
An integrative ENCODE resource for cancer genomics 
  

Introduction 
The 2012 ENCODE release provided RNA-seq, histone and transcription factor (TF) ChIP-

seq, and DNase-seq over several cell lines to annotate the noncoding regions in the human genome. 
The current release broadens the number of cell types for these assays and considerably expands 
available tissue data. It also greatly increased the depth coverage of assays by adding novel assays, 
such as STARR-seq, Hi-C, and eCLIP. The integration over a massive number of assays provides 
an unparalleled opportunity to develop compact and accurate annotations in a tissue-specific 
manner, which is particularly useful for interpreting genomic variants associated with disease. 
Deep integration over many assays also allows us to connect many of the regulators and non-
coding elements into elaborate networks, including proximal (TF/RBP-gene) and distal ones 
(enhancer-gene or TF-enhancer-gene). 

Hence, focusing on several data-rich ENCODE cell types, we performed deep integration over 
tens of functional assays to deeply characterize the noncoding genome, which may serve as a 
valuable resource for disease studies. Our resource is particularly well suited to studying cancer 
for several reasons. First, many of the most data-rich cell types are associated with cancer cells, 
including cell types from blood, breast, liver, and lung (Fig. 1). Second, the wealth of ENCODE 
data, such as replication, epigenetic, and transcriptional profiles, may be used to inform our 
understanding of cancer mutational processes for both single nucleotide variations (SNV) and 
structural variations (SV). Third, the wealth of ENCODE data can be used to measure epigenetic 
remodeling and cell-state transitions, which are implicated in oncogenesis. Lastly, high-quality 
regulatory networks can be reliably constructed from thousands of experiments to provide a  
systems-level perspective of cancer. One may thus directly measure the perturbations of individual 
regulators and entire networks to better elucidate the biological mechanisms of cancer initiation 
and progression. 

Therefore, we present an integrative ENCODE companion resource for Cancer genomics 
(ENCODEC).  This resource consists of various annotations, networks, and code bundles available 
online. It allows us to prioritize key regulators, non-coding elements and variants in relation to 
cancer. These prioritized elements tend to be burdened with germline and somatic mutations, or to 
sit at central positions in the regulatory network, or to be associated with large epigenetic, 
expression, or distal interaction changes. We find that this prioritization uncovers interesting 
interactions between the well-known oncogene TF MYC and the RNA binding protein (RBP) 
SUB1 that had not been known before. Finally, it shows how the overall chromatin and epigenetics 
in a cell changes, moving the cell into a more stem-like state. 

The breadth and depth of the ENCODE resource 
Our work takes advantage of the breadth and depth of the ENCODE resource and customizes 

it for cancer research.  First, the somatic mutation process can be influenced by numerous 
confounders. ENCODE contains more than 2,000 distinct types of epigenetic and replication 
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timing data sets. Aggregating these together in a simple model, one can predict background 
mutation rates (BMRs) for often highly heterogeneous tumors more accurately than a smaller 
number of features. As seen in Fig. 1, BMR estimation accuracy even continues to improve after 
even 15 or 20 features are added. Conversely, one can aggregate across assays within a particular 
cell type to uncover the mutational mechanisms underlying SVs. For instance, once can aggregate 
the histone markers across structural variants released by ENCODE, which are called by 
integrating various types of assays (see. Suppl. sect. xxx). Interestingly, we found that K562 
breakpoints are associated with H4K20me1, which is an activating histone marker only in K562, 
but not in other cell types.  

We also utilized the depth of the ENCODE data to provide compact and accurate annotations 
with superior properties relative to other annotations (see suppl. sect. xxx). For example, we 
explored the full catalogue of ENCODE eCLIP experiments to systematically define the post-
transcription regulome with noticeably improved resolution and precision over previous efforts 
(see suppl. sect. xxx). Additionally, in several well-known cancer cell types, we developed a match 
filter based algorithm to incorporate a large battery of histone marks with chromatin accessibility 
data for better enhancer predictions. We the further combined STARR-seq data, which directly 
measures the genome-wide enhancer activities, to accurately define core enhancers. We then 
incorporated Hi-C and ChIA-PET data to make accurate enhancer-gene linkage predictions. 

An extended gene annotation and its applications  
Much current knowledge of disease has been derived by focusing on protein-coding regions. 

To broaden the scope of elements studied, we also linked our above noncoding annotations to 
genes in order create a gene-centric annotation (which we call the extended gene). Our extended 
gene annotation includes both proximal and distal, transcriptional and post-transcriptional level 
annotations (Fig. 2A).  

