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Abstract  
Multiple mutational processes fuel carcinogenesis. These processes leave 

characteristic signatures in cancer genomes. Deciphering the signatures of 

mutational processes operative in cancer can help elucidate the mechanisms 

underlying cancer initiation and development. This process involves decompose 

cancer mutations by nucleotide context into a linear combination of mutational 

signatures. We formulated the task as a likelihood based optimization problem 

with L1 regularization and developed a software tool, LIBRA. First, by explicitly 

formulating multinomial sampling into the likelihood function and jointly optimizing 

the sampling likelihood and the signature fitting, LIBRA is aware of the sampling 

uncertainty. Simultaneously learning the auxiliary sampling process and learning 

fitting allows knowledge transfer and improves performance. It is especially 

pivotal in high sampling variance settings, for example, when we only observe 

low mutation counts in whole exome sequencing (WES). Moreover, LIBRA uses 

L1 regularization to parsimoniously assign signatures to mutation profiles, 

leading to sparse and more biologically interpretable solutions. Additionally, 

LIBRA integrates prior biological knowledge harmoniously by fine-tuning 

penalties on coefficients. Compared with hard thresholding signatures, our 

method leaves leeway for noise and rare signatures. Last, the model complexity 

is informed by the size and complexity of the data through empirical 

parameterizing based on performance  

 

Introduction 
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Mutagenesis is a fundamental process underlying cancer development. 

Examples include spontaneous deamination of cytosines, the formation of 

pyrimidine dimers by ultraviolet (UV) light, and the crosslinking of guanines by 

alkylating agents [REF]. Multiple endogenous and exogenous mutational 

processes drive cancer mutagenesis and leave distinct fingerprints [REF]. 

Notably, these processes have characteristic mutational nucleotide context 

biases. Mutation profiling of cancer samples at manifestation has revealed that 

mutations accumulate over a lifetime; this includes somatic alterations that occur 

both before cancer initiation and during cancer development. In a generative 

model, multiple latent processes generate mutations over time, drawing from 

their corresponding nucleotide context distributions (“mutation signature”). In 

cancer samples, mutations from various mutational processes are mixed and 

observable by sequencing.  

 

By applying unsupervised methods such as non-negative matrix factorization 

(NMF) and clustering to large-scale cancer studies, researchers have identified 

at least 30 mutational processes [REF]. Many processes have been recognized 

and linked with known etiologies, such as aging, smoking, or ApoBEC activity. 

Investigating the fundamental processes underlying mutagenesis can help 

elucidate cancer initiation and development.  

 

One major task in cancer research is to leverage signature studies on large-scale 

cancer cohorts and efficiently attribute active signatures to new cancer samples 

[REF]. Although we do not fully know the latent mutational processes in cancer 

samples, we can make reasonable and logical assumptions about the solutions 

of such studies. Here, we aimed to design a computational framework that could 

meet these expectations. For example, we believe a solution should be sparse 

as past studies indicate that not all signatures can be active in a single sample or 

even a given cancer type. An apparent example is, we should not observe UV-

associated signatures in tissues that are not exposed to UV. Likewise, we only 

expect to observe activation-induced cytidine deaminase (AID) mutational 



processes, which are biologically involved in antibody diversification, in B cell 

lymphomas. We also prefer a sparser solution as it explains an observation in a 

simpler fashion, consistent with Occam’s principle. 

 

Previously published methods use forward selection with a post hoc empirical 

pruning to achieve sparsity or iterate all combinations by brute force (REF) with a 

pre-fixed, small number of signatures. Other approaches use linear programming 

(REF), which is not efficient in optimization. None of the approaches explicitly 

formulates the multinomial sampling process into the model.  Here, we 

formulated the task as a likelihood based/joint? optimization problem with L1 

regularization. First, by jointly fitting signatures with a multinomial sampling 

process, LIBRA is aware of the sampling uncertainty. Cooperatively fitting a 

linear mixture and maximizing the sampling likelihood enables knowledge 

transferring and improves the performance (analogy: multi-task learning? Are we 

learning an auxiliary task here?). This property is especially critical in high 

sampling variance settings, for example, when we only observe low mutation 

counts in whole exome sequencing (WES). Second, LIBRA penalizes the model 

complexity by regularization. The most straightforward way to do this would be to 

use the L0 norm (cardinality of active signatures), but this approach cannot be 

effectively optimized. Conversely, using the L2 norm flattened out at small values 

leads to many tiny, non-zero coefficients, which are hard to interpret biologically. 

