively large number 
of known mouse enhancers from VISTA database enabled us to parameterize a model 
in a same way as what we did with the Drosophila STARR-seq data. However, the 
VISTA database is not nearly at the same scale as the STARR-seq dataset. In total, we 
pulled together 1253 tissue specific positive regions and 8631 tissue specific negative 
regions from the assays.  
 
With VISTA database, we trained four models based on four sets of available E11.5 
mouse tissue-specific enhancers (hindbrain, limb, midbrain and neural tube), and 
assessed them using 10-fold cross-validation respectively. (There are no DHS data 
available for E11.5 forebrain and heart thus these two tissues are excluded for fair 
comparison). The average AUROC value is compared to the AUROC of testing STARR-
seq trained model on the same VISTA enhancer data. Despite the significantly 
unbalanced negative to positive ratios of mouse enhancers in the database, the 6-
parameter integrative SVM models learned using balanced Drosophila STARR-seq data 
were highly accurate at predicting active enhancers and promoters in mouse (Figure 
S15 A). The cross-validated mouse model, while it did well, performed no better on 
predicting mouse tissue specific enhancers. We found that the best performing one 
among the mouse models is for tissue midbrain, likely due to the fact that the number of 
validated midbrain enhancers is the largest. To construct a larger training sample for 
mouse, we pooled together the normalized z-scores of matched filter scores for six 
epigenetic signals of all four tissues, and parameterized a model using this larger set of 
data. Again, we observed that the original model trained with Drosophila STARR-seq 
data performed equally well on predicting mouse enhancers and much better in 
predicting fly enhancers (Figure S15 B). Overall, the result suggests that using the larger 
and more comprehensive STARR-seq data set for parameter tuning was superior to 
using the smaller mouse data set, even on mouse. 
 
Given the above overall statistical evaluations, we are confident in the STARR-seq 
parameterized model. We then set out to do targeted unbiased validations of the 
mammalian enhancers predicted, which is described in the next two sections.  
 
 
Validation in vivo in Mouse  
 
To test the activity of predicted mouse enhancers in vivo, we performed transgenic 
mouse enhancer assay in e11.5 mice for 133 regions in heart and forebrain, including 
102 regions selected based on the H3K27ac signals rank of corresponding mouse 
tissues, and 31 regions selected by an ensemble approach from human homolog 
sequences. For each tested candidate, a read out of activity across the entire embryo is 
collected. The number of transgenic mice that showed the pattern for each tissue is also 
recorded for reproducibility check (See Methods and Supplement Table S4, S5). In 
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addition, we obtained another set of transgenic mouse enhancer assay results from 
ENCODE Phase III Encyclopedia (Moore et al., in review), which assessed 151 regions 
in mouse e11.5 hindbrain, midbrain and limb. The combined results from these two large 
sets of validations, as well as any previously tested tissue-specific e11.5 enhancers from 
VISTA database, allow us to comprehensively evaluate our enhancer predictions in all 
six e11.5 mouse tissues.  
 
Among the first 102 tested regions, 62 are selected based on forebrain H3K27ac signal 
rank, with 20, 22, 20 regions being in the top, middle and bottom rank respectively. 
Another 40 regions are selected by heart H3K27ac signal rank with half of them coming 
from the top rank and the other half coming from the middle rank. The bottom ranked 
regions were skipped because the activity of middle ranked regions dropped off so 
much. Consistently, the observed active rate of assessed regions decreases from top 
tier to bottom tier. For the other 31 human homolog sequences, 12.9% and 9.7% of the 
assessed regions are active in heart and forebrain respectively. The lower active rate is 
likely due to the fact that these human sequences are less well behaved in mouse 
tissues compared to their original native environment.  
 
 
We evaluated the predictability of our matched filter model for each individual histone 
marks and DHS, as well as the integrated SVM model (Figure 4). For each tissue, our 
model ranks all the tested candidate elements with their predicted activity in this tissue 
using either individual feature or the integrated SVM model. Then the label of each 
element from experiment read out is used to assess the predictions with ROC and PR 
curve. One average, the integrated model trained with drosophila STARR-seq data 
achieves an AUROC of 0.80 and an AUPR of 0.37 for tissue-specific enhancer 
predictions in mouse (Figure 4A). Unlike AUROC, where the baseline is always 0.50, 
AUPR is more sensitive to the positive to negative ratio, with a baseline being just the 
positive rate. Since the positive rate from the experiment varies from 8.8% 17.6% among 
the tissues, the AUPR has a larger variance compared the AUROC.  
 
