
An integrative ENCODE resource for cancer 
genomics 
  

Introduction 
The 2012 ENCODE release provided RNA-seq, histone and transcription factor (TF) 
ChIP-seq, and DNase-seq over several cell lines to comprehensively annotate the 
noncoding regions in the human genome for the first time. The current release 
broadens the number of cell lines for these assays and considerably expands 
available tissue data. It also greatly increases the depth of coverage of assays by 
adding new approaches, such as STARR-seq, Hi-C, and eCLIP. The integration over 
many assays provides an unparalleled opportunity to develop accurate annotations 
in a cell-type specific manner, which is particularly useful for interpreting genomic 
variants associated with disease and cell-state changes that underlie many disease 
processes. Deep integration over many assays also allows us to connect many 
regulators and non-coding elements into multi-modal networks, including proximal 
(TF/RBP-gene) and distal ones (enhancer-gene or TF-enhancer-gene). 
Here, focusing on data-rich ENCODE cell types, we performed deep integration 
over many functional assays to characterize the noncoding genome, which may serve 
as a valuable resource for disease studies. Cancer is one of the best applications to 
illustrate the key aspects of this integrative ENCODE resource. Unlike many other 
diseases, cancer is very much a disease of whole-genome dysregulation. Cancer cells 
may display aberrant behaviors of key regulators, extensive remodeling of 
epigenetics, and abnormal transitions between cell states. The wealth of ENCODE 
functional characterization data allows direct measurement of chromatin status, 
regulatory changes, and expression perturbations for individual genes. It may also 
be used to construct comprehensive high-quality networks, to capture  tumor-to-
normal alterations from a more global perspective. ENCODE data may thus help 
better elucidate the biological mechanisms of cancer initiation and progression. 
 
Therefore, we present an integrative ENCODE companion resource for Cancer 
genomics (ENCODEC).  This resource consists of various annotations, networks, 
and code bundles available online. Its compact noncoding annotations and extended 
gene definitions can potentially increase the statistical power to interpret variant 
(both germline and somatic) and expression data in cancer. Its comprehensive 
experiment-based networks allow us to depict global alterations in network rewiring, 
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hierarchies, and TF/RBP dysregulations. This lead us to the detection of many key 
cancer genes that are potentially of prognostic value, including the well-known TF 
MYC and novel RBP SUB1. We also discovered noncoding SVs that activate key 
oncogenes and SNVs that affect enhancer activity, and successfully validated them 
through CRISPR and luciferase assays.  We further took advantage of the wealth of 
the ENCODE expression and chromatin state data to cluster various cell types, and 
highlight a consistent stem-like transition during normal-to-tumor development in 
many cancer types. 

The breadth and depth of the ENCODE resource 
Figure 1 illustrates two key dimensions of the overall ENCODE data set in relation 
to cancer: its breadth across cell types and depth across assays. Integration over the 
many different cell types, or many different assays, may contribute novel insights 
regarding cancer biology. 
 
For example, it is challenging develop a background mutation rate model (BMR) for 
somatic recurrence in cancer – the somatic mutation process can be influenced by 
numerous confounders (in the form of both external genomic factors and local 
sequence context factors), which can result in false conclusions if not appropriately 
corrected. Researchers have suggested various regression approaches to integrate 
genomic features for accurate BMR calibrations. ENCODE has dramatically 
increased available BMR-associated features from less than 200 to over 2,000. Here 
we show in figure 1 that simple integration of these data sets progressively provides 
more accurate BMR estimates.  
 
In addition, one can also integrate across assays to investigate how different patterns 
of epigenetic marks are related to structural variants (SV) in strictly matched cell 
types. ENCODE has various whole genome assays, which can contribute to accurate 
SV calls after proper integration with whole genome DNA sequencing data. 
Interestingly, we found that K562 breakpoints are associated with H4K20me1, 
which is an activating histone marker only in K562, but not in other cell types. 

An extended gene annotation and its applications in cancer 
From the wealth of the ENCODE experiments in the data-rich cell lines, we 
constructed a deep, integrated annotation with two key characteristics – 1) it is 
compact to precisely pinpoint the functional sites, and 2) it extends the conventional 
gene annotation by linking the discontinuous noncoding regulatory regions to genes. 
Different from conventional gene annotations, which are uniformly defined 
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(although differentially expressed) across cell types, extended gene annotations are 
highly dynamic and may considerably change from cell to cell. This may benefit the 
statistical power of many analyses in cancer. 
 
