
ENCODEC: An integrative ENCODE resource 

for cancer genomics 

Introduction 

With the initial ENCODE release in 2012, investigators began to 

systematically map functional elements in the human genome, such as 

transcription, chromatin accessibility, histone modifications, and transcription 

factor (TF) binding \{cite}. The most recent ENCODE data release offers much 

greater scope than that of the previous release. In addition to the much greater 

number of different cell types studied, the more recent datasets provide 

considerably more novel assays on several "top-tier" cell types. [[PDM2all: some 

short text could go here stating why there is an opportunity and challenge in 

building an integrative resource. E.g. “This increased scale of data represents an 

opportunity to ascertain the function of genomic regions at a closer resolution and 

with greater accuracy than ever. However, the scale of data also represents a 

technical challenge relative to its processing and integration.”]] Hence, focusing on 

top-tier ENCODE cell types, we performed deep integration of ENCODE data 

over tens of functional assays to deeply characterize the noncoding genome at 

higher resolution and greater accuracy than has previously been possible. 

[JZ2ALL: did we introduce well what is the resouce? I am afraid not, but if I 

do the bullets, it will be too repeatative with why cancer is the best application. I 

am currently thinking to put the main resource into the conclusion part. But we 

have to let them know there are NETWORKS] 

[[PDM2all: most of my suggested edits in the following paragraph are just 

softening the language a bit.]] 

Our integrative ENCODE annotation allows accurate functional 

interpretation of germline and somatic genome variations in a tissue-specific 

manner and hence serve as a valuable resource for many disease studies. We 

consider interpretation of genomic variation in cancer one of the best applications 

of our resource for several reasons. First, many of the most data-rich cell types are 

are from cancer cells, including cell types from blood, breast, liver, and lung (Fig. 

1). Second, the wealth of ENCODE data, such as replication, epigenetic, and 

transcriptional profiles, may be used to inform our understanding of cancer 

mutational processes for both single nucleotide variations (SNV) and structural 

variations (SV). Third, data in the most recent ENCODE release can be used to 
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shed light on epigenetic remodeling and cell-state transitions, which are implicated 

in oncogenesis. Lastly, ENCODE constructed [[PDM2all: did ENCODE construct 

these networks, or does ENCODE data allow for the construction of these 

networks?]] a variety of high-quality regulatory networks from thousands of 

experiments to provide a  systems-level perspective of cancer. One may thus 

directly measure the perturbations of individual regulators and entire networks to 

better elucidate   the biological mechanisms of cancer inititation and progression. 

[JZ2MG: I know you may not like the novel findings in this para, but I feel we do 

have to list our results here to convince the referees. I only listed results that we are 

confident of. To disc.][[PDM2all: Notably extended gene, compact annotation, 

BMR, not mentioned directly. BMR is maybe least defensible (until we show 

improvement). Extended gene / compact annotation may deserve a sentence or two 

-- reviewers liked these, if we can substantiate claims.]] 

[[PDM: This next paragraph is fairly important. Given that this is a resource, we 

might want to cover (roughly in order) 1. What resource we built / what it is. 2. 

Why it is valid / how we validated it. 3. Some examples of its applications w/ 

notable results. ]] 

Therefore, we present the integrative ENCODE companion resource for 

Cancer genomics (ENCODEC).  This resource consists of various annotations, 

networks, and code bundles available online (encodec.encodeproject.org). Our 

resource is designed specifically  for investigating cancer, but it may also be 

applied to the interpretation of genomes in a variety of disease and non-disease 

contexts. [[PDM32: Some text about validity could go here. The next two 

sentences could also be reframed as validation e.g. ‘We validated our resource 

through the successful recovery of well-documented variations and regulators 

associated with cancer … as well as through statistical comparison to benchmark 

standards where appropriate.]] We applied ENCODEC to interpret and prioritize 

key regulators, SNVs, and SVs associated with cancer progression. Specifically, in 

addition to recovering well-documented variations and regulators associated with 

cancer, such those affecting the TERT promoter, TP53, and the oncogene 

transcription factor (TF) MYC,we also highlighted potentially novel noncoding 

SNVs in enhancers that change gene expression, SVs that can initiate oncogene 

expression, and key RNA binding proteins (RBPs) such as SUB1. We further 

validated our results using small-scale experiments such as luciferase assays, 

CRISPR-engineered deletions, and TF/RBP knockdowns. Our successful 

validations, serve as an illustration of how our new ENCODEC resource can 

immediately be leveraged for cancer research.  
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[JZ2MG: I prefer to merge some parts breadth=BMR/SV, depth=enhancer and 