LIBRA uses L1 norm, which promotes sparsity. Meanwhile, L1 norm is a convex 

map, thus allows efficient optimization. Additionally, this approach is able to 

harmoniously integrate prior biological knowledge into the solution by fine-tuning 

penalties on the coefficients. Compared with the current approach of hardly 

subsetting signatures before fitting, our soft thresholding method leaves leeway 

for noise and unidentified signatures. Finally, LIBRA is aware of data complexity 

such as mutational number and patterns in the observation. Our method is 

automatically parameterized empirically on performance, allowing data 

complexity to inform model complexity. Our approach promotes result 

reproducibility and fair comparison of datasets. 



 

 

Material and Methods 
Signature identification problem 
Mutational processes leave mutations in the genome with distinct nucleotide 

contexts. Specifically, we considered the mutant nucleotide context and looked 

one nucleotide ahead and behind. This divides mutations into 96 trinucleotide 

contexts. Each mutational process carries a unique signature, which is 

represented by a mutational trinucleotide context distribution (Fig. 1A). 

Thirty signatures were identified by NMF (with Frobenius norm penalty) and 

clustering from large-scale pan-cancer analysis (REF). Here, our objective was to 

leverage the pan-cancer analysis and decompose mutations from new samples 

into a linear combination of signatures. Mathematically, the problem is formulated 

as the following non-negative regression problem. It maintains the original 

Frobenius norm: 

 𝑊 = argmin
!∈!!

𝑀 − 𝑆𝑊 !
!  

The mutation matrix, M, contains mutations of each sample cataloged into 96 

trinucleotide contexts. mi (i = 1…n) \in M  denotes the mutation count of the ith 

category. S is a 96×30 signature matrix, containing the mutation probability in 96 

trinucleotide contexts of the 30 signatures. W is the weights matrix, representing 

the contributions of 30 signatures in each sample. 

Sampling variance  

In practice, this problem is optimized on R+ instead of integers for efficiency and 

simplicity (REF), ignoring the discrete nature of mutation counts. This approach 

essentially transforms observed mutations into a multinomial probability 

distribution, making model insensitive to the total mutation count. Yet the total 

mutation count plays a critical role in inference. Assuming mutations are drawn 

from an underlying probability distribution (which is the mixture of several 

mutational signatures), the mutations follow a multinomial distribution. The total 



mutation count is the sample size of the distribution, thus affecting the variance 

of the inferred distribution. 

For instance, 20 mutations of 96 categories give us very little confidence in 

inferring the underlying mutation distribution. If we observed 2,000 mutations, we 

would have much higher confidence. Methods undiscriminating these two 

scenarios are clearly defective. Here, we aim to use a likelihood-based approach 

to acknowledge the sampling variance and design a tool sensitive to the total 

mutation count. 

 
LIBRA model [[I still need to fix the notations…I compiled the LaTeX and 
pasted here as figures. Also now this a mixture of word/LaTeX]] 
We break data generation process into two parts: first, multiple mutational 

signatures mix together to form an underlying mutation distribution. Second, we 

observe a set of categorical data (mutations), which is a realization of the 

underlying mutation distribution. We use mi (i = 1…n) to denote the mutation 

count of the ith category. 𝑝 is the underlying mutation probability distribution with 

mj denote the probability of the jth category. 