First, our extended gene definitions include many tissue-specific proximal and distal 
noncoding regulatory elements that are useful for interpreting cancer-associated GWAS variants. 
To illustrate this, we calculated the enrichment of cancer GWAS SNPs with respect to various 
annotations. We observed a positive relationship between increasing GWAS SNP enrichment and 
the number of included annotations (Fig 2C). We note that, in contrast to unified gene definitions 
that are identical across different cell types, tissue-specific experiments allow us to build a highly 
dynamic extended gene definition that is unique to specific cancer types. Indeed, the greatest 
enrichment of GWAS SNPs is achieved using tissue-matched samples (Fig 2C). 

Second, we used the extended gene annotations as a single test unit for recurrence analysis, 
rather than testing all regions separately. Such a unified scheme enables joint evaluation of the 
mutational signals from distributed yet biologically connected genomic regions. Fig. 2B illustrates 
the larger number of known cancer-related genes detected in several cancer cohorts, relative to 
those derived from the coding regions or promoter sites. For instance, in the context of chronic 
lymphocytic leukemia (CLL), our joint detection approach identified well-known highly mutated 
genes (such as TP53 and ATM) \{cite}. More importantly, this joint detection approach allowed 
us to detect genes that would otherwise be missed by exclusively focusing on coding regions. As 
an example, we identified the well-known cancer gene BCL6, which may be associated with 
patient survival (Fig. 2B and refs. 1-3). 
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Third, our extended gene annotation can provide better stratification of gene expression from 
mutational signals in cancer patients compared to single annotation categories. For instance, we 
combined the mutational and expression profiles from large cohorts, such as TCGA, and found 
that mutational status in our extended gene definition can explain the expression differences for a 
larger number of genes than other annotations, such as annotations of coding sequences (CDS). 
One example of the explanatory potential of the extended gene is seen for the splicing factor 
SRSF3, which has been shown to affect liver cancer progression \{cite}. In HepG2, aggregating 
mutational burden within its extended gene annotation exhibits greater significance relative to gene 
expression, compared to any single annotation category (p=xxx, one sided Wilcoxon test). 

Finally, we found an example of how an SV introduced extended gene change that may lead 
to oncogene activation. ERBB4 is a well-known oncogene in many cancer types \{cite}. (Fig. 2D). 
We identified a 130Kb heterozygous deletion (~ 45Kb downstream from the TSS) that potentially 
merges two Hi-C TADs and links a distal enhancer to the ERBB4 promoter in T47D cells, but not 
in normal cells (xxx color track from 4C experiment). We therefore hypothesized that this 
heterozygous deletion disrupts the insulation of ERBB4 from distal regions, thereby activating its 
allele-specific expression. We tested this hypothesis through CRISPR editing, by excising an 86bp 
sequence from the wild-type allele in T47D cells. This excision resulted in elevated ERBB4 
expression (as measured by PCR). Our results suggest that ERBB4 activation in T47D may at least 
in part be due to the 130 kb deletion that disrupts its insulation. 

 Leveraging ENCODE networks to prioritize key regulators 
Building on the extended gene annotation, we constructed detailed regulatory networks. 

Specifically, we incorporated both distal and proximal networks by linking TFs to genes. This was 
accomplished either directly by TF-promoter binding or indirectly via TF-enhancer-gene 
interactions in each cell type (see suppl. sect. xxx). We then pruned these networks to include only 
the strongest edges using a signal shape algorithm1 (see suppl.). In addition, we reconciled our 
cell-type specific networks to form a generalized pan-cancer network. Similarly, we also defined 
an RNA-binding protein (RBP) network from eCLIP experiments. eCLIP is an enhanced CLIP 
protocol that provides single-nucleotide resolution of the RBPs binding signatures2. Compared to 
imputed networks derived from gene expression or motif analyses, our ENCODE TF and RBP 
networks provide experimentally based regulatory linkages between functional elements. 

We analyzed the overall regulatory network by systematically arranging it into a hierarchy 
(Fig. 3A). Here, regulators are placed at different levels such that those in the middle tend to 
regulate regulators below them and, in turn, are more regulated by regulators above them3 (suppl. 
sect. xxx). In this hierarchy, we found that the top-layer TFs are not only enriched in cancer-
associated genes (P=xxx, Fisher’s exact test) but also more significantly drive differential 
expression in model cell types (P=xxx, one sided Wilcoxon Test). 