Our annotation is compact because we defined “core” regions of individual 
regulatory elements that are enriched for functional sites and reduce false positives 
rates via strict quality control (see suppl. sect. xxx). This can be doneeither by 
incorporating novel advanced assays such as eCLIP and STARR-seq, or integrating 
over tens of functional assays, such as DNase-seq and ChIP-seq (see suppl. sect. 
xxx). We have shown that such an annotation can effectively reduce the noise-to-
signal ratio and reduce multiple test correction burden to achieve a better power for 
various analyses. 
 
On the extended side, a second step of our integrative annotation entails linking the 
above compact elements to define a high-quality extended gene neighborhood by 
integrating computational predictions with direct experimental evidence on physical 
interactions from Hi-C and ChIA-PET experiments (see suppl. sect. xxx). Such a 
gene-centric approach not only allows us to improve upon existing knowledge of the 
genetic regions involved in cancer, but also enables a joint evaluation of distributed 
yet biologically connected genomic regions. This leads to increased power in many 
analyses (see suppl. sect. xxx). 
 
To illustrate the value of our resource, we first compared the enrichment of cancer 
GWAS SNPs with respect to various annotations. The enrichment in protein-coding 
genes significantly increases as we add more relevant annotations for breast cancer 
and leukemia (Fig. 2C). This trend is more pronounced when the newly added 
proximal and distal noncoding annotations are from matched cell types. One may 
further subset the genes according to different subcategories associated with cancer, 
and identify enrichments. For instance, we observed a significant enrichment in 
genes from the Cancer Gene Consenus (CGC) in breast cancer based on the extended 
gene annotation, which was not possible using the conventional coding regions 
annotation. 
 
We also showed that our extended gene annotation can provide better stratification 
of gene expression from mutational signals in cancer patients compared to single 
annotation categories. We combined the mutational and expression profiles from 
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large cohorts, such as TCGA, and found that mutational status in our extended gene 
definition can explain the expression differences for a larger number of genes than 
other annotations, such as annotations of coding sequences (CDS). One example of 
the explanatory potential of the extended gene is seen for the splicing factor SRSF3, 
which has been shown to affect liver cancer progression \{cite}. In HepG2, 
aggregating mutational burden within its extended gene annotation exhibits greater 
significance relative to gene expression, compared to any single annotation category 
(p=xxx, one sided Wilcoxon test). 
  

By integrating our compact annotation sets, BMR estimates, and accurate extended 
gene definitions, we obtained larger power for detecting genomic regions (coding 
and non-coding) that are mutationally burdened. Fig. 2E illustrates genes that are 
mutationally burdened using our extended gene definitions in several well-known 
cancer cohorts. For example, in the context of chronic lymphocytic leukemia (CLL), 
our analyses identified well-known highly mutated genes (such as TP53 and ATM) 
that have been reported in previous analyses. More importantly, the increased power 
provided by the extended-gene annotation allowed us to detect genes that would 
otherwise be missed by an exclusively coding analysis. An example of this is the 
well-known cancer gene BCL6, which may be associated with patient survival (Fig. 
2E). 
 
One can get a physical sense of the importance of the extended gene environment 
by looking at a situation where genomic variant rearranges the extended gene 
without affecting coding regions. We found such an example in the breast cancer cell 
line T47D, where a 130Kb heterozygous deletion changes the chromosome to link a 
distal enhancer to the promoter and results in the activation of the well-known 
oncogene ERBB4 (Fig. 2F). This heterozygous deletion is located around 45Kb 
downstream from the ERBB4 promoter region and potentially merges two Hi-C 
TADs in an allele-specific way. This change occurs in cancer cells but not in normal 
cells. We tested this hypothesis through CRISPR editing, by excising an 86bp 
sequence that contains the CTCF binding sites at the boundary of the two Hi-C TADs 
from the wild-type allele in T47D cells. This excision confirmed the elevated 
ERBB4 expression upon CRISPR deletion (as measured by PCR). 

Leveraging ENCODE networks to prioritize key regulators 
Building on the extended gene annotation, we constructed detailed regulatory 
networks. Specifically, we incorporated both distal and proximal networks by 
linking TFs to genes. This was accomplished either directly by TF-promoter binding 
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or indirectly via TF-enhancer-gene interactions in each cell type (see suppl. sect. 
xxx). We then pruned the full network to the strongest interactions using a signal 
shape algorithm which keeps the strongest peaks by weighting their occurrence by 
the general TF binding profiles (see suppl. sect. xxx). In addition, we reconciled our 
cell-type specific networks to form a generalized pan-cancer network. Similarly, we 
also defined an RNA-binding protein (RBP) network from eCLIP experiments. 
Compared to others, our ENCODE TF and RBP networks can capture more 
literature-supported regulations and correlate better with knockdown experiments 
(see suppl. sect. xxx). 
 
