
 

 

GRAM: A generalized model to predict the cell-specific molecular effect of non-coding variants 
lie inside functional element 
 
 

Abstract:  
Identification and prioritization of function-associated variants become an increasing demand as 
next-generation sequencing data rapidly grows and accumulated. Current computational 
methods are developed to predict deleterious and disease-associated variants, not designed to 
predict cell-specific molecular phenotypes of these variants (i.e., their effects on gene 
expression regulation). In this paper, we proposed GRAM, a generalized model to predict 
molecular phenotype of non-coding variants in a cell-specific manner. We defined TF binding 
waiting-time features (TFT) to reflect the cell-type specific TF binding and dynamics. We first 
found that TF binding features are the most predictive features, while evolutionary conservation 
doesn’t show indispensable contribution to molecular effect by employing comprehensive 
feature selection framework. Using in vitro SELEX TF binding features alone can achieve similar 
prediction power as using the TF binding features from ChIP-Seq. We then integrate with in-
vitro TF binding features instead of those inferred from spotty covered ChIP-Seq data, and TFT 
features extracted from RNA-Seq to generalize our model to all other cell lines. In the multi-
phase classification model, the AUROC reaches 0.728 and outperforms all the state-of-the-art 
tools. Finally, GRAM has been assessed in MCF7 and K562 cell lines, resulting in high 
predictive performance. 

Introduction  
Next-generation sequencing technologies enable high-throughput whole genome sequencing 
and exomes sequencing[1]. Many disease-associated mutations[2] and the vast majority of 
common single nucleotide variants have been identified in the human population  [3, 4]. 
Genome-wide association studies(GWAS) have characterized many disease-associated 
variants. These variants mostly lie outside protein-coding regions, [5], emphasizing the 
importance of the function of regulatory elements in the human genome. This also drives an 
urgent need to develop high-throughput methods to sift through this deluge of sequence data to 
quickly determine the functional relevance of each noncoding variant[6]. 
 
It has been shown that only a fraction of noncoding variants are functional, and among the 
functional variants, the majority show only modest effects[7]. Therefore, highly quantitative 
assays are needed to study large number of variants. Luciferase assay is originally used to 
measure the regulatory effects of functional elements [8]. By comparing the difference of the 
assay output with and without the mutation, we can estimate the experimental molecular effect 
of non-coding variants lying in a functional element. By means of high throughput microarray 
and NGS methods, massively parallel reporter assay (MPRA) has extended the scales to the 
genome-wide level [9-14]. Recent, In R. Tewhey et al.’s recent work, they have demonstrated 
the capability of MPRA to identify the causal variants that directly modulate gene expression. 
This study reports 842 variants (emVARs) showing significantly different expression modulation 
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effect and also provides a high-quality data source has been providing for computational 
modeling [15, 16]. 
 
There is also an increasing need for computational methods to effectively predict the molecular 
effect of variants and provide a better understanding of the underlying biology of these results. A 
host of approaches have been developed to address the problem of variant prioritization from 
different perspectives. According to the target of their predictions, there are mainly two 
categories: 1) disease-causing effect predictions: like Deepsea [17], GWAVA [18] and 
CADD[19] , try to prioritize causal disease variants and distinguish them from benign ones; 2) 
fitness consequence prioritization. fitCons and LINSIGHT \cite Huang, Gulko et al.) attempt to 
identify the variants on evolutionary fitness. Some tools, like Funseq2, may not belong to one 
particular category because of the integration of a comprehensive data context and 
unsupervised scoring system [6]. These computational methods are developed to predict and 
prioritize deleterious and disease-associated variants, but not designed to predict specific 
molecular phenotypes of these variants (i.e., their effects on activities of functional elements). 
Most importantly, none of the above tools takes into account cell specificity in their models. One 
reason may be because some cell-specific features derived from ChIP-Seq data are only 
available in a few cell lines, which is a major hindrance to the generalization of a model. 
 