 
Consistent with previous findings from STARR-seq data, when we assess each histone 
modification signals independently in mice, H3K27ac signal remains best performed 
histone marks for predicting enhancers. In addition, the DHS signal also performs well 
as an independent source, as it likely shares some common information with H3K27ac.  
The integrated model performs similar with the highest prediction feature in each tissue. 
This is likely due to the fact that the model is trained entirely with drosophila matched 
filter scores and might not be best optimized in the mammalian systems. We believe that 
the integrated model would achive better performance when applying our framework 
directly to mouse tissue STARR-seq dataset when it becomes available. 
 
 
We also did similar evaluation using the regulatory elements identified by the 
transduction-based FIREWACh assay in mouse embryonic stem cells (mESC) [36]. With 
the same metaprofiles, the predictions are based on epigenetic signals of mESC 
available from ENCODE website. Again, we observe similar results for individual histone 
marks and combined SVM model (Figure S16). As the in vivo and FIREWACh assays 
utilized a single core promoter to validate regulatory regions, the performance of the 
different models in Figures 4 and S16 are probably underestimated. 
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Validation in human cell lines 
 
We proceeded to validate our STARR-seq based model for predicting human enhancers 
using a cell-based transduction assay. A third generation, self-inactivating HIV-1 based 
vector system in which the eGFP reporter was driven by the DNA element of interest 
was used to test putative enhancers after stable transduction of various cell lines, 
including H1 human embryonic stem cells (hESC) (Figure 5). The predicted enhancers, 
ranging from 650 to 2500 bp, were PCR amplified from human genomic DNA and 
inserted immediately upstream of a basal Oct-4 promoter of 142 bp. Each putative 
enhancer was tested in all four cell lines in replicates for both forward and reverse 
orientation. For controls experiments, VSV G-pseudotyped vector supernatants from 
each were prepared by co-transfection of 293T cells. These were used to transduce the 
same cell lines, with empty vector and FG12 vector serving as negative and positive 
controls respectively. Note that the empty vector did have the basal Oct-4 promoter 
along with the IRES-eGFP cassette. Putative enhancer activity was assessed by flow 
cytometric readout of eGFP expression 48-72 h post-transduction, normalized to the 
negative control. 
 
A total of 25 predicted intergenic enhancers were selected for validation (Supplementary 
Table S6). These predictions were chosen at random to ensure that they truly 
represented the whole spectrum of predicted enhancers and not just the top tier of 
predicted enhancers. Of these 25 putative enhancers, 23 were successfully PCR-
amplified and cloned into the HIV vector in both directions. To measure the distribution 
of gene expression in the absence of enhancer, we also amplified and cloned 25 non-
repetitive elements with similar length distribution that were predicted to be inactive into 
the same SIN HIV vector.  All positive and negative DNA elements were transduced and 
tested for activity in both forward and reverse orientations since enhancers are thought 
to function in an orientation-independent manner. Functional testing was performed in 
HOS, TZMBL, and A549 cells in addition to H1 hESC. 
 
Insertion of twelve of the 23 putative enhancers into the HIV vector resulted in a 
significant increase in eGFP expression (P-value < 0.05 over the distribution of gene 
expression for negative elements) in the H1 hESCs (Supplementary Table S7). While 
most of the positive enhancers displayed a significant increase in gene expression 
irrespective of their orientation, a few elements showed significantly higher levels of 
gene expression in one of the orientations. In contrast, the negatives displayed much 
lower levels of gene expression typically (Figure 5 and Supplementary Figure S17). In 
addition, most of these elements increased gene expression of eGFP in the four different 
cell lines even though some of the elements were preferentially active in one of the cell 
lines. Overall, 16 of the 23 tested predictions displayed a statistically significant increase 
in gene expression of the reporter gene in at least one of the cell lines (Supplementary 
Table S7 and Supplementary Figure S17). Given the promoter specificity of enhancers 
in such assays, we would anticipate that some of the elements that could not be 
validated in this particular vector would function as enhancers in a more natural 
biological context, ie, with the cognate promoter. 
 