E2G linkage, extended gene is just extended genes] 

The breadth and depth of the ENCODEC resource 

Our ENCODEC resource takes advantage of the breadth and depth of the 

ENCODE3 resource and customizes it for cancer research. We collected 2069 

epigenetic and replication timing experiments from 229 cell types to facilitate the 

interpretation of cancer mutational process for both SNVs and SVs. Such features 

have been proven to facilitate background mutation rate (BMR) estimation through 

many mathematical models \{cite}. We demonstrated that the inclusion of 

ENCODE data brings additive improvements in BMR estimation that scales with 

the number of included features (Fig.1) \{cite}. Further, the modelling of BMR 

using ENCODE feature data simulatenously improves computational speed and 

interpretability with equivalent accuracy to established non-parametric BMR 

models.  . We also demonstrated that the richness of the ENCODE data may help 

to provide genomics data that is strictly matched by cell type or tissue, to uncover 

the underlying mutational mechanism for SVs. For instance, we found that 

breakpoints in K562 are associated with H4K20me1, which is an activation histone 

marker, only in K562 but not in others. 

[[PDM: I may have over-edited this next paragraph. It just wasn’t initially clear to 

me how the first sentence claiming ‘accurate and compact annotations’ connected 

with subsequent sentences. I think it may be clearer now. However, until the edits 

are accepted/rejected, it’s hard to read, and needs to be checked for accuracy.]] 

We further leveraged the novel assays in ENCODE3 tobuild accurate and compact 

annotations. For example, in order to build a compact set of regulatory elements 

enriched for functional significance, we were able to restrict a genome-wide list of 

potential proximal and distal regulatory elements using ENCODE3 data. In 

particular, xxx ChIP-seq experiments were used to refine a list of XXX million 

proximal regulatory elements of likely functional significance. explored xxx ChIP-

seq experiments on top tier ENCODE cell types to define millions of 

transcriptional level proximal regulatory elements. We integrated the full catalogue 

of ENCODE assays and proposed an ensemble method to define high quality distal 

elements such as enhancers. Specifically developed a machine-learning algorithm 

called match-filter to combine DNase-seq with up to 10 histone modification 

marks to predict enhancers. Then, using a multi-resolution peak-calling algorithm 

called ESCAPE, we combined our match-filter predictions with STARR-seq data. 

This ensemble-based approach enabled us to define a minimal list of enhancers 

with fewer false-positives. Our annotation of 112 RNA binding proteins (RBPs) 
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built using post-transcriptional eCLIP experiments is  significantly more compact 

than previous transcriptional level annotations (xxx. VS xxx for TF, P=… two-

sided Wilcoxon test), while also demonstrating higher cross-population and  cross-

species conservation consecration [[PDM: Consecration??]] [[PDM: Higher 

conservation compared to what?]] that suggests the accuracy of our annotation. 

RNA binding proteins play key roles in various diseases including cancer, but their 

role is largely ignored in many previous annotation efforts \{cite}. We believe such 

smaller and "core" region definitions (which are enriched for true functional 

impact) significantly improve key variant detection. 

An extended gene annotation and its applications for 

interpreting variants and differential expression  

Much current knowledge of disease  has been derived by focusing on  protein-

coding regions. To broaden the scope of elements studied, we also linked our 

above noncoding annotations to genes in order create a gene-centric annotation 

(which we call the extended gene). Our extended gene annotation includes both 

proximal and distal, transcriptional and post-transcriptional level annotations (Fig. 

2A). Specifically, in contrast to most previous efforts that rely solely on correlating 

individual genomic signals, we used a machine learning algorithm that integrates a 

wide variety of histone modifications, gene expression signals, and physical 

interactions from Hi-C and ChIA-PET to link distal regulatory elements to genes 

with greater accuracy [[PDM: Greater accuracy compared to what standard?]] 