Our networks also enable gene-expression analyses in tumor samples. We used a regression-
based approach to systematically search for the TFs and RBPs that most strongly drive tumor-
normal differential gene expression (suppl. Sect. xxx). For each patient, we tested the degree to 
which a regulator’s activity correlates with its target’s tumor-to-normal expression changes. We 
then calculated the percentage of patients with these relationships in each cancer type, and present 
the overall trends for key TFs and RBPs in Fig. 3A. 
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As expected, we found that the target genes of MYC are significantly up-regulated in 
numerous cancer types, consistent with its well-known role as an oncogenic TF4,5. We further 
validated MYC's regulatory effects using knockdown experiments in breast cancer (Fig. 3). 
Consistent with our predictions, the expression of MYC targets is significantly reduced after MYC 
knockdown in MCF-7 (Fig. 3B). We analyzed the RBP network in a manner that was similar to 
the TF network, and found key regulators associated with cancer (see suppl.). For example, the 
ENCODE eCLIP profile for the RBP SUB1 has peaks enriched on the 3'UTR regions of genes, 
and the predicted targets of SUB1 were significantly up-regulated in many cancer types (Fig. 3D). 
As an RBP, SUB1 has not previously been associated with cancer, so we sought to validate its 
role. Knocking down SUB1 in HepG2 cells significantly down-regulated its targets (Fig. 3D), and 
the decay rate of SUB1 targets is lower than those of non-targets (see suppl.). Moreover, we found 
that up-regulation of SUB1 targets may lead to decreased patient survival in some cancer types 
(Fig. 3D). 

We then used the regulatory network to investigate how these prioritized key regulators 
interact with other genes. For TFS, we first looked at how MYC's target genes are co-regulated by 
a second TF. These three-way co-regulatory relationships are shown in Fig. 3C. In all cancer types, 
we found that the shared target genes' expressions are strongly positively correlated with MYC, 
while they showed only limited correlation with the second TF (as determined by partial 
correlation analysis, see suppl.). We further investigated the regulatory control pathways of these 
triplets. The most common pattern is the well-understood feed-forward loop (FFL). In this case, 
MYC regulates both another TF and a common target of both MYC and that TF (Fig. 3C). Since 
MYC amplification has been discovered in many cancers, understanding which TFs appear to 
further amplify its effects may yield insights for efforts aimed at MYC inhibition5. Most of the 
FFLs involve well-known MYC partners such as MAX and MXL1. However, we also discovered 
many involving NRF1. Upon further examination, we found that that the MYC-NRF1 FFL 
relationships were mostly coherent, i.e., "amplifying" in nature (Fig. 3C ii). We further studied 
these FFLs by organizing them into logic gates, in which two TFs act as inputs and the target gene 
expression represents the output6 (see suppl.). We found that most of these gates follow either an 
OR or MYC-always-dominant logic gate. Thus, the ENCODE regulatory network not only helps 
identify key regulators, but also illustrates how these may work in combination. 

Similarly, with respect to RBPs, we found that the top co-regulatory partner of SUB1 is MYC 
(SUB1 is a direct target of MYC in many cell types, see suppl. sect.). SUB1 and MYC together 
form many FFLs in the regulatory network. We hypothesized that MYC can bind to the promoter 
regions of key oncogenes to initiate their transcription, whereas SUB1 binds to 3UTRs to stabilize 
oncogenes at the level of RNA transcripts. Such collaboration between MYC and SUB1 results in 
overexpression of several key oncogenes and leads to proliferation of cancer cells (see suppl. sect. 
xxx). To validate this hypothesis, we knocked down MYC and SUB1 separately in HepG2 and 
used qPCR to quantify changes in gene expression. As expected, the expression of oncogenes 
(such as MCM7, BIRC5, and ATAD3A) is significantly reduced (Fig. 3E). 

Cell-type specific regulatory networks highlight extensive rewiring 
events during oncogenesis 

For data-rich cell types with numerous TF ChIP-seq experiments, we built cell-type specific 
regulatory networks. These networks enable direct comparisons of network rewiring during 
oncogenesis. To achieve the best pairing given the existing data, we constructed a "composite 
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normal" by reconciling multiple related normal cell types (see suppl.). Although the pairings are 
only approximate, many of them have been widely used in prior studies (see suppl.). Furthermore, 
they leverage the extensive functional characterization assays in ENCODE to provide us with a 
unique opportunity to study regulatory alterations in cancer on a large scale for the first time. 