 
Comparison against other computational methods 
 
To further assess the performance of our model, we made comparisons against other 
published methods based on the same experimental results. We first did the comparison 
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with ChromHMM[65], a well known method to impute chromatin status segment the 
genome based on chromatin features. Our integrated model outperforms ChromHMM in 
all four tissues, with an AUROC value of 0.74 in hindbrain (versus ChromHMM 0.69), 
and 0.78 in limb (versus ChromHMM 0.75), etc (Figure S18). In addition to the 
comparison with unsupervised segmentation based methods, we also compared with 
other published enhancer prediction tools, including CSIANN, a neural network based 
approach[66]; DELTA, an ensemble model integrating different histone 
modifications[67]; RFECS, a random forest model based on histone modifications[63], 
and REPTILE, a more recent published method that integrates histone modifications and 
whole genome bisulfite sequencing data[68]. We used the mouse experiment data 
published in REPTILE for the comparison, and we assessed the performance of our 
method compared to the four published methods mentioned above for all four mouse 
tissues with experimental data, ChIP-seq data and DNase data available. In 3 out of 4 
tissues (hindbrain, limb and neural tube), our method has the highest AUROC as shown 
in supplementary figure SXX. In midbrain, the AUROC for our prediction is slightly lower 
than REPTILE and RFECS, possibly due to the data quality of the DNase experiment 
performed in midbrain. (The DNase experiment of mouse E11.5 stage midbrain is 
marked as “low SPOT score” in ENCODE, where SPOT stands for Signal Portion of 
Tag. We found that while 75% to 81% of the genome regions has DNase signals in the 
other three tissues, only 52% of the genome regions show DNase signal in the 
experiment in midbrain). It is also worth noting that our model is trained using the 
drosophila STARR-seq data whereas the other methods were trained directly with 
mouse data. We believe that our method would have better performance if mouse 
STARR-seq data could be applied for training in our framework. 
 
 
 
In human we did not have an extensive amount of validated enhancer data. We checked 
the overlap of our predicted enhancers with the enhancer predictions from two popular 
algorithms in human cells, eg, chromHMM [65] and SegWay [27]. We observe that a 
majority of the predicted enhancers and promoters are also predicted to be enhancers 
and promoters by chromHMM and SegWay respectively (Figures S16 to S20). In addition, 
we compared our cell-type specific enhancer predictions with the integrative annotation of 
ChromHMM and Segway (provided by Hoffman. et al) using CAGE-defined enhancers 
from FANTOM5 Atlas. The FANTOM5 Atlas has included three human cell lines from 
ENCODE project with enhancer predictions from both methods: GM12878, K562 and 
HepG2. We found that the percentage of overlap for our predicted enhancers is more than 
three times higher than that of the combined ChromHMM and Segway enhancers in each 
of these cell lines. Despite the fact that our framework predicted a smaller number of 
enhancers, the exact number of overlap is still higher for our predictions. Around 40% of 
the CAGE-defined enhancers overlap with our predicted enhancers, while 23% to 34% 
overlap with the enhancers predicted by integrative ENCODE annotation method (Figure 
SX). We also compared the predicted enhancers from our model with their promoter 
annotations using FANTOM5 promoter sets. Again, the promoters predicted in our model 
has a higher fraction of overlap with the FANTOM promoters (Figure SXX).  
 
 
Similar to the comparison in mouse tissues, we seek to compare with other published 
enhancer predictions in human cell lines with FANTOM5 experiment data. Since we 
didn’t find the promoter predictions of these methods, we compared our predicted 
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enhancers with enhancer predictions from CSI-ANN, DEEP and RFECS, in addition to 
the integrative ENCODE annotation. As most of these methods don’t have published 
enhancer predictions for GM12878 and HepG2, the comparison was done in the K562 
cell line. We find that our predicted K562 enhancers has a similar fraction of overlap with 
FANTOM5 enhancers compared to that of CSI-ANN, but the fraction is more than twice 
as high as that of DEEP and RFECS (Figure SXXX). Thus, we believe that our 
drosophila STARR-seq based enhancer prediction model performs well in the 
mammalian systems.   
 