𝐿 = 𝑃 𝑚 𝑆𝑊 = 𝑃 𝑚 𝑝 𝑃 𝑝 𝑆𝑊  

To promote sparsity and interpretability of the solution, LIBRA uses adds an L1 

norm regularizer on the weights (i.e., coefficients) of the signatures. LASSO is 

mathematically justified and can be computationally efficiently solved (REF). The 

log-likelihood looks like: 

 

	  

 
Here, α = 1/σ2. We can infer α from the residual errors from linear regression. 𝜆 

is parameterized empirically (see below). 𝑐  is a vector of 30 penalty weights 

(c_1, c_2, …, c_k), each indicating whether a certain signature should be fully 
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penalized (i.e., 1), partially penalized (e.g., 0.5), or not penalized (i.e., 0). This 

value should be tuned to reflect the level of confidence in prior knowledge. We 

also use 𝑐   to perform adaptive LASSO (REF) by initialize 𝑐  to 1/βOLS, where 

βOLS are the coefficients from nonnegative ordinary least square.  The aim is to 

get less biased estimator by applying smaller penalties on larger values.  

 

Optimizing LIBRA 
The negative log likelihood is convex in respect to both 𝑝 and 𝑤 when evaluated 

individually. Hence the loss function is biconvex. We optimize the function by 

Alternative Convex Search (ACS), which iteratively updates these two variables.  

 
 

To begin the iteration, we initialize 𝑚 using its maximum likelihood estimator and 

start with the 𝑤 -step. 𝑤 -step is a nonnegative linear LASSO regression that can 

be efficiently solved by glmnet (REF). 𝜆 is parameterized empirically by 

repeatedly splitting the nucleotide contexts into training set and testing set. We 

split the data set into eight subsets.  Each subset contains two of every single 

nucleotide substitutions. We then hold off one subset as the testing dataset and 

only fit the signatures on the remaining ones. After circling all eight subsets and 

repeating the process for twenty times, we used the largest 𝜆 (which leads to a 

sparser solution) that gives the minimum mean square error..  
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Then we use the LASSO error variance estimator to estimate \alpha (REF). We 

solve the with a Lagrange multiplier to maintain the linear summation 

constrain . The nonnegative constrain of p_i is satisfied in only retain a 

nonnegative root of the solution (see Appendix?).  

 

The key step is the 𝑝 –step. In this step, we try to estimate 𝑝 that optimizes the 

multinomial likelihood while constrain it not too far away from the fitted . If we 

only use the point MLE of 𝑝  based on sampling and do not perform the 𝑝 –step, 

the model assumes the sampling is perfect and becomes insensitive to the total 

mutation counts. The trade-off in 𝑝 –step between the multinomial likelihood and 

the L2 loss reflects the sampling error. The sampling size (sum of m_i), the 

goodness of signature fit (as reflected in \alpha) and the overall shapes of  all 

affect the tension between sampling and linear fitting. 

 

Data simulation and model evaluation 
First, we downloaded 30 previously identified signatures 

(http://cancer.sanger.ac.uk/cosmic/signatures, REF). We created a simulated 

dataset by randomly and uniformly drawing two to eight signatures and 

corresponding weights (minimum: 0.02). The addictive Gaussian noise was 

simulated at various levels with a positive normal distribution on 25% 

trinucleotide contexts. Then, we summed all the signatures and noise to form a 

mutation distribution. We sample mutations from this distribution with different 

mutation counts.  

 

We ran deconstructSigs according to the original publication (REF) and LIBRA 

without prior knowledge of the underlying signature. To evaluate the 

performances, we compared the inferred signature distribution with the simulated 

distribution and calculated MSE. We also measured the number of false positive 

and false negative signatures in the solution (support recovery).  



 

Illustrating on real datasets 
To assess the performance of our method on real-world cancer datasets, we 

used somatic mutations from various cancer types from The Cancer Genome 

Atlas (TCGA). We downloaded VCF files from the Genomic Data Commons Data 

Portal (https://portal.gdc.cancer.gov/). A detailed list of files used in this study can 

be found in Appendix X.  

 

We compared the signature composition results with a previous pan-cancer 

signature analysis (http://cancer.sanger.ac.uk/cosmic/signatures, REF). We also 

extracted prior knowledge on active signatures in various cancer types from this 

source. 

 

LIBRA software suite 
LIBRA accepts processed mutational spectrums. We provided simple scripts to 

help parse mutational spectrums from VCF files. LIBRA allows users to specify 

biological priors (i.e., signatures that should be active or inactive), subsampling 

steps, and the subsampling cutoff. LIBRA uses 30 COSMIC signatures by 

default. Users are also given the option to supply customized signature files. 