In particular, we measured the signed fractional number of edges changes for "tumor-normal 
pairs”, (which we call the "rewiring index") to study how TF targets change in the oncogenic 
transformation. In Fig. 4A, we ranked TFs according to this index. In leukemia, well-known 
oncogenes (such as MYC and NRF1) were among the top edge gainers, while the well-known 
tumor suppressor IKZF1 is the most significant edge loser (Fig. 5A). Mutations in IKZF1 serve as 
a hallmark of various forms of high-risk leukemia7,8. We observed a similar rewiring trend using 
distal, proximal, and combined networks (details in suppl.). This trend was also consistent across 
a number of cancers: highly rewired TFs such as BHLHE40, JUND, and MYC behaved similarly 
in lung, liver, and breast cancers (Fig. 5). 

In addition to direct TF-to-gene connections, we also measured rewiring using a more 
complex gene-community model. Here, the targets within the regulatory network were 
characterized in terms of heterogeneous modules from multiple genes (so called "gene 
communities"). Instead of directly measuring the changes in a TF's targets between tumor and 
normal cells, we determined the changes in its gene communities via a mixed-membership model 
(see suppl.). Similar patterns to direct rewiring were observed using this model (Fig. 5A) and also 
in terms of a simpler co-binding approach (see suppl.). 

We found that the majority of rewiring events were associated with noticeable gene-
expression and chromatin-status changes, but not necessarily with mutation-induced motif loss or 
gain events (Fig. 5A). For example, JUND is a top gainer in K562. The majority of its gained 
targets in tumor cells demonstrate higher levels of gene expression, stronger active and weaker 
repressive histone modification mark signals, yet few of its binding sites are mutated. This is 
consistent with previous work that indicates most non-coding risk variants are not well-explained 
by a mutational model9. With a few notable exceptions (see suppl.), we found a similar trend for 
the rewiring events associated with JUND in liver cancer and, largely, for other factors in a variety 
of cancers. On a related note, we organized the cell-type specific networks into hierarchies, as 
shown in Fig. 4B. Specifically, in blood cancer, the more mutationally burdened TFs sit at the 
bottom of the hierarchy, whereas the TFs more associated with driving cancer gene expression 
changes tend to be at the top.  

We next tested whether the gain or loss events from normal-to-tumor transitions result in a 
network that is more or less similar to that in stem cells like H1-hESC. Interestingly, the gainer TF 
group tends to "rewire away" from the stem cell's regulatory network, while the loser group is 
more likely to rewire in such a way that it becomes more stem-like.  

Stemness measurement during oncogenic transformation through 
regulatory networks 

A prevailing decades-old paradigm has held that at least a subpopulation of tumor cells has 
the ability to self-renew, differentiate, and regenerate in a manner similar to that in stem cells. We 
projected the xxx RNA-seq data by Residual Component Analysis (RCA) to cluster various cell 
types according to the similarity of their transcriptomes. We found that various types of stem cells, 
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including data-rich H1 cells, form a tight cluster (blue in Fig. 5A).  Interestingly, we observed that 
tumor cells (green in Fig. 5A) are located more proximal to the stem group than its normal 
counterpart (yellow), which is consistent with recent discoveries \cite{TCGA stemness}. 
Furthermore, we extended our analysis from transcriptome to both proximal and distal regulatory 
networks and observed a strong pattern: tumor cells tend to cluster together around stem cells, 
unlike normal cells. 

It is also well-known that dysregulation of key oncogene TFs are hallmarks of tumor 
progression. Key genes, such as MYC, initiate overexpression of other oncogenes in tumor cells. 
To test the hypothesis that oncogenic TFs contribute to the state of cell differentiation, we 
measured the perturbations introduced by oncogenic TFs through expression comparisons before 
and after TF knockdowns. Interestingly, the overall expression profiles reverted slightly back 
toward normal state upon oncogene knockdowns 

Step-wise prioritization scheme pinpoints deleterious features 
associated with oncogenesis 

Summarizing the above, our companion resource consists of annotations of (1) overall somatic 
and germline mutational burden scores; (2) accurate and compactly defined regulatory elements 
by integrating various novel functional assays, including eCLIP and STARR-seq; (3) enhancer-
target-gene linkages and extended gene neighborhoods that are obtained by integrating Hi-C and 
multi-histone-mark experiments; (4) tumor-normal differential expression, chromatin, and 3D 
structural changes; (5) TF regulatory networks, both merged and cell-type specific, based on both 
distal and proximal regulation; (6) an analogous but less-developed network for RBPs; (7) 
attributes of TF/RBPs derived from network analysis, such as position in the network hierarchy, 
regulatory potential, and rewiring status. All the resources mentioned above are available online 
through the ENCODE website as simple flat files and computer codes (see suppl.).  