 
 
 
Integrative analysis in human cell-lines: Different Transcription Factors bind to 
enhancers and promoters 
 
We further studied the differences in TF binding at promoters and enhancers (Figure 6 
and Figure S23). We focused on the human H1-hESC cell line as there is large amount 
of functional genomic assays from the ENCODE [62] and Roadmap Epigenomics 
Mapping Consortium [61] within these cell lines. Together, the consortia have generated 
ChIP-Seq data for 60 transcription related factors in H1-hESC cell line, including a few 
chromatin remodelers and histone modification enzymes. Collectively we call all these 
transcription related factors "TF"s for simplicity.  
 
 
We show that the patterns of TF binding within regulatory regions can be utilized in a 
logistic regression model to distinguish active enhancers from promoters with high 
accuracy (AUPR = 0.89, AUROC = 0.87) (Figure 6). We were also able to identify the 
most important features that distinguish promoters from enhancers. In addition to TATA-
box associated factors such as TAF1, TAF7, and TBP, the RNA polymerase-II binding 
patterns as well as chromatin remodelers such as KDM5A and PHF8 are some of the 
most important factors that distinguish promoters from enhancers in H1-hESC. This 
provides a framework that can be utilized to identify the most important TFs associated 
with active enhancers and promoters in each cell-type.  
 
 
We found that while most promoters and enhancers contain multiple TF binding sites, 
the pattern of TF binding at promoters is different from that at enhancers and that TF-
binding at enhancers displays more heterogeneity: more than 70% of the promoters bind 
to the same set of 2-3 sequence-specific TFs, which is not observed for enhancers 
(Figure 6C and S24). For example, the majority of the promoters contain peaks for 
several TATA-associated factors (TAF1, TAF7, and TBP). These TF co-associations 
could lead to mechanistic insights of cooperativity between TFs. Similarly, CTCF and 
ZNF143 may function cooperatively as they are observed to co-occur frequently at distal 
regulatory regions, consistent with previous report [69]. To check if the STARR-seq 
based enhancer predictions have different TF binding patterns, we compared the 
fraction of TF occupancy of our predicted enhancers with that of RFECS, which is shown 
to have similar or better TF binding patterns with other methods like CSI-ANN [63]. To 
make the comparison, we use the same H1hESC DNase peaks, p300 ChIP-seq peaks 
and 3 other TFs (NANOG, OCT4, SOX2) binding sites they provided and the same 
2.5kb frame distance. We show that the TF binding patterns of these two sets of 
predicted enhancers are very similar (Figure SX). Notably, while RFECS took p300 
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binding regions as positive training sets, only 25% or less of predicted enhancers were 
within 2.5kb of any p300 binding sites, and this is consistent across different methods 
[63]. Overall, the high heterogeneity associated with enhancer TF-binding is consistent 
with the absence of a sequence code (or grammar) which can be utilized to identify 
active enhancers on a genome-wide fashion. 
 
Discussion 
 
In this paper, we have developed a framework using transferable supervised machine 
learning models trained on regulatory regions identified by MPRAs to accurately predict 
active enhancers in a cell-type specific manner. Current, most existing methods were 
parameterized (not properly “trained”) on regions that had various features associated 
with promoters and enhancers and only a small number of these regions were typically 
tested for regulatory activity experimentally in an ad hoc manner [19, 21-30]. The rich 
amount of whole genome STARR-seq experiments [31] can now establish the 
characteristic pattern flanking active regulatory regions within certain histone 
modifications. This motivated us to train a shape-matching and filtering model that can 
be used to identify these patterns within the shape of the ChIP-seq signals. As the 
chromatin marks and epigenetic profiles associated with active regulatory regions are 
highly conserved among organisms [42-48], we showed that a well parameterized model 
in one model organism can be transferred to another with high prediction accuracy. 
 
In the model, we compared close to 30 epigenetic signals for their ability to predict 
regulatory elements individually. The H3K27ac matched filter remains the single most 
important feature for predicting active regions while H3K4me1 and H3K4me3 are shown 
to distinguish promoters and enhancers. We characterized the amount of redundant 
information within the metaprofile of different epigenetic features and showed that the 
ChIP-seq signals of H2BK5ac, H4ac and H2A provide independent information that 
helps to improve the accuracy of promoter and enhancer predictions. In addition to these 
30-feature models, we also provide a simple to use six-parameter SVM model for 
combining H3K27ac, H3K9ac, H3K4me1, H3K4me2, H3K4me3, and DHS to predict 
active promoters and enhancers in a cell-type specific manner. These six histone marks 
have been measured for a number of different tissues and cell-types by the Roadmap 
Epigenomics Mapping [39], the ENCODE [62], and the modENCODE Consortia [70]. 
Based on these signals, our model could be applied in a tissue and cell-type specific 
fashion in other organisms like mouse and human. We trained our models with datasets 
from different species and demonstrated that the high-quality STARR-seq data from 
Drosophila is sufficient to train a well transferable model. We also compared our result 
with chromHMM [65] and SegWay [27] predictions and observed the majority of them 
overlap (Figure S16 to S19).  
 