LIBRA is computationally efficient; using default settings, the program can 

successfully decompose a whole genome sequenced (WGS) cancer sample in a 

few seconds on a regular laptop. For time profiling purpose, we ran LIBRA and 

deconstructSigs on an Intel Xeon E5-2660 (2.60 GHz) CPU. We employed the R 

package “microbenchmark” to profile libra() and whichSignatures() respectively. 

For each setup, we generated ten noiseless simulated data sets and repeated 

100 times for each evaluation. 

 

We have released LIBRA as an R package. The updated code is also available 

on GitHub (https://github.com/ShantaoL/LIBRA ). 
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Results 
LIBRA is aware of the sampling variance 
Jointly optimizing both sampling process and signature fitting, LIBRA is aware of 

the sampling variance and infers an underlying mutational context distribution p. 

The underlying latent distribution is optimized in respect to both sampling 

likelihood and the linear fitting of signatures (Figure 2A). In low mutation counts, 

the uncertainty in sampling increases and thus the estimated underlying 

distribution goes closer the lease square estimate. In contrast, when the total 

mutation counts is high, the estimate of the distribution is closer to the MLE of the 

multinomial sampling process.  

 

We subsampled a real WGS cancer (papillary renal cell carcinoma, TCGA-B9-

A44B, Figure 2B, REF) with various sample sizes. When the sample size is small 

(<100), high uncertainty in sampling pushed the inferred underlying mutational 

distribution p far from the MLE in trade for better signature fitting. When the 

sample size increases, lower variance in sampling dragged p close to sampling 

MLE and forced the signatures to fit with larger error.  

 

Because the linear fitting and sampling likelihood optimization mutually inform 

each other, concurrently learning an auxiliary sampling likelihood improves 

performance. We compared the performances with and without this jointly 

optimization (Figure 2C). While the performance is comparable in high sample 

size cases, low mutation count samples tend to show higher MSE. 

 
 
Performance on simulated datasets 
We first evaluated LIBRA on simulated datasets. Both LIBRA and 

deconstructSigs performed better with higher mutation number and lower noise 

(Figure 3A). Overall, the performances of the two tools are comparable. LIBRA 

achieved lower mean square error (MSE) than deconstructSigs in lower noise 

and more signatures settings.  
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A decrease in mutation number leads to an increase of uncertainty in sampling, 

which is mostly negligible in the high mutation scenarios. As expected, the MSE 

jumped to the 0.05-0.3 range regardless of the noise level when the mutation 

number was low. Thus, the error is dominated by undersampling rather than 

embedded noise.  

 

Using known signature to tune the weights boosts performance (Figure 3B/C). As 

the fraction of true signatures given as prior knowledge increases, the 

performance improves. Then, when more false signatures mixed with true 

signatures given as prior knowledge, the performance slowly deteriorates as 

expected.  

 

Last, we looked at the estimation of the auxiliary distribution of the multinomial 

sampling process.  

[[TO-DO: report the performance of the estimation of p]] 

 

Performance on real datasets 
We next moved from synthetic datasets to real cancer mutational profiles. Real 

cancer mutational profiles are likely noisier than our simulation and exhibit highly 

non-random distribution of signatures.  

One of the limitations of cancer signature research is that the ground truth of real 

samples typically cannot be obtained. Previous large-scale signature studies 

largely relied on mutagen exposure association from patient records and 

biochemistry knowledge on mutagenesis. Here, we illustrated the outputs of 

different models and compared the results with existing signature knowledge. 

Although no gold standard exists to evaluate the performance, we do have a few 

reasonable expectations about the solution:  

1) Sparsity: One or more signature should be active in a given cancer 

sample and type. However, not all signatures should be active. Mutational 

processes are discrete in nature and tied with certain endogenous and 

environmental factors. An obvious example is that the UV signature 
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should not exist in unexposed tissues. Previous signature studies suggest 

a sparse distribution of signatures among cancer samples and types. 

Existing signature identifying methods aim to implicitly achieve sparse 

solutions by forward selection or pre-selection of the signature set for 

fitting.   