We analyzed the overall regulatory network by systematically arranging it into a 
hierarchy (Fig. 3A). Here, regulators are placed at different levels such that those in 
the middle tend to regulate regulators below them and, in turn, are more regulated 
by regulators above them3 (suppl. sect. xxx). In this hierarchy, we found that the top-
layer TFs are not only enriched in cancer-associated genes (P=xxx, Fisher’s exact 
test) but also more significantly drive differential expression in model cell types 
(P=xxx, one sided Wilcoxon Test). These networks also enable investigation of the 
connections between TFs and RBPs. Interestingly, we found that there are less top-
level TF-RBP interactions, as compared to middle and bottom level ones. 
 
Our networks also enable gene-expression analyses in tumor samples. We used a 
regression-based approach to systematically search for the TFs and RBPs that most 
strongly drive tumor-normal differential gene expression (suppl. Sect. xxx). For each 
patient, we tested the degree to which a regulator’s activity correlates with its target’s 
tumor-to-normal expression changes. We then calculated the percentage of patients 
with these relationships in each cancer type, and present the overall trends for key 
TFs and RBPs in Fig. 3A. 
 
As expected, we found that the target genes of MYC are significantly up-regulated 
in numerous cancer types, consistent with its well-known role as an oncogenic TF4,5. 
We further validated MYC's regulatory effects using knockdown experiments in 
breast cancer (Fig. 3). Consistent with our predictions, the expression of MYC 
targets is significantly reduced after MYC knockdown in MCF-7 (Fig. 3B). We 
analyzed the RBP network in a manner that was similar to the TF network, and found 
key regulators associated with cancer (see suppl.). For example, the ENCODE 
eCLIP profile for the RBP SUB1 has peaks enriched on the 3'UTR regions of genes, 
and the predicted targets of SUB1 were significantly up-regulated in many cancer 
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types (Fig. 3D). As an RBP, SUB1 has not previously been associated with cancer, 
so we sought to validate its role. Knocking down SUB1 in HepG2 cells significantly 
down-regulated its targets (Fig. 3D), and the decay rate of SUB1 targets is lower 
than those of non-targets (see suppl.). Moreover, we found that up-regulation of 
SUB1 targets may lead to decreased patient survival in some cancer types (Fig. 3D). 
 
We then used the regulatory network to investigate how these prioritized key 
regulators interact with other genes. For TFs, we first looked at how MYC's target 
genes are co-regulated by a second TF.  These three-way co-regulatory relationships 
are shown in Fig. 3C. We found that the most common pattern is the well-understood 
feed-forward loop (FFL). In this case, MYC regulates both another TF and a 
common target of both MYC and that TF (Fig. 3C). Since MYC amplification has 
been discovered in many cancers, understanding which TFs appear to further 
amplify its effects may yield insights for efforts aimed at MYC inhibition5. Most of 
the FFLs involve well-known MYC partners such as MAX and MXL1. However, 
we also discovered many involving NRF1. Upon further examination, we found that 
that the MYC-NRF1 FFL relationships were mostly coherent, i.e., "amplifying" in 
nature (Fig. 3C ii). We further studied these FFLs by organizing them into logic gates, 
in which two TFs act as inputs and the target gene expression represents the output6 
(see suppl.). We found that most of these gates follow either an OR or MYC-always-
dominant logic gate. 
 
Similarly, with respect to RBPs, we found that the top co-regulatory partner of SUB1 
is MYC (SUB1 is a direct target of MYC in many cell types, see suppl. sect.). SUB1 
and MYC together form many FFLs in the regulatory network. We hypothesized that 
MYC can bind to the promoter regions of key oncogenes to initiate their 
transcription, whereas SUB1 binds to 3UTRs to stabilize oncogenes at the level of 
RNA transcripts. Such collaboration between MYC and SUB1 results in 
overexpression of several key oncogenes and leads to proliferation of cancer cells 
(see suppl. sect. xxx). To validate this hypothesis, we knocked down MYC and 
SUB1 separately in HepG2 and used qPCR to quantify changes in gene expression. 
As expected, the expression of oncogenes (such as MCM7, BIRC5, and ATAD3A) 
is significantly reduced (Fig. 3E). 