 
To avoid potential biases, we chose to validate our model using multiple regulatory 
assays including in vivo transgenic assays and in vitro transductions assays, in which 
the predicted region is tested for regulatory activity in the native chromatin environment. 
The transgenic assays are performed in E11.5 mice for 133 regions of three rank tiers 
predicted active in mouse heart and forebrain. The experiment is supplemented by 
another set of 151 assayed regions predicted active in mouse hindbrain, midbrain and 
limb in ENCODE Phase III Encyclopedia (Moore et al., in review). Together with other 
validated regulatory regions from VISTA database, we were able to comprehensively 
validate our tissue-specific predictions in six different tissues in mouse. As we show in 
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figure 4, the H3K27ac and DHS signals continue to be the highest predictive signals in 
mouse. We also did a similar evaluation with publicly available FIREWACh assay data 
[36] in mouse, and the results are consistent. Taken together, we showed that the 
matched filter model is transferable with high accuracy in predicting active enhancers in 
mouse tissues. 
 
 
The human cell-line specific regulatory elements predictions are validated through in 
vitro transduction assays in human H1-hESC cells. The majority of the predicted 
elements displayed a significant increase in expression of the reporter gene, further 
confirming the predictability of our model in mammalian organisms.  H1-hESC is a highly 
studied cell line, allowing us to analyze the differences in the patterns of TF binding at 
proximal and distal regulatory regions. The TF binding and co-binding patterns at 
enhancers are much more heterogeneous than that at promoters. This heterogeneity in 
TF binding patterns makes it more difficult to predict enhancers due to the absence of 
obvious sequence patterns in distal regulatory regions. However, we were able to create 
accurate machine learning models that can distinguish proximal promoter regions from 
distal enhancers based on the patterns of TF ChIP-seq peaks within these regulatory 
regions. The conservation of the epigenetic underpinnings underlying active regulatory 
regions sets the stage for our method to study the evolution of tissue-specific enhancers 
and their genomic properties across different eukaryotic species. 
 
 
Our results echo to the previous findings that the epigenetic profiles associated with 
active enhancers and promoters are highly conserved in evolution [42-48]. Therefore, 
our model of integrating shape-matching epigenetic scores using Drosophila STARR-
seq enhancers can be applied to predict on a variety of tissues and cell lines in other 
species. In the cross-comparison, we show that the six-parameter integrated model 
trained in STARR-seq data performs equally well at predicting mouse tissue enhancers 
with a model trained in VISTA mouse enhancer data. This highlights the advantage of 
modeling based on a comprehensive genome-wide experimental assay. In the future, we 
expect that more extensive whole-genome STARR-seq dataset will become available on 
mammalian systems. It could thus be advantageous to re-train the matched filter model 
on the state-of-art datasets. With the set up of our framework, re-training the model with 
newly generated datasets should be straightforward. We envision that our framework 
would benefit from these datasets and generate more comprehensive regulatory 
element annotations across different eukaryotic species.  
 
 
 
Implementation: source code and datasets 
 
We have implemented our methods in Python. The source code is available at the 
website https://goo.gl/E8fLNN. A dockerized image is also provided for download at this 
site.  
 
The datasets and output annotations referenced in the paper are available in the 
supplement and on the website. In particular, the transgenic mouse reporter assay result 
is shown in Table S4 and Table S5, and these results are also made available in VISTA 
Enhancer Browser. Please refer to the supplement for more details. 
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Figures and Captions 
 

 
 
Figure 1: Creation of metaprofile. A) We identified the “double peak” pattern in the 
H3K27ac signal close to STARR-seq peaks. The red triangles denote the position of the 
two maxima in the double peak. B) We aggregated the H3K27ac signal around these 
regions after aligning the flanking maxima, using interpolation and smoothing on the 
H3K27ac signal, and averaged the signal across different MPRA peaks to create the 
metaprofile in C). The exact same operations can be performed on other histone signals 
and DHS to create metaprofiles in other dependent epigenetic signals. D) Matched filters 
can be used to scan the histone and/or DHS datasets to identify the occurrence of the 
corresponding pattern in the genome. E) The matched filter scores are high in regions 
where the profile occurs (grey region shows an example) and it is low when only noise is 
present in the data. The individual matched filter scores from different epigenetic 
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datasets can be combined using integrated model in F) to predict active promoters and 
enhancers in a genome wide fashion. 