2) Cancer type-specific signatures: We expected to find divergent signature 

distributions in different cancer types. Various tissues are exposed to 

diverse mutagens and undergo mutagenesis in dissimilar fashions. 

Signature patterns should be able to distinguish between cancer types. It 

is unrealistic to have the same or similar distribution of signatures in all 

cancer types, as they have divergent endogenous biological features and 

environmental exposures. 

3) Robustness: Solutions should be robust and reproducible. Signatures are 

not orthogonal, thus simple regression might lead to solutions that change 

erratically when a small perturbation is made in the observation. 

Moreover, the solution should reflect the level of ascertainment. Especially 

in whole exome sequencing (WES), low mutation count is often a severe 

obstacle for assigning signatures due to undersampling. Care should be 

taken to avoid overfitting. 

4) Biological interpretability: The solution should be biological interpretable. 

Because of the biological nature of co-linearity in the signatures, simple 

mathematical optimization might pick the wrong signature. Even LASSO 

does not provide a guarantee to pick the correct predictor. Researchers 

now solve this problem by simply removing the majority of predictors they 

believe to be inactive. SigLASSO allows users to supply domain 

knowledge to guide the variable selection in a soft thresholding manner.  

 

These expectations are not quantitative, but they help direct us to recognize the 

most plausible solution as well as the less favorable ones.  

 

WGS scenario using renal cancer datasets 



We benchmarked the two methods using 35 WGS papillary kidney cancer 

samples (Fig. 4, REF). The median mutation count was 4,528 (range: 912-

9,257). We found that without prior knowledge, both LIBRA and deconstructSigs 

showed high contributions from signature 3 and 5. deconstructSigs also assign a 

high proportion signature 8, 9 and 16 .  Signatures 3, 8, 9 and 16 were not found 

to be active in papillary renal cell carcinoma (pRCC) in previous studies and 

currently no biological support rationalizes their existence in pRCC (REF).  

 

However, if we naively “subset” the signatures and take the ones that were found 

to be active in previous studies, the signature profile is completely dominated by 

signature 5, to which only roughly 30-40% mutations are assigned with signature. 

This finding suggests possible underfitting.  

 

When LIBRA took into account the prior knowledge of active signatures, the 

proportion of backbone signature 5 increased to about 75%, which is in line with 

previous reports. SigLASSO also assigned a small portion of mutations to 

signature 3 and 13.  

 

 

 

WES scenario using esophageal carcinoma datasets 
We next aimed to evaluate the two methods on 181 WES esophageal carcinoma 

samples with at least 20 mutations. The median mutation count was 78 (range: 

23-1,001), which is considerably lower than WGS but typical for WES. We did not 

use any prior knowledge because COSMIC does not have active signatures in 

esophageal cancers.  

 

LIBRA assigned roughly 70%-90% mutations with leading signatures 25, 3, 1, 

and 9. DeconstructSigs gave comparable results (Figure 4A). DeconstructSigs 

has been shown to be able to help distinguish between different histological 

types of esophageal cancer (REF). We demonstrated that LIBRA generated very 
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similar result (Figure 4B). The adenocarcinoma subtypes tent to have lower 

fractions of signature 3.  

 

 

Performance on 8,892 TCGA samples 
We ran LIBRA with step-by-step set-ups and deconstructSigs on 8,892 TCGA 

tumors (31 cancer types, Supplemental X) with more than 20 mutations. The 

results are shown in Figure 5.  

 

We noticed that first applying L1 penalty the results became sparser compared to 

a simple regression… 

 

 

 

 

LIBRA is computationally efficient  
LIBRA iteratively solves two convex problems. The w -step can be solved using a 

very efficient coordinate descent algorithm (glmnet). The 𝑝 -step is solving a set 

of quadric equations. We observed empirically the solution quickly converged in 

a few iterations even with extremely low mutation numbers (~10). In contrast, 

deconstructSigs uses binary search to find coefficients by looping through all 

signatures at each iteration.  

 

By profiling LIBRA and deconstructSigs, we noticed total mutation numbers or 

signature numbers does not remarkably affect the running time of LIBRA. In high 

mutation number, LIBRA is roughly 3-4 times faster than deconstructSigs. And 

only in low mutation number (50 mutations), these two tools show comparable 

computation time.  