Collectively, these resources allowed us to prioritize key genomic features associated with 
oncogenesis at regulator, element, and nucleotide levels. Our prioritization workflow is 
schematized in Fig. 6A. We first searched for key regulators that are either frequently rewired, or 
located in network hubs, or sit at the top of the hierarchy, or significantly drive expression changes 
in cancer. We then prioritized functional elements associated with these regulators that are either 
highly mutated in tumors, or undergo large changes in gene expression, or TF binding, or 
chromatin status. Finally, on a nucleotide level, by estimating their ability to disrupt or introduce 
specific binding sites, we pinpoint impactful genome variants at a fine scale level. 

Small-scale validation experiments on prioritized regulators and 
elements  

 

To demonstrate the utility of our ENCODE resource, we instantiated our prioritization 
workflow in a few select cancers and experimentally validated the results. In particular, as 
described above, we subjected some key regulators, such as MYC and SUB1, to knockdown 
experiments to validate their regulatory effects (Fig. 3B and 3D). We highlighted large scale 
structural variations that potentially disrupt oncogene insulation and validated their effects through 
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CRISPR engineered deletions (Fig. 2E). Finally, we selected key SNVs based on their disruption 
of enhancers with strong influence on gene expression. These SNVs were prioritized based on 
mutation recurrence in breast-cancer cohorts, as well as enhancer motif disruption scores. Of the 
eight motif-disrupting SNVs that we tested, six exhibited consistent up- or down-regulation 
relative to the wild-type in multiple biological replicates.  

One particularly interesting example, illustrating the value of ENCODE data integration, is in 
an intronic region of CDH26 in chromosome 20 (Fig. 6C). The signal shapes for both histone 
modification and chromatin accessibility (DNase-seq) data indicate its active regulatory role as an 
enhancer in MCF-7. This was further confirmed by STARR-seq (Fig. 6C). Hi-C and ChIA-PET 
linkages indicated that the region is within a topologically associated domain (i.e., a “TAD”) and 
validated a regulatory connection to the breast-cancer-associated gene SYCP210. We further 
observed strong binding of many TFs in this region in MCF-7. Motif analysis predicts that a 
common mutation in breast cancer affects this region, and significantly disrupts the local binding 
affinity of several TFs, such as FOSL2 (Fig. 6C). Luciferase assays demonstrated that this mutation 
introduces a 3.6-fold reduction in expression relative to the wild-type, indicating a strong 
repressive effect on enhancer functionality. 

Conclusion 
This resource highlights the value of deep data integration over many novel assays to annotate 

noncoding elements of the genome. We provided accurate tissue-specific extended gene 
annotations and extensive regulatory networks through integration of thousands of experiments. 
We believe that one of the best applications of our resource is to cancer research. 

A key caveat related to our resource concerns network rewiring in cell-type specific networks. 
The utility of these networks in cancer is based on associating them to particular cancer types and 
then pairing a specific cancer network with a composite normal. Both correspondences are 
approximate. Nevertheless, we feel that our networks currently provide the best available view of 
the regulatory changes in oncogenesis. No other system has this scale of TF-ChIP data. Moreover, 
the heterogeneous nature of cancer means that tumor cells from a given patient usually show 
distinct molecular, morphological, and genetic profiles11. Cell-type specific or tissue-type specific 
analyses may not fully capture the heterogeneity seen in cancer. However, to place this limitation 
in context, it can even be challenging to obtain a representative match between tumor and normal 
tissues taken from a single patient. 

In general, our study underscores the value of large-scale data integration, and we note that 
expanding the scale of our approach in a number of dimensions is straightforward. For example, 
we successfully formed compact annotations and regulatory networks for model systems already 
replete with advanced functional assays like eCLIP and STARR-seq; our methods can be readily 
extended to further model systems when they are similarly assayed in the future. Given the 
rewiring formalism presented here, it should be straightforward to expand the analysis to greater 
numbers of TFs. (In fact, the re-wiring formalism actually provides a way of selecting candidate 
TFs and cell types.) We anticipate that this will provide a clearer and more accurate picture of the 
spectrum of regulators that are affected by extensive chromatin changes, and thus help prioritize 
research efforts in cancer. 
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The initial ENCODE release in 2012 and other targeted functional genomic data have 
motivated many integrative studies, some of which have focused on cancer genomes1-7. 
Specifically, functional genomics data have been used to investigate cancer in three ways. First, 
they enable researchers to evaluate the molecular functional impact of non-coding mutations -- the 
vast majority of variants in cancer genomes -- and to identify non-coding annotation “elements” 
(e.g., enhancers)6,8-11. Secondly, by incorporating genome-wide features (such as replication 
timing, methylation, and expression), functional genomics data sets can be used to estimate 
background mutation rates (BMR), which vary widely over the genome12-14. Precise BMR 
calibration enables us to accurately identify recurrently mutated annotation elements across cancer 
cohorts for candidate drivers15-17. Finally, ENCODE data and other genomic data sets have been 
used to link non-coding elements and organize them into regulatory networks, which can be used 
to gain a systems-level perspective on cancer18-20. 