In this paper, we approach data mining methods from a new perspective to bridge the gap 
between the genotype and molecular phenotype. We developed GRAM: a generalized model 
predict the cell-specific molecular phenotype of non-coding variants. We define a TF waiting 
time (TFT) feature by considering the TF expression value and binding strength on a specific 
loci. We performed unsupervised and model-based feature selection and revealed TF binding 
score derived from in-vitro assay can achieve similar performance as the features from in-vivo 
ChIP-Seq experiments. We then built GRAM: a multi-stage classifier to account for various 
kinds of output from different experimental assay platforms.. GRAM can achieve the highest 
performance compared with the state-of-the-art models according to the performance on the 
dataset from R. Tewhey et al.’s Cell paper. Finally, we assess our model using two sets of 
independent data in different cell lines: MPRA data in K562 and luciferase assay in MCF7, 
resulting in high predictive performance. 

 
 

Results 
 
Flowchart  
In this study, as described in Fig1a, we firstly collected dataset from paper[15], which is the 
largest dataset so far for estimation of expression modulation differences between wild-type and 
mutants in GM12878 cell line. In his paper, he performed a large scale MPRA experiment, and 
provide a high-quality dataset contains 4xxx SNVs (3222 after filtered) with logSkew value, 
which measures the log fold change of the expression modulating differences between wild-type 
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and mutant alleles. Features are extracted according to R. Tewhey et al.’s Cell paper, such as 
cell-specific ChIP-Seq peaks and CAGE peaks, along with the knowledge from the other 
variants prioritization studies including evolutionary features and motif binding features. We 
performe a comprehensive feature selection framework, including unsupervised and model-
based methods to identify the top impacting factors that affect the regulatory activity of element. 
Based on feature selection, we found the in vitro TF binding preferences that don’t rely on cell 
line ChIP-Seq data is highly predictive in the model, which can repel the limitations from the 
spotty available ChIP-Seq data. We further define a TF binding waiting-time feature (TFT) using 
RNA-Seq data and combine with TF binding preference feature to build a multi-stage 
classification model. In the end, independent datasets from luciferase experiments and MPRA 
are then used to evaluate the model. 
 
 
Exploration of conservation and transcription factor binding features 
 
Evolutionary conservation is associated with deleterious fitness consequence and widely used 
in non-coding variant’s prioritization algorithms, such as phyloP[20] and Phastcons [21] in 
LINSIGHT[22] and CADD, GERP in Funseq2. We performed comparative analyses for these 
three conservation features across different datasets. (Fig 1b), PhastCons and PhyloP pattern 
of emVar and non-emVar are less conserved than HGMD variants and similar to non-HGMD 
variants, which was thought to be a benign variant. GERP score show similar pattern but more 
centered in emVAR and non-EmVar compared to other datasets, with slightly larger values for 
emVAR. Since no different patterns were found between emVar and non-emVAR, we further 
discovered the correlation between logskew and conservation scores is low and the explained 
variance very close to 0 for all three features, which indicate these conservation scores 
standalone have no or minor contributions to molecular phenotype.   
 
Transcription factor binding can link the molecular effect of noncoding variants to a cascade of 
regulatory network, which is thought to be an important contributing factor to the variants’ 
regulatory effect (cadd, funseq, deepsea and deepbind). In R. Tewhey et al.’s Cell paper, they 
found the log skew positively associates with TF binding scores. To thoroughly look into the 
effect of TF binding, we tested all xxx TF motif break events and peaks overlapping with the 
SNVs in the dataset. Two sets of variants: emVAR and non-emVAR, were annotated and 
analyzed by Funseq2 [6]. The enrichment of transcription factor binding motifs in both sets, 
defined as ones with lowest p-values according to the hypergeometric distribution test, are 
shown in a bottom-up increasing order in Figures 1c, respectively. It was observed that emVAR 
set has more TF binding events compared with non-emVAR set. The top highly enriched TFs in 
emVAR are: xxxxx, . Besides the TF binding enrichment, we also further look at the motif break 
scores for these TFs, especially top enriched ones. The largest differential scores correspond to 
AP1 and EP300 motifs. In addition, for a smaller subset of motifs with lowest p-values, 
differences between the distribution of the binding alternative and reference genotypes in emVar 
is larger than that in the Non-emVar dataset for almost all motifs (Figure 1d), with the largest 
difference observed for AP1 and smallest for SMARC. According to the comparison, the emVAR 
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set tends to have not only more TF binding events, but also larger binding alteration compared 
with non-emVAR set. 
 