 

Discussion 
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Studies decomposing cancer mutations into a linear combination of signatures 

have provided invaluable insights into cancer biology (REF). Through inferring 

mutational signatures and latent mutational processes, researchers have gained 

a better understanding of one of the fundamental driving forces of cancer 

initiation and development: mutagenesis.  

 

How to leverage results from large-scale signature studies and apply them to a 

small set of incoming samples is a very practical problem for many researchers. 

Although it might seem to be a simple linear system problem at first, the core 

challenge is how to prevent over- and underfitting on only one single sample, 

often, with very few mutations (especially in WES) and promote sparsity. First, 

under the current generative model, cancer draws mutations from a multinomial 

distribution of all active cancer signatures and then further draw from the 

multinomial nucleotide context distribution given by the signature. Mutations are 

first divided into several signatures and then categorized further into 96 types 

based on the nucleotide composition. With the mutation number less than a few 

hundred, sampling variance becomes a significant factor in reliable signature 

identification. Therefore, the fitting scheme should be aware of the sampling 

variance, which is especially pronounced in low mutation count scenarios (WES 

or cancer types with low mutation burden). A designed tool should be able to 

attribute the signatures by flexibly inferring the underlying true mutation 

distribution given the sampling variance and the signature fitting performance. 

Second, the solution should be sparse. Signature studies on large-scale cancer 

datasets have revealed that mutational signatures are not all active in one 

sample or cancer type. In most tumor cases, only a few signatures prevail. A 

recent signature summary suggested that 2 to 13 known signatures are observed 

in a given cancer type [REF], which might include hundreds and even thousands 

of samples. Sparse solutions are biologically sound and interpretable. In addition, 

sparse solutions are in line with Occam’s razor principle, which prefers the 

simplest solution that explains an observation. Third, a desirable method should 

be aware of data complexity and be parameterized accordingly to achieve the 



optimum fitting. Finally, mutational signatures are not orthogonal due to their 

biological nature. Co-linearity of the signatures will lead to unstable fittings that 

change erratically with even a slight perturbation of the observation.  

 

DeconstructSigs was the first tool to identify signatures even in a single tumor. 

This tool uses forward selection and archives sparsity by a post hoc pruning with 

a preset 6% cut-off. First, DeconstructSigs is insensitive to the total mutation 

counts. The mutation spectrum is normalized before fitting thus makes mutation 

counts irrelevant. Moreover, the overly greedy nature of the stepwise feature 

selection is prone to eliminating valuable predictors in later steps that are 

correlated with previously selected ones (REF LARS). Here, we describe LIBRA, 

which jointly optimized the sampling process and an L1 regularized signature 

fitting. By explicitly formulating a multinomial sampling likelihood into the 

optimization, LIBRA is aware of the sampling variance. Meanwhile, unlike 

deconstructSigs, which paves a forward selection path and fits an unconstrained 

linear model at every step, sigLASSO uses the L1 norm to penalize the 

coefficients, thus promoting sparsity. By fine-tuning the penalizing terms using 

prior biological knowledge, sigLASSO is able to further exploit previous signature 

studies from large cohorts and promote signatures that are believed to be active.  

 

By jointly optimizing a “mutation sampling” process enables LIBRA to be aware 

of the sampling variance. We demonstrated by additionally modeling an auxiliary 

multinomial sampling process and corresponding distribution, LIBRA is able to 

achieve better signature attribution, especially in low mutation counts cases. In 

cancer research, WES data is abundant but it also suffers severely from 

undersampling in signatures attribution. In these cases, LIBRA is able to 

simultaneously learn the linear regression of signatures with a multinomial 

sampling process, generating more reliable and robust solutions. Moreover, we 

believe formulating mutation by a multinomial process can have further 

implications in background mutation rate modeling (REF encodec?).  
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Additionally, as the cost of sequencing drops rapidly, we expect an even greater 

number of cancer samples to be whole-genome sequenced. The vast amount of 

cancer genomics data will give scientists larger power to discern unknown or rare 

signatures. The growing number of signatures will eventually make the signature 

matrix underdetermined (when k>96, i.e., the number of possible mutational 

trinucleotide contexts). A traditional simple solver method would give infinitude 

(noiseless) or unstable (noisy) solutions in this underdetermined linear system. 