Cell-type specific regulatory networks highlight extensive rewiring 
events during oncogenesis 
For data-rich cell types with numerous TF ChIP-seq experiments, we built cell-type 
specific regulatory networks. These networks enable direct comparisons of network 
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rewiring during oncogenesis. To achieve the best pairing given the existing data, we 
constructed a "composite normal" by reconciling multiple related normal cell types 
(see suppl.). Although the pairings are only approximate, many of them have been 
widely used in prior studies (see suppl.). Furthermore, they leverage the extensive 
functional characterization assays in ENCODE to provide us with a unique 
opportunity to study regulatory alterations in cancer on a large scale for the first time. 
In particular, we measured the signed fractional number of edges changes for 
"tumor-normal pairs” (which we call the "rewiring index"), to study how TF targets 
change in the oncogenic transformation. In Fig. 4A, we ranked TFs according to this 
index. In leukemia, well-known oncogenes (such as MYC and NRF1) were among 
the top edge gainers, while the well-known tumor suppressor IKZF1 is the most 
significant edge loser (Fig. 5A). Mutations in IKZF1 serve as a hallmark of various 
forms of high-risk leukemia7,8. We observed a similar rewiring trend using distal, 
proximal, and combined networks (details in suppl.). This trend was also consistent 
across a number of cancers: highly rewired TFs such as BHLHE40, JUND, and 
MYC behaved similarly in lung, liver, and breast cancers (Fig. 5). 
 
In addition to direct TF-to-gene connections, we also measured rewiring using a 
more complex gene-community model. Here, the targets within the regulatory 
network were characterized in terms of heterogeneous modules from multiple genes 
(so called "gene communities" ). Instead of directly measuring the changes in a TF's 
targets between tumor and normal cells, we determined the changes in its gene 
communities via a mixed-membership model (see suppl.). Similar patterns to direct 
rewiring were observed using this model (Fig. 5A). 
 
We organized the cell-type specific networks into hierarchies, as shown in Fig. 5B. 
Specifically, in blood cancer, the more mutationally burdened TFs sit at the bottom 
of the hierarchies, whereas the TFs more associated with driving cancer gene 
expression changes tend to be at the top. In addtion, we found  that the strongest 
edge gainers and edge losers in rewiring events often sit at the top level of the 
network hierarchies. 
 
We found that the majority of rewiring events were associated with noticeable gene-
expression and chromatin-status changes, but not necessarily with mutation-induced 
motif loss or gain events (Fig. 5A). For example, JUND is a top gainer in K562. The 
majority of its gained targets in tumor cells demonstrate higher levels of gene 
expression, stronger active and weaker repressive histone modification mark signals, 
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yet few of its binding sites are mutated. This is consistent with previous work that 
indicates most non-coding risk variants are not well-explained by a mutational [LU4] 

model9. With a few notable exceptions (see suppl.), we found a similar trend for the 
rewiring events associated with JUND in liver cancer and, largely, for other factors 
in a variety of cancers. 

Stemness measurement during oncogenic transformation 
through regulatory networks 
A prevailing decades-old paradigm has held that at least a subpopulation of tumor 
cells has the ability to self-renew, differentiate, and regenerate in a manner similar 
to that in stem cells. One of the strengths of ENCODE is its many stem cell lines, 
including the H1 stem cell, which is one of the most data-rich cell types. We  
leveraged the large number of stem cells in ENCODE and the additional data 
available with this ENCODE release, to place tumor-associated cell types relative to 
normal cells and stem cells in cell space. We projected the RNA-seq data by 
Reference Component Analysis (RCA, \cite{nat rca paper}) to cluster various cell 
types according to the similarity of their transcriptomes. We found that various types 
of stem cells, including data-rich H1 cells, form a tight cluster (blue in Fig. 5A).  As 
is observed from Fig. 5, there is potentially a trend where the transition from normal 
to tumor cells is moving toward a stem cell. This is true for a variety of different 
cancers. This observation is consistent with previous efforts using expression and 
methylation analysis. Interestingly, we observed a consistent (or even stronger) 
pattern from the proximal and distal chromatin data, which can be viewed as the 
underlying cause of the observed gene expression changes. 
It is also well-known that dysregulation of key oncogene TFs are hallmarks of tumor 
progression. Key genes, such as MYC, initiate overexpression of other oncogenes in 
tumor cells. To test the hypothesis that oncogenic TFs contribute to the state of cell 
differentiation, we measured the perturbations introduced by oncogenic TFs through 
expression comparisons before and after TF knockdowns. Interestingly, the overall 
expression profiles reverted slightly back towards normal state upon oncogene 
knockdowns. 