 
Model-based feature selection 
 
In R. Tewhey et al.’s Cell paper, they found histone mark and CAGE highly enriched in emVAR 
regions, which indicates these features are potentially useful to predict the expression 
modulating effect. In addition, we also combine evolutionary feature and motif binding changes 
in our model-based feature selections. We collected 1678 training set from GM12878 cell line by 
removing variants that have no overlapping with any ChIP-seq peaks and incorporating features 
related to the CAGE, TFs, histone marks, and DNase I hypersensitivity sites. A comprehensive 
feature selection framework to select impactful features, is shown in Fig 2.  
 
The most important features according to Lasso regression are TF binding features, and GERP 
scores just show very insignificant contributions (Fig2b).  We then prioritized these features 
across models with different feature selection methods: Lasso, ridge, linear regression, stability 
selection [24](with five ƛstability values), random forest, mutual information, and Pearson 
correlation with the target variable. The 20 most important features (out of 515) w.r.t. mean 
importance across all methods is shown in decreasing order in Fig 2c. Expectedly, applying 
various methods on data with multiple dimensions leads to relatively varied results with regards 
to the importance of each feature across the method spectrum. Both ChIP-Seq and SELEX 
deepbind features show higher importance, with the top two being GM12878 ChIP-Seq features 
(SP1 And BCL3), which is cell line specific, then followed by some SELEX features starting with 
ETV1 and ETP63.  
 
After considering feature importance values as per different criteria, we assess the performance 
difference between cell specific TF binding features (ChIP-Seq based) and non-specific ones 
(SELEX based) using SVR (support vector regressor), Lasso, and Random forest regression 
models. Interestingly, the incorporation of DeepBind ChIP-Seq derived features, which are cell-
specific, does not boost the accuracy significantly for all three models. MSE values of both 
models, with and without DeepBind ChIP-Seq features, are shown in Fig 2d. Results suggest 
that we can reliably deploy the model trained on cell-line-independent Deepbind SELEX 
features (GRAM cell-line independent feature). Thus, we can rely on cell line independent 
features only to build a generalized model since not all the cell lines have available TF ChIP-
Seq experiment for training of ChIP-Seq Deepbind binding model. 
 
We compare the performances of models to predict molecular phenotype by using SVR and 
randomForest on different features sets, including GRAM all TF features, GRAM cell 
independent features, and the features from disease-association prediction tools:  CADD, 
Funseq2, DeepSEA, GWAVA, LINSIGHT, Eigen decomposition, PCA, and Eigen.PC.phr. As 
shown in Fig 2e, the model with GRAM features lead to best models with the lowest mean 
squared error. As for other methods, results show that DeepSEA features result from the third 
best set of models (SVR and RF).  It is indicates that the identification of disease assciation 
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variants is not equavalent to the prediction of the functional modulating variants.  Hence, the 
tools that are built to predict the phenotyic consequences doesn’t work very well in predicting 
molecular effects.  
 
Build a generalized model by multi-phase learning 
 
The mode-based feature selection illustrates the capability of prediction of the molecular effect 
of variants by the comprehensive integration of useful features. However, other than estimating 
the log skew value based on reads count as in MPRA, other different types of assay, such as 
Luciferase assay, GFP assay, and Lenti-virus based platforms, use fluorescence readouts 
instead, and apply different statistical methods or cutoff to determine the effects of the variants. 
Though different platforms may have consistent results [25, 26] , because of the varied raw 
measurements and analysis methods, interpretation of the outputs of these assays would be 
difficult. We need to define a unified prediction target that can be used for comparison cross 
different types of assays, with varied definition of molecular effect variants; In addition, we also 
constructed cell-specific features by extracting information from gene expression profile 
available in most of cell lines and tissues instead of ChIP-Seq assays whose availability is 
limited.  
 