However, by assuming the solution is sparse, we were able to apply regulation to 

achieve a simpler, sparser solution (basic pursuit/basic pursuit denoising).  

 

Moreover, LIBRA does not specify a noise level explicitly beforehand, but instead 

empirically tunes parameters based on model performance. This is in contrast to 

deconstructSigs, which specifies a noise level of 0.05 to derive the cut-off of 0.06 

for excluding “noise” signatures. In general, LIBRA lets the data itself control the 

model complexity. 

 

Finally, due to the colinearity nature of signatures, pure mathematical 

optimization might lead algorithms to select wrong signatures that are highly 

correlated with truly active ones. To overcome this problem, LIBRA allows 

researchers to incorporate domain knowledge to guide signature identification. 

This knowledge input could be cancer-type specific signatures or patient clinical 

information (e.g., smoking history or chemotherapy). We showcased the 

performance of LIBRA on real cancer datasets. Although we lack the ground 

truth of the operative mutational signatures in tumors, we have several 

reasonable beliefs about the signature solution. LIBRA produced signature 

solutions that are biologically interpretable, properly align with our current 

knowledge about mutational signatures, and well distinguish cancer types and 

histological subtypes.  

 

 



Due to the highly interdisciplinary nature of cancer signature research, identifying 

signatures in cancer samples is a challenging task. In this work, we introduced 

LIBRA, which exploits constraints in signature identifying and provides a robust 

framework to achieve biologically sound solutions. It jointly optimized a sampling 

process with an L1 regularized signature fitting. Additionally, LIBRA is also able 

to empower researchers to use and integrate their biological knowledge and 

expertise into the model.  

 

Figure 1: a schematic graph showing the mixture model of mutational processes 

and signatures 

 

Figure 2: A) contour plot of the penalty function of multinomial sampling function 

(optimum at p1) and the least square of signature fitting (optimum at p2). LIBRA 

tries to infer p by jointly optimizing both penalties (red contour lines, optimum at p) 

B) As mutation number increases, the inferred p gets closer to the sampling MLE 

rather than the linear fitting as the variance due to sampling is smaller. C) MSE of 

LIBRA and just using the point MLE to fit the signatures. Low mutation counts 

profiles benefit from LIBRA the most. 

 

 

Figure 3: A) Boxplots of MSE on simulated datasets.  Red: LIBRA, grey: 

deconstructSigs. 

B) MSE on simulated datasets, showing tuning the penalty weights using the 

prior knowledge improves performance. Penalty weights used: red, 0.5; yellow, 

0.2; green, 0.1. 

C) Support recovery on simulated datasets, showing tuning the penalty weights 

using the prior knowledge improves performance. Penalty weights used: red, 0.5; 

yellow, 0.2; green, 0.1. 

 

Figure 4:  A) Samples signature assignment for 35 WGS pRCC. Bar plots 

showing the fractions of mutation signature assignment for each sample using 



LIBRA, LIBRA without prior knowledge and deconstructSigs. B) Dot chart 

showing the mean fraction of mutation signatures in each sample. Signatures 

contribute less than 0.05 are not shown here. 

 

 

Figure 5: A) Signature assignment for 182 WES ESCA samples. Bar plots 

showing the fractions of mutation signature assignment for each sample using 

LIBRA and deconstructSigs. B) Dot chart showing the mean fraction of mutation 

signatures in each sample, grouped by two tools and histological subtypes 

(adenocarcinoma/squamous). Signatures contribute less than 0.05 are not 

shown here. 

 

Figure 6: Mean fractions of signatures contribution of each sample in 33 cancer 

types. Only 26 types with previously known signature distribution are shown in 

LIBRA with prior knowledge. 

 

 

Figure 7: A) Running time of LIBRA and deconstructSigs at different total 

mutations numbers. B) Running time of LIBRA at different numbers of signatures 

(downsampled) 

 