(suppl. sect. xxx). We then demonstrated the value of our extended gene 

annotations by applying it for to somatic, germline, and expression analyses. 

First, we used the extended gene annotation as a single test unit for recurrence 

analysis, rather than testing all regions separately. Such a unified scheme enables 

joint evaluation of the mutational signals from distributed yet biologically 

connected genomic regions. Fig. 2B illustrates the larger number of known cancer-

related genes detected in several cohorts, [[PDM: Do we really do a relative 

comparison to ‘traditional approaches’ in one of our figures (2B)? What are 

‘traditional’ approaches? Single region recurrence testing?]] relative to those 

derived from traditional approaches. For instance, in the context of chronic 

lymphocytic leukemia (CLL), our joint detection approach identified well-known 

highly mutated genes (such as TP53 and ATM) \{cite}, in addition to genes that 

would otherwise be missed by exclusively focusing on coding regions. [[PDM: Not 

sure about ‘case-in-point’, maybe just return to ‘an example’.]]As a case-in-point, 

we identified the well-known cancer gene BCL6, which may be associated with 

patient survival (Fig. 2B and refs. 1-3). Secondly, our extended gene definitions 
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include many tissue-specific proximal and distal noncoding regulatory elements 

that are useful for interpreting cancer-associated GWAS variants. To illustrate this, 

we calculated the enrichment of cancer GWAS SNPs with respect to various 

annotations. We observed a positive relationship between GWAS SNP enrichment 

and the number of  annotation categories included [[PDM: I’m not sure I 

understand this terminology/analysis. Annotation categories == sets of features? 

Why not just say features?]] (Fig 2C). We note that, in contrast to the unified gene 

definitions across different cell types, the tissues-specific experiments allow us to 

build a highly dynamic extended gene definition that is unique to specific  cancer 

types. Indeed, the greatest enrichment of GWAS SNPs is achieved using tissue-

matched samples [[PDM: need a pointer to the evidence for this here. Fig 2C?]]. 

Thirdly, our extended gene annotation can better [[PDM: better compared with 

what?]] stratify gene expression signals of cancer patients by their mutational 

status. For instance, we combined the mutational and expression profiles from 

large cohorts and found that mutational status in our extended gene definition can 

explain the expression differences for a larger [[PDM: larger than what?]] number 

of genes. One example [[PDM: Example of? Perhaps: ‘example of a gene where an 

extended gene annotation helps provide perspective on the relationship of variation 

and gene expression’?]] is the splicing factor SRSF3, which has been shown to 

affect liver cancer progression. Aggregate mutational burden falling within its 

extended gene annotation in HepG2 exhibits greater significance relative to gene 

expression, compared with to any single annotation category (p=xxx, one sided 

Wilcoxon test). 

Finally, we tried to interpret the impact of variations by showing an example of SV 

introduced extended genes dynamics that leads to oncogene activation. ERBB4 is a 

well-known oncogene in many cancer types \{cite}, and is significantly 

upregulated in tumor [[PDM: It’s an oncogene (vs. tumor suppressor) so do we 

need to say this? If so, is there a particular tumor type or cancer type? Also, 

grammar needs fixing.]] (Fig. 2D). We noticed a 130Kb heterozygous deletion 

(about 45Kb downstream from the TSS) that potentially merges two Hi-C TADs 

and links a distal enhancer to the ERBB4 promoter in T47D cells but not in normal 

cells (xxx color track from 4C experiment). We therefore hypothesized that the 

heterozygous deletion disrupts the insulation of ERBB4 from distal regions, 

thereby activating its allele-specific expression . We tested this hypothesis by 

CRISPR editing to excise the 86bp sequence on the wild-type allele in T47D cells 

and found elevated ERBB4 expression (as measured by PCR). Our results suggest 

that ERBB4 activation in T47D is at least partially due to the 130 kb deletion that 

disrupts its insulation. 
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[JZ is done one all parts, please revise all sections! Thank you!] 