Step-wise prioritization scheme and result validations 
Collectively, we propose a step-wise prioritization scheme that allows us to pinpoint 
key regulator genes, noncoding elements, and single nucleotides associated with 
oncogenesis, as schematized in Fig. 6A. Specifically, we first highlighted regulators 
that are either frequently rewired, or located in network hubs, or sit at the top of the 
hierarchy, or significantly drive expression changes in cancer. We then prioritized 
functional elements associated with these regulators that are either highly mutated in 
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Reference Component Analysis (RCA, \cite{nat rca paper}) 
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tumors, or undergo large changes in expression or regulation. Finally, on a nucleotide 
level, by estimating their ability to disrupt or introduce specific binding sites, we 
pinpoint impactful genomic variants at a fine scale. 

 
To demonstrate the utility of our ENCODE resource, we instantiated our 
prioritization workflow in a few select cancers and experimentally validated the 
results. In particular, as described above, we subjected some key regulators, such as 
MYC and SUB1, to knockdown experiments to validate their regulatory effects (Fig. 
3B and 3D). We highlighted large scale structural variations that potentially disrupt 
oncogene insulation and validated their effects through CRISPR engineered 
deletions (Fig. 2E). Finally, we selected key SNVs based on their disruption of 
enhancers with strong influence on gene expression. These SNVs were prioritized 
based on mutation recurrence in breast-cancer cohorts, as well as enhancer motif 
disruption scores. [LU12] Of the eight motif-disrupting SNVs that we tested, six 
exhibited consistent up- or down-regulation relative to the wild-type in multiple 
biological replicates. 
 
One particularly interesting example, illustrating the value of ENCODE data 
integration, is in an intronic region of CDH26 in chromosome 20 (Fig. 6C). The 
signal shapes for both histone modification and chromatin accessibility (DNase-seq) 
data indicate its active regulatory role as an enhancer in MCF-7. This was further 
confirmed by STARR-seq (Fig. 6C). Hi-C and ChIA-PET linkages indicated that the 
region is within a topologically associated domain (i.e., a “TAD”) and validated a 
regulatory connection to the breast-cancer-associated gene SYCP2. We further 
observed strong binding of many TFs in this region in MCF-7. Motif analysis 
predicts that a common mutation in breast cancer affects this region, and 
significantly disrupts the local binding affinity of several TFs, such as FOSL2 (Fig. 
6C). Luciferase assays demonstrated that this mutation introduces a 3.6-fold 
reduction in expression relative to the wild-type, indicating a strong repressive effect 
on enhancer functionality. 

Conclusion 
This resource underlines the importance of deep data integration over many novel 
assays to understanding cancer genomes. A compact annotation with extended gene 
definitions can benefit various analyses in cancer. The value of our resource can go 
far beyond noncoding variant interpretation, to allow exploration  ofgenome-wide 
gene dysregulations, epigenetic remodeling, network perturbations, and cell state 
transitions. These are also keys aspects of genome interpretation that are tightly 
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associated with oncogenesis. The successful validation of our prioritized regulator 
genes, noncoding elements, and SNVs demonstrates the value of our resource. 
 
A key caveat related to our resource concerns network rewiring in cell-type specific 
networks. The utility of these networks in cancer is based on associating them to 
various cancer types and then pairing a specific cancer network with a composite 
normal. Both pairings are approximate. Moreover, cancer is well-knowns for its 
heterogeneity. Tumor cells from a given patient usually show distinct molecular, 
morphological, and genetic profiles. Linking cancer to one specific cell-type may 
not fully capture the heterogeneity seen in cancer. To place this limitation in context, 
it can even be challenging to obtain a representative match between tumor and 
normal tissues taken from a single patient. Further technological advances, such as 
single cell sequencing, may help to provide more biological insights at a higher 
resolution. Nevertheless, we feel that our networks currently provide the best 
available view of the regulatory changes in oncogenesis since no other system 
currently has data at this scale. 
 