For phase one, we predict whether an element has regulatory activity. Using the Deepbind TF 
binding features as predictors, whether the element is functional element (emVAR) as the target, 
a randomForest classifier was trained to predict regulatory activity. The 10-fold cross validation 
demonstrate an exemplary performance with AUROC =0.938 and AUPRC = 0.924. The log 
odds based on the probabilities are highly correlated with actual logskew (with Pearson 
cor=0.5581, figure not shown).  
     
In phase two, the cell-specific effect is considered by integrating TF gene expression profile. 
Log odds is calculated according to the the categorical table of the MPRA reads count for wild-
type and mutant insertions and their backgrounds. The standard deviation of log odds (Vodds) 
represents the reliability of Chi-squared test. By comparing principal component loading of the 
Vodds from three cell lines: GM12878, GM19239, and HepG2, we found two GM cell lines are 
closer with each other than with HepG2 (fig 3d), which indicate the cell-type specificity of Vodds. 
Comparing emVAR with non-emVAR variants, the higher Vodds group tends to contain more 
non-emVar (Chi-square test p-value: 0.0002021), which indicates the emVAR class tends to 
have lower Vodds. From these results we could define the cell-specific classes (CS): high and 
low Vodds classes by top and bottom quartile value of Vodds, and then use TF binding score 
and TFT features to predict CS classes (fig3e). The 10 fold cross validation shows TF binding 
score can predict the CS target with AUC 0.80, and TFT features can achieve an AUC (0.65) 
which is also higher than a random effect (fig 3g-h).  
 
The final phase is to predict whether the variants have significant expression modulating effect. 
The output from phase one and two are fed into a LASSO model, the emVar and non-emVar 
labels are used as the target. The AUROC of 10-fold cross-validation for the optimal model is 
0.728 and AUPRC is 0.505, which is higher than the state-of-the-art for the study using the 
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same dataset (AUROC: 0.684, AUPRC: 0.478) [27]. For a generalized model, we redo phase 
one and two on the same dataset by excluding GRAM cell specific features that from ChIP-Seq 
model, which is not available for many other cell type or tissues, and keep all the other features 
as the optimal model, we get the model with AUROC = 0.674 and AUPRC = 0.452.  
 
Model validation using cross-cellline and cross-assay datasets 
  
The generalized model has been trained on Gm12878 MPRA dataset. To evaluate the 
performance of the model on the experimental results of other cell lines on different platforms. 
We collect nano luciferase assay data from MCF7 and MPRA assay data from K562[10]. 8 
potential regulatory elements from MCF7 cell line have been experimentally tested, each one 
with a mutation as described in our study cite[ENCODEC]. We predict the regulatory activity for 
both wild-type and mutant alleles, and expression modulating differences between wide-type 
and mutant. For regulatory activity, the predicted probability to be an active regulator is 
positively correlated with luciferase assay fold change. The results are perfectly predicted 
(AUROC=1) for different luciferase fold change cutoffs from 1.2 – 2 that is used to define an 
active enhancer (fig5a). For the prediction of molecular effect, the significant differences 
between mutant and wild-type is defined by using absolute log2(fold change) cutoff. The 
predicted probability also showed a positive correlation with absolute log2 fold change. The 
AUROC value range from 0.7 to 0.9 given the absolute log2 cutoff from 0.5 to 1.5, which 
corresponding the fold change cut off from [1.414, 4] or [-4, -1.414]. For MPRA data in K562 cell 
line, we tested 2400 elements in 149bps with a variant centered in the inserted fragment. The 
AUC for regulatory activity is up to 0.68 as we decrease the cutoff of qvalue to 10^-9 and the 
molecular effect prediction also reach up to more than 0.8 if using a more stringent qvalue 
cutoff(10^-5).  This indicates our model performs very well on the testing luciferase assay and 
MPRA dataset from a different cell lines even though they use different measurements.  
 

Discussion 
 
There is an increasing number of computational methods that can prioritize non-coding variants, 
as well as high-throughput whole-genome sequencing data that become the primary technique 
for identifying disease-associated variants. But it still lack a tool that can estimate the molecular 
effect of variant in a cell-specific manner. In this paper, we performed a thorough analysis of 
effect modeling on molecular effect of an SNV, trained both regression and classification models 
using MPRA data from Gm12878 cell lines. By taking advantage of the non-cell-specific SELEX 
TF binding feature, and easily obtained cell-specific TF expression data, we built a generalized 
model that can be potentially applied to any cell lines and tissues, and predict the significant 
expression modulation changes for different types of experiment assay. Experimental validation 
using luciferase assay on MCF7 cell lines, and MPRA assay on K562 to further verified the 
generality and robustness of the model.  
 