Leveraging ENCODEC networks to prioritize regulators 

We compiled  xxx ChIP-seq and xxx eCLIP experiments to build 

comprehensive and accurate proximal regulatory networks. Compared to networks 

derived from gene expression or motif analyses, our ENCODE TF and RBP 

networks are built using experimentally-defined regulatory linkages between 

functional elements (suppl. sect. xxx), thereby enabling us to more accurately 

capture real interactions (suppl. sect. xxx).  

We analyzed the overall TF and RBP regulatory network by systematically 

arranging it into a hierarchy (Fig. 3A) in which TFs at top levels tend to regulate 

those in the levels below (suppl. sect.). We found that top-level TFs are not only 

enriched in cancer-associated genes (P=xxx, Fisher’s exact test), but they also 

more significantly drive differential expression in model cell types (P=xxx, one 

sided Wilcoxon Test). 

[JZ2all: I feel this part is too wordy… but difficult to shrink though] 

Our networks also enable gene-expression analyses in tumor samples. We 

used a regression-based approach to integrate 8,202 tumor expression profiles from 

TCGA and searched for TFs and RBPs that most strongly drive tumor-specific 

expression (see suppl.). We tested the degree to which a regulators’ activities 

correlate with tumor-to-normal expression changes of their respective targets to 

prioritize key TFs and RBPs in cancer (Fig 3B). 

As expected, we found that many previously reported cancer-associated TFs 

show high regulatory potential and are associated with patient survival (Fig. 3B). 

For instance, we found that MYC targets are significantly up-regulated in 

numerous cancer types. We performed MYC knockdowns in MCF-7 and 

confirmed that MYC targets exhibit significantly larger expression reductions upon 

knockdown (Fig. 3C). Similarly, in the RBP network, we found that SUB1 

upregulates its target genes in many cancer types and SUB1’s upregulation may 

indicate poor patient survival in lung and liver cancer (Fig. 3D). We confirmed the 

positive regulatory role of SUB1 by knocking it down in HepG2 cells. Knocking 

SUB1 down resulted in significantly reduced target expression  (Fig. 3D). 

SUB1 has not previously been associated with cancer as an RBP, so we 

sought to explore its role in oncogenesis. We found that SUB1 tends to bind to the 

end of 3'UTR regions, and its targets are enriched in CGC genes (p=xxx, Fisher’s 

exact test). We also find that the decay rates of SUB1 targets are significantly 
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lower than those of non-targets (see suppl.), and hence hyposize that it stabilizes 

the transcripts of its targets. 

 We further investigated how key regulators can interact with others during 

regulatory processes in tumors. For MYC, we found that, with the exception of  its 

well-known co-regulators MAX and MXL1, NRF1 is the most frequent co-

regulator that forms a forward-feedback loop (FFL). Upon further examination, we 

found that MYC-NRF1 FFLs were mostly coherent (i.e., "amplifying" in nature; in 

supplement). We further studied these FFLs by organizing them into logic gates, in 

which two TFs act as inputs and the target gene’s expression represents the output4 

(see suppl.). We show that most of these gates follow either an OR or MYC-

always-dominant logic gate. Similarly, with respect to RBPs, MYC is the top co-

regulator with MYC after correcting for many potential confounding factors, such 

as GC content and expression (see suppl. sect.). Interestingly, we found that SUB1 

is a direct target of MYC in many cell types (see supplements), forming many 

FFLs in the regulatory network. We hypothesize that MYC can bind to the 

promoter regions of key oncogenes to initiate their transcription and SUB1, and it 

binds to 3UTRs to stabilize such genes at the level of RNA transcripts. This 

collaboration between MYC and SUB1 results in overexpression of several key 

oncogenes and leads to proliferation of cancer cells. To validate this hypothesis, 

we knocked down MYC and SUB1 separately in HepG2 and used qPCR to 

quantify changes in gene expression. As expected, the expression of oncogenes 

(such as MCM7, BIRC5, and ATAD3A) are significantly reduced. 