In general, our study underscores the value of large-scale data integration, and we 
note that expanding the scale of our approach in a number of dimensions is 
straightforward. For example, we successfully formed compact annotations and 
regulatory networks for model systems already replete with advanced functional 
assays like eCLIP and STARR-seq; our methods can be readily extended to further 
model systems when they are similarly assayed in the future. Given the rewiring 
formalism presented here, it should be straightforward to expand the analysis to 
greater numbers of TFs. (In fact, the re-wiring formalism provides a way of selecting 
candidate key TFs and cell types.) We anticipate that this will provide a clearer and 
more accurate picture of the spectrum of regulators that are affected by extensive 
chromatin changes, and thus help prioritize research efforts in cancer. 
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epigenetic changes and large genomic variants (eg SVs) in cancer cells. Third, the 
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It allows us to prioritize key regulators, non-coding elements and variants in relation 
to cancer. These prioritized elements are burdened by germline and somatic 
mutations, sit at central positions in the regulatory network, or to be associated with 
large epigenetic or expression changes. We find that this prioritization uncovers 



interesting interactions between the well-known oncogene TF MYC and the RNA 
binding protein (RBP) SUB1 that had not been known before. Finally, it shows how 
the overall chromatin and epigenetics in a cell changes, moving the cell into a more 
stem-like state. [[more? todisc]] 
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accessibility, histone modifications, methylation, Hi-C, and expression profiles. In contrast to methods that use data 
from unmatched cell types, our approach automatically selects the most relevant features, thereby providing 
considerable improvements in BMR estimation ( 
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2A). For example, using matched replication timing data in multiple cancer types significantly outperforms an 
approach in which one restricts the analysis to replication timing data from the unmatched HeLa-S3 cell line. 
Moreover, combining many different genomic features significantly improves the estimation accuracy (Fig. 2B). The 
weightings of the features in the model are consistent with our expectations: for instance, for breast cancer, we 
observed elevated mutation rates in regions with the repressive mark H3K9me3 and a reduced mutation rate in 
regions with the activating, enhancer-associated mark H3K27ac12-14. Also, due to the correlated nature of genomic 
features across cell types, even approximate matching of a specific cancer type to a particular ENCODE cell line can 
still improve BMR estimation (see suppl.). Hence, our analyses may easily be extended to many cancer types. 
  
As illustrated in Fig 1, our work takes advantage of the breadth and depth of the 
ENCODE data.  First, the somatic mutation process can be influenced by numerous 
confounders. [[connection]] ENCODE contains more than 2,000 distinct types of 
epigenetic and replication timing data sets. Aggregating these together in a simple 
model, one can predict background mutation rates (BMRs) for often highly 



heterogeneous tumors more accurately than a smaller number of features. As seen in 
Fig. 1, BMR estimation accuracy even continues to improve after even 15 or 20 
features are added. Conversely, one can aggregate across assays within a particular 
cell type to uncover the mutational mechanisms underlying SVs. For instance, once 
can aggregate the histone markers across structural variants released by ENCODE, 
which are called by integrating various types of assays (see. Suppl. 
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[[merge orig + JZ w/ dict]] 
Figure 1 illustrates two key dimensions of the overall ENCODE set in relation to 
cancer. First, it's breadth across cell types and, second, it's depth across assays. 
Simple integration over the many different cell types, or many different assays in 
relation to variance can provide insights. First of all, one of the key problems in 
cancer is developing a somatic background mutation rate estimation, which is 
useful for burden calculations, as we'll see below.  People have suggested a number 
of regression approaches integrating features such as negative [inaudible 00:01:02] 
aggression references. Here we show that one can improve on these estimates by 
using the wealth of the ENCODE, by using these regression approaches with a 
large marginal number of ENCODE data sets. For instance, the number of 
ENCODE data sets, epigenetic data sets, for estimating background mutation rate 
is more than a factor of 10 greater than any previously published integration, with 
more than 2000, including many of them associated with replication timing, which 
is thought to be mechanistically the single best predictor of mutation rate. We show 
in figure 1 that simple integration of these data sets progressively gets more 
accurate estimations, in that one gets a better estimate with more and more data 
sets than just a few. This may have to do with the heterogeneity of tumors and the 
way one cannot find an ideal perfect match for most cancers. One can also 
integrate across the many different assays, and one particularly interesting thing is 
to look at the many different patterns of epigenetic marks related to structural 
variance. People have previously observed these patterns with relation to germline 
variance, but using some of the ENCODE called structural variance from Hi-C and 
other events assays one can actually see the patterns of epigenetic variance around 
somatic variance. Here we see distinct pattern of an enrichment of a number of 
well-known activating marks around structure variance, which is distinctly 
different from what is observed for germline variance. 
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, a comprehensive set of annotations (usually covering as many base pairs as possible) is considered to be 
optimal. However, testing every possible nucleotide in the genome greatly reduces the statistical power for 
variant recurrence detection (see suppl.). Here, we aim to increase  
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power of burden tests by creating a focused, compact annotation for a given cell type. 
First, for a single burden test on an individual genomic element (e.g., an enhancer), focusing on a smaller, 
"core" region, enriched for true functional impact, significantly improves detectability (see suppl.). 
Hence, we trimmed the conventional annotations to key "functional territories" by using the well-known 
small territories of TF-binding sites and the shapes of various genomic signals (e.g., the well-known 
double-hump of H3K27ac around enhancers, see suppl.). 
Second, repeated burden tests on a large number of elements would be subject to a large multiple-testing 
penalty. Thus, we tried to restrict our annotation set to a minimum number of high-confidence elements. 
With a particular focus on enhancers, we started by searching for 
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supported by multiple lines of evidence in the data-rich top-tier cell types. We developed a machine-learning 
algorithm to combine DNase-seq experiments and a battery of up to 10 histone modification marks to 
predict enhancers (see suppl.). Using a second algorithm, we then combined these predictions with our 
processing of the STARR-seq experiments (see suppl.). These experiments provide a direct, albeit noisy, 
readout of enhancer activity in specific cell types. Such an "ensemble" approach  
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us to define a minimal list of enhancers with as few false-positives as possible. We also reconciled and 
cross-referenced our "compact annotation" with the main encyclopedia annotations (see suppl.). 
To increase statistical power, a final part of our "compact" annotation entails linking non-coding regulatory elements 
to protein-coding exons to form an extended gene region as a single test unit. Such a unified annotation enables 
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Traditional methods for linking rely solely on the correlation of individual signals (e.g., between the activity of one 
histone mark at an enhancer and gene expression of neighboring genes), and these may result in inaccurate extended 
gene definitions. Here, we use direct experimental evidence on physical interactions from Hi-C and ChIA-PET 
experiments, combined with a machine learning algorithm that takes into consideration the wide variety of histone 
modification marks and gene expression to delineate accurate enhancer-target gene linkages. 
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We also utilized the depth of the ENCODE data to provide compact and accurate 
annotations with superior properties relative to other annotations (see suppl. 
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[[why compact]] For example, we explored the full catalogue of ENCODE eCLIP 
experiments to systematically define the post-transcription regulome with noticeably 
improved resolution and precision over previous efforts (see suppl. 
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Additionally, in several well-known cancer cell types, we developed an algorithm 
to incorporate a large battery of histone marks with chromatin accessibility data for 
better enhancer predictions. We the further combined STARR-seq data, which 
directly measures the genome-wide enhancer activities, to accurately define core 
enhancers. We then incorporated Hi-C and ChIA-PET data to make accurate 
enhancer-gene linkage predictions. 
  