In model-based featur selection , we tested features that may be associated with the molecular 
effect. In spite of the biological insight evolutionary features provide, Lasso regression indicates 
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that they do not rank high in significance when predicting the molecular effect.  The Histone 
Mark and CAGE features are chosen because of enrichment analysis between emVAR and 
non-emVAR, however, how these features work still unknown because no-chromatin context will 
be retained once the elements are inserted into a plasmid. The dataset of Histone Mark and 
CAGE is not always available for other cell lines, which will limit the application of the model. 
While the transcription factor binding is more biologically relevant, and the availability of in vitro 
SELEX model can help to expand the model to other cell type and tissues. Cell-specific ChIP-
Seq-based TF binding features might help improve predictions but only to a limited extent, our 
models show that generalizability can be obtained using non-cell-specific SELEX TF binding 
features without a significant reduction in predictive performance.  
 
In the cell-specific effect prediction, TF binding is still the most important factor, but TF waiting-
time feature (TFT) also associate with cell-specific effect. The TFT feature is defined as a re-
ordered TF expression matrix according to its binding strength(rank in its binding preference), 
which is inspired by the study of TF binding waiting time[28]. The waiting time of TF binding 
reflects the dynamics for TF bound and unbound to chromatin, and is thought to be related to 
TF binding free energy. The TF binding free energy can further be expressed as a function of 
the binding scores. Hence, TFT feature links the TF expression with binding waiting time and 
can unveal the dynamics TF cell specific effect. In our study, we simply use the quantile of 
binding preference in each TF’s binding distribution to re-order the expression level and make 
the expression vector represent the binding order of TF and might affected by the noise of 
dataset and accuracy of TF binding preferences. However, our results indeed showed that the 
TFT feature has an association with the cell-specificity effect.  
 
 
Though our model achieves so far the best performance, we recognize that dataset selection 
may introduce systematic bias because the SNVs we used in our model are only very small 
fraction of all non-coding variants but the regulatory effect of SNVs is very diverse,  which will 
result in the overfitting of our model. However, our experimental validation has been performed 
on both small scale luciferase assay and high throughput MPRA data, our model shows high 
predictive performance in these blinded dataset. We will release our code publically, hope the 
community can help us improve and refine our model.  
 
We aim to better understand the underlying patterns of variant modulation expression and 
considered cell specificity issues closely, having additional dataset generated from multiple cell 
line experiments would be quite helpful to derive more comprehensive conclusions. We will 
further expand this analysis contingent on the availability of data. In addition, continuous work 
on re-defining expression modulation remains an open question with large room for 
investigation  

Methods  
 
Dataset 
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The data was downloaded from R. Tewhey et al.’s Cell paper [[remove, but keep only the citation]]. 
From about 79K tested elements, we only keep xxx variants that have  at least either wild type 
or mutant elements show regulatory activity. We only keep the SNV with its logskew value and 
the logskew with maximum absolute value will be used if a SNV has been tested in two insertion 
directions in plasmid. Finally, we have 3222 SNVs tested in GM cell line in the our dataset. Each 
SNVs region is extended to both direction by 74bp, in total in 149bp. Another dataset from 
Ulirsch 2016 [10], there are 2756 variants tested in K562 cell line.  
 
Feature extraction: 
 
GERP feature was extracted using Funseq2 annotation pipeline, which search the region of 
element over the whole genome GERP score file and get average score. 
 
The Histone modification, CAGE and ChIP-Seq peaks were overlapped to SNV element regions. 
It will be set as 1 if overlap with any peaks or set as 0. The motif break and motif gain score was 
calculated using Funseq2. We also calculated the motif score using Deepbind [29] with both the 
SELEX and ChIP-Seq motif model. The SELEX motif model are based on in vitro binding assay: 
systematic evolution of ligands by exponential enrichment, but ChIP-Seq models are 
inferred using sequence from the transcription factor binding site from different cell lines. There 
are total 515 motif models  were calculated (table s1: tbls1.deepbind.list.txt) . 
 