The new release of ENCODE data has a number of improvements over the last release, which 
was mainly focused on a limited number of cell types using RNA-seq, DNase-seq and ChIP-seq 
assays21. The new release has two new directions. First, it considerably broadened the number of 
cell types using the original assays. As such, the main ENCODE encyclopedia aims to utilize these 
to provide a general annotation resource applicable across many cell types. Second, ENCODE also 
expanded the number of advanced assays on several "top-tier" cell types (e.g. STARR-seq, Hi-C, 
ChIA-PET, eCLIP and RAMPAGE). Many of these are associated with various types of cancer, 
including those of the blood, breast, liver, and lung (K562, MCF-7, HepG2, A549, see Fig. 1). 
Such rich functional assays and annotation resources in the new ENCODE release allow us to 
characterize these non-coding regions in depth and construct a customized ENCODE companion 
resource for Cancer genomics (which we call EN-CODEC). This resource consists of a set of 
annotation files and computer codes available online (encodec.encodeproject.org, see suppl.). It 
comprises three main parts: background mutation rate models, compact annotations, and 
regulatory networks. We detail each of these parts below and provide illustrations of how they 
may be used to interpret cancer genomes after combining mutation and expression profiles from 
large cancer cohorts, such as TCGA.  

In particular, with a much wider selection of cell types, EN-CODEC provides substantially 
more functional genomics data that can be better matched to specific cancer types of interest, 
allowing a demonstrably improved background mutation rate estimation. In addition, for a number 
of well-known cancer cell types, it incorporates a large battery of data on histone marks with 
various more specialized assays. For example, in several model cell types, we incorporate STARR-
seq data, which directly measures the genome-wide enhancer activities, to accurately define core 
enhancers and used Hi-C and ChIA-PET data for accurate enhancer-gene linkage prediction. 
Consequently, relative to generic annotations, it constructs more compact annotations to maximize 
statistical power in the determination of mutationally burdened regions.  

Finally, our resource significantly extends TF regulatory networks with comprehensive ChIP-
seq coverage across cell types and constructs additional networks from more recent assays such as 
eCLIP and Hi-C. For a few prominent cancers (e.g. blood and liver cancer), these provide cell-
type specific networks in model tumor and normal cells, thereby enabling direct measurement of 
potential regulatory changes in oncogenesis. Furthermore, a prevailing decades-old paradigm has 
held that at least a subpopulation of tumor cells has the ability to self-renew, differentiate, and 
regenerate, in a manner similar to stem cells22. Hence, the top-tier cell line H1-hESC can serve as 



a valuable comparison when investigating the degree to which an oncogenic transformation moves 
towards or away from a stem-cell-like state. More generally, our network can better explain cancer 
specific expression patterns in tumors from cancer resources such as TCGA, and it also helps 
reveal key regulators that drive large-scale tumor-to-normal expression changes. 

We combined the ENCODE networks with the compact annotation sets and mutational 
burdening analysis (from the enhanced background model) to propose a step-wise prioritizing 
scheme that highlights key mutations associated with cancer progression. We validated the 
functional impact of prioritized mutations and elements using focused experiments such as siRNA 
RNA-seq and luciferase assays. Such prioritization serves as an illustration of how the new EN-
CODEC resource can immediately be used to help analyze existing cancer mutation data and 
cancer-associated gene expression. 

ENCODE data allows more accurate BMR estimation (for better 
cancer driver detection) 
One of the most powerful ways of identifying key elements in cancer genomes is through mutation  
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 to discover regions that harbor more mutations than expected. However, developing a null 
expectation for these analyses is non-trivial – the somatic mutation process can be influenced by 
numerous confounders (in the form of both external genomic factors and local sequence context 
factors), and these can result in false conclusions if not appropriately corrected15. Hence, we 
demonstrate how to integrate extensive ENCODE data to construct an accurate background 
mutation rate model in a wide range of cancer types. 