Much current knowledge of disease has been derived by focusing on protein-
coding regions. To broaden the scope of elements studied, we also linked our 
above noncoding annotations to genes in order create a gene-centric annotation 
(which we call the extended gene). Our extended gene annotation includes both 
proximal and distal, transcriptional and post-transcriptional level annotations (Fig. 
2A). 
First, our extended gene definitions include many tissue-specific proximal and distal 
noncoding regulatory elements that are useful for interpreting cancer-associated 
GWAS variants.  
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GWAS variants.  
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genes and so one can see a much clearer enrichment, for instance, for the known 
cancer associated extended genes than extended genes in general, which is quite 
satisfying.] 
Second, we used the extended gene annotations as a single test unit for recurrence 
analysis, rather than testing all regions separately. Such a unified scheme enables 
joint evaluation of the mutational signals  
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distributed yet biologically connected genomic regions. Fig. 2B illustrates the larger 
number of known cancer-related genes detected in several cancer cohorts, relative 
to those derived from the coding regions or promoter sites. For instance, in the 
context of chronic lymphocytic leukemia (CLL), our joint detection approach 
identified well-known highly mutated genes (such as TP53 and ATM) \{cite}. More 
importantly, this joint detection approach allowed us to detect genes that would 
otherwise be missed by exclusively focusing on coding regions. As an example, we 