 

Cell-type specific regulatory networks highlight extensive rewiring 

events during oncogenesis 

For the top-tier cell types with numerous TF ChIP-seq experiments, our 

resource contains cell-type specific regulatory networks, thereby enabling direct 

comparisons with networks built from their paired normal cell types. To achieve 

the best pairing (given the existing data), we construct a "composite normal" by 

reconciling multiple related normal cell types (see suppl.). Although the pairings 

are only approximate, many of them have previously been widely used in the 

literature (see suppl.). Furthermore, they leverage the extensive functional 

characterization assays in ENCODE to provide us with a unique opportunity  to 

study the regulatory alterations in cancer on a large scale for the first time.  

In particular, we measured the signed, fractional number of edge changes 

(which we call the "rewiring index") in "tumor-normal pairs" to evaluate how TF 

targets may change over the course of oncogenic transformation. In Fig. 4A, we 

used this index to rank TFs. In addition to direct TF-to-gene connections, we also 
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measured rewiring using a more complex gene-community model, where targets 

within the regulatory network were characterized in terms of heterogeneous 

modules (so called "gene communities") from multiple genes (see suppl. sect.). 

Similar patterns to the direct rewiring were observed using this model (Fig. 4A). In 

leukemia, well-known oncogenes (such as MYC and NRF1) were among the top 

edge gainers, while the well-known tumor suppressor IKZF1 is the most 

significant edge loser (Fig. 4A). We observed a similar rewiring trend using distal, 

proximal, and combined networks (details in suppl.). This trend was also consistent 

across a number of cancers: highly rewired TFs (such as BHLHE40, JUND, and 

MYC) behaved similarly in lung, liver, and breast cancers (Fig. 4). 

We found that the majority of rewiring events were associated with 

noticeable gene-expression and chromatin-status changes, but not necessarily with 

SNV and SV introduced motif gain or loss events (Fig.4D). For example, JUND is 

a top gainer in K562. Many of its gained targets in tumor cells exhibit higher gene 

expression (as well as stronger active and weaker repressive histone modification 

mark signals), yet few of its binding sites are mutated or affected by structural 

variations.  

 

Stemness measurement during oncogenic transformation through 

regulatory networks 

  A prevailing decades-old paradigm has held that at least a subpopulation of 

tumor cells have the ability to self-renew, differentiate, and regenerate in a manner 

similar to that in stem cells. We projected the xxx RNA-seq data by RCA and 

observed that tumor cells (green in Fig. 5A) are more similar to the stem group 

(blue) than its normal counterpart (yellow), which is consistent with recent 

discoveries \cite{TCGA stemness}. Furthermore, we explored the extensive 

proximal and distal regulatory networks in ENCODE and observed a consistent (or 

even more obvious) pattern: tumor cells tends to cluster together around stem cells 

and stay away from the normal ones.  

It is also well-known that dysregulation of key oncogene TFs are hallmarks 

of tumor progression. Key genes, such as MYC, initiate overexpression of other 

oncogenes in tumor cells. To test our hypothesis that tumor cells are more similar 

to stem cells, we measured the perturbations introduced by oncogenic TFs through 

expression comparisons before and after TF knockdowns. Interestingly, the overall 

expression profiles revert slightly back toward normal state upon oncogene 

knockdowns. 
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Step-wise prioritization scheme pinpoints key SNVs in cancer 

In sum, our companion resource consists of the annotations in Figs. 1 and 6: 

(1) thousands of uniformly processed genomic features for genome variation 

interpretation; (2) accurate and compact annotations and their linkage to genes to 

form the extended gene definitions; (3) tumor-to-normal genetic, epigenetic, and 

high-dimensional structural changes; (4) accurate regulatory networks for TFs and 

RBPs with comprehensive regulator attributes, such as a network hierarchy, overall 

disruptiveness, regulatory potential, and rewiring status. Together, these resources 

are made available online through the ENCODE website as flat text files as well as  

code bundles (suppl. sect. xxx). 

[JZ2DL: could we change the Fig. 6A to incorporate regulator and SNVs?] 

Collectively, these resources allow us to prioritize key regulators, SVs, and 

SNVs associated with oncogenesis. Our prioritization scheme is presented 

workflow shown in Fig. 6A. We first search for key regulators that are frequently 

rewired, located in network hubs, sit at the top of the network hierarchy, or 

significantly drive expression changes in cancer. We then prioritize functional 

elements associated with these regulators, are highly mutated in tumors, or undergo 

large changes in gene expression, TF binding, or chromatin status. Finally, we 

zoom in at a finer scale by estimating their ability to disrupt or introduce specific 

binding sites, we pinpoint impactful SNVs. 