                            
 
Figure 2: Performance of matched filters and integrated models for predicting 
MPRA peaks. The performance of the matched filters of different epigenetic marks and 
the integrated model for predicting all STARR-seq peaks is compared here using 10-fold 
cross validation. A) The area under the receiver-operating characteristic (AUROC) and 
the precision-recall (AUPR) curves are used to measure the accuracy of different 
matched filters and the integrated model. B) The weights of the different features in the 
integrated model are shown and these weights may be used as a proxy for the 
importance of each feature in the integrated model. C) The individual ROC and PR 
curves for each matched filter and the integrated model are shown. The performance of 
these features and the integrated model for predicting the STARR-seq peaks using 
multiple core promoters and single core promoter are compared. The numbers within the 
parentheses in A) refer to the AUROC and AUPR for predicting the peaks using a single 
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STARR-seq core promoter while the numbers outside the parentheses refers to the 
performance of the model for predicting peaks from multiple core promoters. 

                          
 
Figure 3: Performance of matched filters and integrated models for predicting 
promoters and enhancers. The performance of the matched filters of different 
epigenetic marks and the integrated model for predicting active promoters and 
enhancers are compared here using 10-fold cross validation. A) The numbers within 
parentheses refer to the AUROC and AUPR for predicting promoters while the numbers 
outside parentheses refer the performance of the models for predicting enhancers.  B) 
The weights of the different features in the integrated models for promoter and enhancer 
prediction are shown. C) The individual ROC and PR curves for each matched filter and 
the integrated model are shown. The performance of these features and the integrated 
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model for predicting the active promoters and enhancers using multiple core promoters 
are compared.  

 
Figure 4: Performance of matched filters and integrated model for predicting 
active enhancers in mice. The performance of the Drosophila STARR-seq based 
matched filters and the integrated model for predicting active enhancers identified by 
transgenic mouse enhancer assays in 6 different tissues of E11.5 mice. A) The AUROC 
and AUPR for the integrated SVM model in 6 tissues. The weights of the different 
features in the integrated model is the same as the weights shown in Figure 3 for 
enhancers. B) The individual ROC curves of each feature and the integrated SVM model 
for each tissue. C) The individual PR curves of each feature and the integrated SVM 
model for each tissue. 
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Figure 5: Enhancer Validation Experiments. A) Schematic of the enhancer validation 
experiment flow.  At top is the third generation HIV-based self-inactivating vector 
(deletion in 3’ LTR indicated by red triangle), with PCR-amplified test DNA (blue, two-
headed arrow indicates fragment cloned in both orientations) inserted at 5’ of a basal (B) 
Oct4 promoter driving IRES-eGFP (green). Vector supernatant was prepared by plasmid 
co-transfection of 293T cells. Targeted cells are tranduced and then analyzed by flow 
cytometry a few days later. Shown below is the expected post-transduction structure of 
the SIN HIV vector, with a duplication of the 3’ LTR deletion rendering both LTRs non-
functional  B) Fold change of gene expression of eGFP is compared between negative 
elements and putative enhancers chosen at random, with p-value measured by 
Wilcoxon signed-rank test. 
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Figure 6: Differences in TF binding patterns at enhancers and promoters. A) The 
fraction of predicted promoters and enhancers that overlap with ENCODE ChIP-seq 
peaks for different TFs in H1-hESC are shown. The names of all TFs in the figure can be 
viewed in Figure S20. B) The AUROC and AUPR for a logistic regression model created 
using the pattern of TF binding at each regulatory region to distinguish enhancers from 
promoters are shown. The weight of each feature in the logistic regression model can be 
used to identify the most important TFs that distinguish enhancers from promoters. C) 
The patterns of TF co-binding at active promoters and enhancers are shown. The names 
of all the TFs in this graph can be viewed in Figure S21. 
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