identified the well-known cancer gene BCL6, which may be associated with patient 
survival (Fig. 2B and refs. 1-3). 
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By integrating our compact annotation sets, BMR estimates, and accurate extended gene definitions, we were able to 
obtain maximal power for detecting genomic regions (coding and non-coding) that are mutationally burdened. Fig. 
2D illustrates the greater power in detecting mutationally burdened non-coding regions in several well-known cancer 
cohorts. For example, in the context of chronic lymphocytic leukemia (CLL), our analyses identified well-known 
highly mutated genes (such as TP53 and ATM) that have been reported from previous analyses23,24. 
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looping and the TAZ structure. Moving in the cancer associated with one gene to 
another and this in turn activates the first gene. This enhancer flipping [inaudible 
00:00:50] structure variation has been remarked on before as a mechanism for 
disregulation in cancer, reference YYY.) 
Finally, we found an example of how an SV introduced extended gene change that 
may lead  
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is a well-known oncogene in many cancer types \{cite}.  
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and links a distal enhancer to the ERBB4 promoter in T47D 
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 (xxx color track from 4C experiment). We therefore hypothesized that this 
heterozygous deletion disrupts the insulation of ERBB4 from distal regions, thereby 
activating its allele-specific expression. 
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 Our results suggest that ERBB4 activation in T47D may at least in part be due to 
the 130 kb deletion that disrupts its insulation. 
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As is obvious from Figure XXX, there's potentially a nice linear relationship where 
one transitions from the normal to the cancer en route to a stem cell. This is true for 
a variety of different cancers. To some degree this fact has been remarked on before, 
but what's most interesting is it can not only be seen from RNA, from gene 
expression data, but it can be seen more strongly in terms of the underlying cause, 
the proximal and distal chromatin data. In fact looking at the chromatin 1, can even 
look at the rewiring. We projected the xxx 
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[[is the connection stronger? how to do transition - to think about  {{I guess we 
should string}}]] Related to this: We next tested whether the gain or loss events 
from normal-to-tumor transitions result in a network that is more or less similar to 
that in stem cells like H1-hESC. Interestingly, in blood cancer, the gainer TF group 
tends to "rewire away" from the stem cell's regulatory network, while the loser 
group is more likely to rewire in such a way that it becomes more stem-like. 
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pinpoints deleterious features associated with oncogenesis 
Summarizing the above, our companion resource consists of 
annotations of (1) overall somatic  
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germline mutational burden scores; (2) accurate and compactly 
defined regulatory elements by integrating various novel functional 
assays, including eCLIP and STARR-seq; (3) enhancer-target-gene 
linkages and extended gene neighborhoods that are obtained by 
integrating Hi-C and multi-histone-mark experiments; (4) tumor-



normal differential expression, chromatin, and 3D structural changes; 
(5) TF regulatory networks, both merged and cell-type specific, based 
on both distal and proximal regulation; (6) an analogous but less-
developed network for RBPs; (7) attributes of TF/RBPs derived from 
network analysis, such as position in the network hierarchy, 
regulatory potential, and rewiring status. [[todisc & rewrite - 
concensus is to shrink & maybe merge w next ]] All the resources 
mentioned above are available online through the ENCODE website 
as simple flat files and computer codes (see suppl.). 
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these resources allowed us to prioritize key genomic features associated with 
oncogenesis at regulator, element[LU7] , and nucleotide levels. Our 
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Small-scale validation experiments on prioritized regulators and 
[LU10] elements 
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[[more of the caveats of the referees?? single cell in heterog. make it clear there are 
other aspects of cancer rather than driver detection, can use encode annotation, 
other part of the mutation; put somthing more than noncoding, even all drivers are 
in genes, still there are alot going on in noncoding genomes and can be disc by 
encode  ]] 
  

 
 [LU1]Reconciled is fine. Merged or unified could also work as synonyms. 
 [LU2]Should this be in quotes? Are we coining this expression? 
 [LU3]Not sure about use of quotes here. Would use quotes with first mention if we 
are inventing/coining the expression, but not subsequently. ‘Gene-community 
model’ has already been mentioned. 
 [LU4]Is this correct? Not sure what ‘the current model’ refers to. 
I'm not really sure there is such a linear axis between normal cells and stem cells as 
we are implying, 
 [LU6]Upon reflection, this is probably not a big deal. However, it’s also not obvious 
that ‘reversion’ is the process occurring here. 
 [LU7]Aren’t regulators elements too? 
 [LU8]Either/or, neither/nor. 
 [LU9]I think formally we may need an ‘or’ between each possibility being 
correlated, but it does make the sentence a bit choppy… 
  
Could keep or reject these additions of ‘or’ in this paragraph. 
  
Same for ‘either’. Formally, I believe they may be required. Not sure we want to be 
so formal. 
 [LU10]Again, aren’t regulators a kind of element? 
 [LU11]‘Larger’ implies a comparison. 
 [LU12]Is this rewording correct? 
 [LU13]Do not believe this should be in quotations. 
 [LU14]I’m not sure this is really what we want to say… But in the original discuss it 
is not clear why we were discussing the heterogeneity of cancer. The reviewer also 
asked us to discuss 
 [LU15]Given the broad scope of the paper, not sure about the relatively narrow scope 
of these last two sentences, that focus on TFs and chromatin. 
 

 