Model-based feature selection 
 
the log skew of the SNV are used as target (y) and the GERP, histone modification ChIP-Seq 
feature group (11), transcription factor ChIP-seq feature group(16), CAGE feature group(5) and 
motif feature, a linear regression model was trained, the L1-norm was used as regularization 
term to avoid overfitting. The 10-fold cross-validation was used to select suitable scale factor 
(lambda) for L1-norm.  

 
We firstly learned a LASSO regression model with 10-fold cross-validation. The fine-tuning of ƛ, 
the penalty parameter in the cost function of this model, is determined according to the mean-
squared error (MSE) values with the best performance log(ƛ) ≅ -5. The R-square for prediction is 
0.29 and 0.39 with TF binding features and with all features respectively 
 
 
we also compare SVR and random Forest regressor on the same dataset. 
 
To compare the importance of features, we compared different metrics, which including stability 
selection [24], LASSO 10-fold cross-validation, pearson correlation, linear regression, 
randomForest regression,  feature elimination, Ridge, normalized mutual information. The 
features importance for each selection methods are scaled to [0, 1] and take the mean of all the 
selection methods to represent the overall ranking. 
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The logskew shows large kurtosis than expected normal distribution,  the model was biased by 
the large amount centered data, the extreme logskew value will not be learned. we then applied 
adaboost with 10-fold cross-validation to enable the extreme-value sensitive classification.  
Meanwhile the adaboost model with in vitro motif (SELEX) feature and chip-seq motif binding 
feature are compared. 
 
We compare our models’ MSE with CADD, Eigen, LINSIGHT, Funseq2, GAWVA, DeepSea. 
The GM12878 specific model and generalized non-cell specific model was tested using both 
support vector regression and random forest regression, which consider all deepbind feature 
and SELEX-based features respectively. For the other variants prioritization tools, we take the 
output of these methods, and then use the same SVR and RandomForest to train and predict 
logskew value.   
 
 
GRAM:multistage generalized model 
 
We first define the “emVar” as positive and “non-emVar” as negative classes following cell 
paper standard.  There has 3222 data records, including  xxx positive and xxx negative dataset.  
 
We build a three phase model. Firstly, we will predict the element regulatory (enhancer) activity 
for wild type and mutant respectively and then predict cell specific  effect model. The features  
include deepbind TF binding score from above and cell specific TF binding waiting time (TFT) 
feature.  
 
An element inserted into plasmid with or without mutation is defined as a functional element if 
the fold change between the element with the control is larger than a statistically significant 
cutoff. For example, for MPRA study, the statistical test based on DESeq2 will indicate whether 
it is significantly changed; while for Luciferase assay, a testing element that has the fold change 
compared to control (eGFP) greater than 1.5 or 2 will be thought as regulatory element. 
 
 
The regulatory activity class are defined based on the fold change of either wild-type or mutant  
readout compared with the control. The element with at least 2 fold changes will be defined as 
positive regulator, while the elements with at most xxx fold change is the negative set. 
 
The effect can reflect two types of biological meaning: cell type specificity for the same loci 
between different cell lines and tissues, which can be naturally captured by gene expression 
profile; and loci specificity among different genomic positions in the same cell line or tissue, 
which is denoted by TF binding preference and TF’s expression. 
 
The cell specific effect model is approximated by the standard deviation of log(odds) given 2x2 
categorical table (n1,n2,n3,n4 for the average reads count) for the association between the SNV 
type (“wild type”, and “mutant”) and assay type(“experimental” and “control”).  The standard 
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deviation of log(odds) is calculated by sqrt(1/n1 + 1/n2 +1/n3 + 1/n4).  The Transcription factor 
binding and its expression level is biologically associated with the effect. We define the two 
classes using the top and bottom quartile standard deviation. 
 
The quantile of distribution for each deepbind model was calculated based on the TF scores of 
3222 SNVs. The order of TF expression is defined by the order of TF score’s quantile in each 
model, then the expression rank matrix was generated by this new order. 
 