To demonstrate the utility of ENCODEC , we instantiated our workflow in a 

few select cancers and experimentally validated the results. In particular, as 

described above, we subjected some key regulators (such as MYC and SUB1) to 

knockdown in order to validate their regulatory effects (Fig. 3B and 3D), and 

validated the effects of SVs on oncogene activation through CRISPR deletions. We 

also identified several candidate enhancers in noncoding regions associated with 

breast cancer and validated their ability to influence transcription using luciferase 

assays in MCF-7. Finally, we selected key SNVs, based on mutation recurrence in 

breast-cancer cohorts and motif disruption scores within these enhancers that are 

important for controlling gene expression. Of the eight motif-disrupting SNVs that 

we tested, six exhibited consistent up- or down-regulation (relative to wild-type 

cells) in multiple biological replicates. 

Specifically, CDH26 (an intronic region in chromosome 20) serves as an in 

interesting example to illustrate the value of ENCODE data integration (Fig. 6C). 

The signal shapes for both histone modification and chromatin accessibility 

(DNase-seq) data indicate its active regulatory role as an enhancer in MCF-7. This 

was further validated using STARR-seq assays (Fig. 6C). Hi-C and ChIA-PET 

linkages indicated that the region is within a topologically associated domain (i.e., 
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a “TAD”) and validated a regulatory connection to the breast-cancer-associated 

gene SYCP28. We further observed strong binding of many TFs in this region in 

MCF-7. Motif analyses predict that the particular mutation from a breast cancer 

patient significantly disrupts the binding affinity of several TFs, such as FOSL2, in 

this region (Fig. 6C). Luciferase assays demonstrated that it introduces a 3.6-fold 

reduction in expression relative to that in wild-type cells, thereby indicating a 

strong repressive effect on enhancer functionality. 

Conclusion 

This study highlights the value of deep data integration over many novel 

assays to annotate noncoding elements of the genome. We provided accurate 

tissue-specific extended gene annotations and extensive regulatory networks after 

integration of thousands of experiments. We find the one of the best application of 

our resource is in cancer since there are many of cell types are associated with 

cancer. 

A key caveat related to part of our resource, such as rewiring in cell-type 

specific networks, is based on associating a particular cancer type with a composite 

normal. Such "correspondences" may be approximate. Another limitation is that 

most of the current release is performed over many cells. However, heterogeneity 

in tumor cells and their microenvironments (e.g., immune cell infiltrates, hormonal 

factors, normal cell populations, etc.) significantly affect tumor growth and 

development. We therefore believe that the development of single-cell sequencing 

technologies may better capture tumor biology at a higher resolution and provide 

new insights in cancer. 

Nevertheless, we feel that EN-CODEC currently provide the most 

comprehensive view of oncogenic regulatory landscapes available. No other 

system has this scale of functional characterization data. Moreover, the 

heterogeneous nature of cancer means that even tumor cells from a given patient 

usually show distinct molecular, morphological, and genetic profiles9. It will be 

difficult to obtain a "perfect" match even from real tumor and normal tissues taken 

from a single patient. 

In general, our study underscores the value of large-scale data integration, 

and we note that expanding the scale of our approach in a number of dimensions is 

straightforward. For example, we observed increased accuracy in BMR estimation 

with additional genomic features; we expect that this accuracy will increase further 

still with more features. We successfully identified extended gene annotations and 

regulatory networks for model systems that are already replete with advanced 

functional assays like eCLIP and STARR-seq; our methods can be readily 
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extended to further model systems when they are similarly assayed in the future. 

Given the rewiring formalism presented here, it should be straightforward to 

expand the analysis to a greater number of TFs. (In fact, we note that the re-wiring 

formalism actually provides a way of selecting candidate TFs and cell types). We 

anticipate that this will provide a clearer and more accurate picture  of the 

spectrum of regulators that are affected by extensive chromatin changes, and thus 

help prioritize research efforts in cancer. Finally, we demonstrated the utility of our 

resource for assisting in the detection of potential cancer drivers in limited 

publically available cohorts; we anticipate that integrating ENCODEC with the 

large cohorts currently being assembled (e.g., PCAWG, pancaner.info) will 

provide even greater value. 