We address this issue in a cancer-cohort-specific manner (see suppl.). Specifically, we separated 
the whole genome into bins (1Mb) and calculated bin-wise mutation counts. We used a negative 
binomial regression of the mutation counts against 475 genomic features across 229 cell types, 
including replication timing, chromatin accessibility, histone modifications, methylation, Hi-C, 
and expression profiles. In contrast to methods that use data from unmatched cell types, our 
approach automatically selects the most relevant features, thereby providing considerable 
improvements in BMR estimation (Fig.  
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For example, using matched replication timing data in multiple cancer types significantly 
outperforms an approach in which one restricts the analysis to replication timing data from the 
unmatched HeLa-S3 cell line. Moreover, combining many different genomic features significantly 
improves the estimation accuracy (Fig. 2B). The weightings of the features in the model are 
consistent with our expectations: for instance, for breast cancer, we observed elevated mutation 
rates in regions with the repressive mark H3K9me3 and a reduced mutation rate in regions with 
the activating, enhancer-associated mark H3K27ac12-14. Also, due to the correlated nature of 
genomic features across cell types, even approximate matching of a specific cancer type to a 
particular ENCODE cell line can still improve BMR estimation (see suppl.). Hence, our analyses 
may easily be extended to many cancer types. 



A focused, compact annotation increases power for detecting cancer 
drivers 
A second advantage of leveraging ENCODE data in determining recurrently mutated regions is 
provided by maximizing the statistical power of burden tests. In traditional genomic analyses, a 
comprehensive set of annotations (usually covering as many base pairs as possible) is considered 
to be optimal. However, 
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every possible nucleotide in the genome greatly reduces the statistical power for variant 
recurrence detection (see suppl.). Here, we aim to increase the power of burden tests by creating a 
focused, compact annotation for a given cell type. 

First, for a single burden test on an individual genomic element (e.g., an enhancer), focusing 
on a smaller, "core" region, enriched for true functional impact, significantly improves 
detectability (see suppl.). Hence, we trimmed the conventional annotations to key "functional 
territories" by using the well-known small territories of TF-binding sites and the shapes of various 
genomic signals (e.g., the well-known double-hump of H3K27ac around enhancers, see suppl.). 

Second, repeated burden tests on a large number of elements would be subject to a large 
multiple-testing penalty. Thus, we tried to restrict our annotation set to a minimum number of 
high-confidence elements. With a particular focus on enhancers, we started by searching for 
regions supported by multiple lines of evidence in the data-rich top-tier cell types. We developed 
a machine-learning algorithm to combine DNase-seq experiments and a battery of up to 10 histone 
modification marks to predict enhancers (see suppl.). Using a second algorithm, we then combined 
these predictions with our processing of the STARR-seq experiments (see suppl.). These 
experiments provide a direct, albeit noisy, readout of enhancer activity in specific cell types. Such 
an "ensemble" approach enables us to define a minimal list of enhancers with as few false-positives 
as possible. We also reconciled and cross-referenced our "compact annotation" with the main 
encyclopedia annotations (see suppl.). 

An extended gene annotation by linking non-coding elements to genes 
(for better cancer driver detection) 
To increase statistical power, a final part of our "compact" annotation entails linking non-coding 
regulatory elements to protein-coding exons to form an extended gene region as a single test unit. 
Such a unified annotation 
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Traditional methods for linking rely solely on the correlation of individual signals (e.g., 
between the activity of one histone mark at an enhancer and gene expression of neighboring genes), 
and these may result in inaccurate extended gene definitions. Here, we use direct experimental 
evidence on physical interactions from Hi-C and ChIA-PET experiments, combined with a 
machine learning algorithm that takes into consideration the wide variety of histone modification 
marks and gene expression to delineate accurate enhancer-target gene linkages. 



By integrating our compact annotation sets, BMR estimates, and accurate extended gene 
definitions, we were able to obtain maximal power for detecting genomic regions (coding and non-
coding) that are mutationally burdened. Fig. 2D illustrates the greater power in detecting 
mutationally burdened non-coding regions in several well-known cancer cohorts. For example 
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the increased power provided by the extended-gene annotation  
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; and (7) an analogous but less-developed network for RBPs. 
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I think formally we may need an ‘or’ between each possibility being correlated, but it 
does make the sentence a bit choppy… 
 
Could keep or reject these additions of ‘or’ in this paragraph. 
 