Given 258 Deepbind SELEX model score S for 3222 SNV, Sm,n is the score for nth model of m-
th SNV. Then we generate a ranking matrix R using column-based rank, R’m,n denote the rank 
for nth model of m-th SNV in the nth model score of all 3222 SNV, For TF with multiple binding 
models, we take top-rank for each TF to generate a TF-based mxn’ R’  matrix, where n’ is the 
number of unique TF in SELEX model.   
 
For each SNV, the R’m: {1,.., n’} (n’ is the number of unique TFs) is then used to generate a 
new ranked TF vector TR{1_r,…, n’_r} , which is ordered by the R’m. TFexpression value E 
{1,…,n’}   is re-ordered according to new TF E’m{1,.., n’}. This E’ vector indicate the relationship 
between expression level and binding preference on each SNV.  
 
The predict probability to be active element from the first step is then used to calculate: 
log2(P_mut/(1-P_mut) /(P_ref/(1-P_ref))). 
 
The last step is to predict whether there is significant change of regulatory activity between  
wild-type and mutant element using predicted prob odds and cell-specific effect by.  
 
 
Experiment validation on MCF7 cell line  
 
We introduced mutations into cloned non-coding elements by site-directed mutagenesis, 
following published procedures (Wei et al., 2014) in general. Briefly, a pair of mutagenesis 
primers was designed for each mutation with a webtool, PrimerDIY (primer.yulab.org). We set 
up mutagenesis PCR reactions with the entry clone plasmids carrying wild-type non-coding 
elements and their corresponding mutagenesis primer pairs. The PCR products were then 
digested with DpnI (New England BioLabs) and transformed into TOP10 chemically competent 
E. coli (Invitrogen) by heatshock. The transformed bacteria were recovered in SOC medium for 
1h at 37°C, spread on LB agar plates supplemented with spectinomycin, and incubated at 37°C 
overnight. We randomly picked colonies yielded from the transformation and confirmed the 
success of mutagenesis by Sanger sequencing. 
 
Model validation using MPRA data from K562 cell line 
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Figures: 
 
Figure 1 (a) flowchart of our study. (b) Conservation scores (c) MOTIFBR - motif-based - P-
value (bottom- sorted up increasing order) (d) motif score changes between wild-type and 
mutant allele. 
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Fig2. Regression model to predict logSkew. (a): diagram of features in regression model (b) 
Lasso regression with 10-fold cross-validation (c) feature selection for Deepbind motif scores, 
identify cell-line specific feature from top ranking list. (d) comparison the performance of cell-line 
specific ChIP-Seq TF binding scores with SELEX TF binding scores. (e):Compare with the the-
state-of-the art, we use their direct output as features, then train 10-fold cross-validation model 
using svr and random forest to compare with our model.  
  
 



 

 

 
 
 
 
 
 



 

 

Fig3 multi-stage classification model. (a) the diagram of multi-phase model: before predict the 
molecular effect, the regulatory activity and cell specificity is predicted. (b) ROC curve for 
regulatory activity prediction. (c) PRC curve for regulatory activity prediction, (d) the principal 
component analysis for Vodds, the loadings for PC1 and PC2 are shown. (e) The high and low 
variable cell specificity class are defined by the top and bottom quantile. (f) The prediction of cell 
specificity variation prediction using TF binding feature and TFT features. 
 



 

 

 
 
 



 

 

Fig4. Performance of classification model. A,B ROC and PRC for model including tissue-specific 
ChIP-Seq Deepbind scores, C, D ROC and PRC for generalized model 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Fig5 (a) enhancer-likeness prediction. x-axis: fold change from experiment, the vertical dot lines 
represent the cut off (1.5, or 2) to determine positive (enhancer) and negative, the horizontal dot 
line is predicted probability cutoff (0.5). (b): predicted probability for emVar and non-emVAR 
versus absolute log2 odds from luciferase assay. (c): the AUROC value versus the different 
absolute log2 odds cutoff [0.5, 2.0]; (d) testing on a independent dataset K562 MPRA dataset 
 
 

 