  

============= JZ2All: forget about figure legend at this round =========== 

  

Figure Legend 

Figure 1 

Schematic of the EN-CODEC resource. Columns list cell types and rows list 

assays. Pink box: “Top-tier” cancer-associated resources in ENCODE highlighting 

the depth of the resource. Yellow box: Cell types with several assays in the main 

ENCODE Encyclopedia highlighting the breadth of the resource. Green box: Cell-

type specific analyses based on deep annotations of top-tier cell lines. Blue box: 

Merged analyses based on wide-coverage of many cell types. The actual content of 

our resources (annotations, background mutation rate, networks) are shown in the 

dotted black box. 

  

Figure 2 

BMR modeling and mutation burden analysis. (A) Improvement of BMR 

estimation by accumulation of principal components of multiple genomic features. 

(B) In breast cancer, regression coefficients of remaining features after 

incorporating MCF-7 replication timing. (C) Schematic of extended gene 

definition. (D) Significantly burdened genes using noncoding elements (TSS), 

coding regions (CDS) and extended genes, alongside germline mutational status in 

liver cancer. (E) Expression of BCL6, which is only identified as recurrently 

mutated using extended genes, is correlated with patient survival. 

  

http://pancaner.info/
http://pancaner.info/
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Figure 3 

Integration of ENCODE networks with expression profiles. (A) Heatmap of 

regulatory potentials of TFs/RBPs to drive tumor-to-normal expression changes; 

red and blue indicate up- and down- regulation. (B) Elevated MYC regulation 

activity is associated with reduced disease specific survival (DSS) in breast cancer 

(top); MYC knockdown in MCF-7 leads to significantly larger expression 

reduction in MYC target genes (bottom). (C) (i) MYC expression is more 

positively correlated with its target genes as compared to other TFs; (ii) MYC 

frequently form FFLs with NRF1, and these are mostly coherent; (iii) In the MYC-

NRF1 FFLs, OR-gate logic predominates. (D) Elevated SUB1 regulation activity is 

associated with reduced overall survival (OS) in lung cancer (top); SUB1 

knockdown in HepG2 leads to reduced target gene expressions (bottom). 

  

Figure 4 

Regulatory network hierarchies. TFs are organized into layers such that top layer 

TFs tend to regulate others, while bottom layer TFs tend to be regulated by others. 

(A) Generalized network: top layer TFs are enriched with cancer associated genes 

and demonstrate larger regulation potentials to drive tumor-to-normal gene 

expression changes. (B) Cell-type specific network using K562 and GM12878: top 

layer TFs significantly drive tumor-normal differential expression; bottom layer 

TFs are more often associated with burdened binding sites. 

  

Figure 5 

TF-Gene network rewiring. Green and red arrows designate edge gain and loss, 

respectively. (A) Rewiring index in a model for CML by direct edge counts using 

both proximal and distal networks (top) and by gene community analysis (bottom). 

TFs that gain edges tend to rewire away from stem cell-like state while TFs that 

lose edges tend to rewire toward stem cell-like state. (B) Examples of network 

rewiring for specific TFs in multiple cancer types. (C) Conceptual schematic for 

rewiring towards or away from a stem cell-like state. (D) Genomic features 

associated with gained or lost edges. 

  

Figure 6 

Variant prioritization and validation. (A) Stepwise variant prioritization scheme 

utilizing EN-CODEC resources. We prioritize large-scale regulators based on 

network and expression analysis; regulatory elements based on mutation burden; 
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then single nucleotide by motif gain/loss and conservation score. (B) Small-scale 

validation of prioritized variants using luciferase reporter assay. (C) Multiscale 

integrative analysis on Sample 5 with assorted functional genomics data. We start 

from large-scale Hi-C linkages, and then zoom into element level by highlighting 

signal tracks of histone modification marks and DNase hypersensitivity together 

with various TF binding events. At the nucleotide level, FOSL2 motif is disrupted. 
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