Same for ‘either’. Formally, I believe they may be required. Not sure we want to be so 
formal. 
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Again, aren’t regulators a kind of element? 
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also identified several candidate enhancers in noncoding regions associated with breast cancer 
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ability to influence transcription using luciferase assays in MCF-7. 
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For example, we observed increased accuracy in BMR estimation with additional genomic 
features; we expect that this accuracy will increase further still with more features. We 
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Given the broad scope of the paper, not sure about the relatively narrow scope of these 
last two sentences, that focus on TFs and chromatin. 
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Finally, we demonstrated the utility of our resource for assisting in the detection of potential 
cancer drivers in limited publically available cohorts; we anticipate that linking it with the large 



cohorts currently being assembled (e.g., PCAWG, pancaner.info) will more fully utilize EN-
CODEC and provide even greater value. 

 
  



Figure Legend 
Figure 1 
Schematic of the EN-CODEC resource. Columns list cell types and rows list assays. Pink box: 
“Top-tier” cancer-associated resources in ENCODE highlighting the depth of the resource. Yellow 
box: Cell types with several assays in the main ENCODE Encyclopedia highlighting the breadth 
of the resource. Green box: Cell-type specific analyses based on deep annotations of top-tier cell 
lines. Blue box: Merged analyses based on wide-coverage of many cell types. The actual content 
of our resources (annotations, background mutation rate, networks) are shown in the dotted black 
box. 
 
Figure 2 
BMR modeling and mutation burden analysis. (A) Improvement of BMR estimation by 
accumulation of principal components of multiple genomic features. (B) In breast cancer, 
regression coefficients of remaining features after incorporating MCF-7 replication timing. (C) 
Schematic of extended gene definition. (D) Significantly burdened genes using noncoding 
elements (TSS), coding regions (CDS) and extended genes, alongside germline mutational status 
in liver cancer. (E) Expression of BCL6, which is only identified as recurrently mutated using 
extended genes, is correlated with patient survival. 
 
Figure 3 
Integration of ENCODE networks with expression profiles. (A) Heatmap of regulatory 
potentials of TFs/RBPs to drive tumor-to-normal expression changes; red and blue indicate up- 
and down- regulation. (B) Elevated MYC regulation activity is associated with reduced disease 
specific survival (DSS) in breast cancer (top); MYC knockdown in MCF-7 leads to significantly 
larger expression reduction in MYC target genes (bottom). (C) (i) MYC expression is more 
positively correlated with its target genes as compared to other TFs; (ii) MYC frequently form 
FFLs with NRF1, and these are mostly coherent; (iii) In the MYC-NRF1 FFLs, OR-gate logic 
predominates. (D) Elevated SUB1 regulation activity is associated with reduced overall survival 
(OS) in lung cancer (top); SUB1 knockdown in HepG2 leads to reduced target gene expressions 
(bottom). 
 
Figure 4 
Regulatory network hierarchies. TFs are organized into layers such that top layer TFs tend to 
regulate others, while bottom layer TFs tend to be regulated by others. (A) Generalized network: 
top layer TFs are enriched with cancer associated genes and demonstrate larger regulation 
potentials to drive tumor-to-normal gene expression changes. (B) Cell-type specific network using 
K562 and GM12878: top layer TFs significantly drive tumor-normal differential expression; 
bottom layer TFs are more often associated with burdened binding sites. 
  
Figure 5 
TF-Gene network rewiring. Green and red arrows designate edge gain and loss, respectively. (A) 
Rewiring index in a model for CML by direct edge counts using both proximal and distal networks 
(top) and by gene community analysis (bottom). TFs that gain edges tend to rewire away from 
stem cell-like state while TFs that lose edges tend to rewire toward stem cell-like state. (B) 



Examples of network rewiring for specific TFs in multiple cancer types. (C) Conceptual schematic 
for rewiring towards or away from a stem cell-like state. (D) Genomic features associated with 
gained or lost edges. 
  
Figure 6 
Variant prioritization and validation. (A) Stepwise variant prioritization scheme utilizing EN-
CODEC resources. We prioritize large-scale regulators based on network and expression analysis; 
regulatory elements based on mutation burden; then single nucleotide by motif gain/loss and 
conservation score. (B) Small-scale validation of prioritized variants using luciferase reporter 
assay. (C) Multiscale integrative analysis on Sample 5 with assorted functional genomics data. We 
start from large-scale Hi-C linkages, and then zoom into element level by highlighting signal tracks 
of histone modification marks and DNase hypersensitivity together with various TF binding events. 
At the nucleotide level, FOSL2 motif is disrupted. 
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