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Background
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• Inflammatory Breast Cancer (IBC)

– IBC is a clinical diagnosis, no molecular marker

– Rare (<5%) & Aggressive

– 5-year survival rate: limited to 40%[1]

– Affects young patients population

– characterized by a highly metastatic phenotype

– NO known risk factors specified to IBC

– failed to identify, recurrent, IBC-specific gene 

expression or DNA copy number alterations

Fig1 (A) Clinical and pathologic signs of IBC. 
Erythema of the breast with tumor nodules 
extending to the opposite breast (arrows).[2]

[1] Bertucci, Francois, et al. Cancer research 64.23 (2004): 8558-8565.
[2] Woodward, Wendy A., et al. Seminars in radiation oncology (2009).



Goals

• Is there a unique, highly recurrent DNA sequence alteration that defines IBC (as CDH1 
deletion defines ILC) in the coding or non-coding regions of the whole genome?

• What are the genomic differences between IBC and Non-IBC
– Single nucleotide variants (SNV), insertions/deletions (indel)
– Large structural variations (SV)
– Copy number variations (CNV)
– Germ-line polymorphisms (SNP)
– Mutation signatures
– Clonal composition
– Bacteria or non-human genome
– Canonical cancer pathway-level alterations
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– N=20 IBC biopsies from The Morgan Welch IBC Clinic/Research Program of MDACC
• DNA from snap frozen, newly diagnosed IBC
• DNA from matched blood samples
• individually reviewed for accuracy of diagnosis
• tumor cellularity estimated by pathologists
• N= 9 ER+/HER2-, 6 ER-/HER2-, 5 HER2+

– N=23 Non-IBC breast cancer data from the TCGA for comparison
• matched ER, PR and HER2 status, age, race
• N= 10 ER+/HER2-, 11 ER-/HER2-, 2 HER2+

Materials



Methods
– Illumina pair-end whole-genome sequencing at Yale Center for Genome Analysis

• median coverage: 60X (cancer) and 40X (normal)

• percent of mapped reads 99.3% (cancer) and 99.2% (normal)

– Germline and somatic variants, INDELs as well as large scale structural variants for both IBC and 
non-IBC cohorts were identified using the same pipeline

– FunSeq2[1] and PredictSNP2[2] were used to annotate variants and estimate functional impact

– DeconstructSigs[3] was used to determine mutational signatures

– Non-human sequences were detected using the exceRpt small RNA-seq pipeline[4].

– Clonal architecture and tumor evolution analysis were implemented by SciClone[5].

5[1] Fu, Yao, et al. Genome biology 15.10 (2014): 480. [2] Bendl, Jaroslav, et al. PLoS Comput Biol 12.5 (2016): e1004962. [3] Rosenthal, Rachel, et al. Genome 
biology 17.1 (2016): 31. [4] The Genboree Workbench [ http://www.genboree.org/] [5] Miller, Christopher A., et al. PLoS Comput Biol 10.8 (2014): e1003665.



Calling pipeline for the multiple types of genomic variants
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Raw FASTQ

Alignment by BWA-MEM
PCR removal
Bam Sorting 

SNV & INDEL CALLING MODULESV MODULE CNV CALLING MODULE

Meerkat

MuTect & Strelka

BIC-Seq & Somatator

IBC
WGS

Non-IBC
WGS

Exogenous sequence detection

Somatic

GATK Haplotype Caller

Germline



Results
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Somatic Single Nucleotide Variants (SNVs)
Identified 114,563 somatic SNVs in the IBC cohort, median 3,789 range: 424 - 16,662 including 1,282 

variants (1.12%) in the coding regions

Number of mutations in IBC vs non-IBC

p*=0.2895 p*=0.3157

Number of mutations and overall mutational rate are similar between IBC and Non-IBC

Overall mutation rate by ER status
in IBC and non-IBC

7* P-values calculated by Wilcoxon rank sum test.
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Functional Annotations of Somatic SNVs
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The numbers of coding (A) or noncoding variants (B) 
within each annotation category are similar between 
IBC and non-IBC cohorts

IBC Non-IBC

[1] Fu, Yao, et al. Genome biology 15.10 (2014): 480.
[2] Bendl, Jaroslav, et al. PLoS Comput Biol 12.5 (2016)

[2]

[1]



The top 20 most frequently affected genes by deleterious somatic SNVs in IBC

p>0.1
Fisher exact test
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Significantly differentially mutated HFI genes between IBC and Non-IBC

The only significantly more frequently mutated gene in IBC was MAST2 in the non-coding region 
affecting 4/20 (20%) of cases. Each case had a different variant, each predicted to be deleterious.

MAST2 = Microtubule Associated Serine/Threonine 
Kinase 2 MAST2 can interact with Protocadherin LKC 

and is a new candidate for a tumor suppressor of colon 

and liver cancers associated with contact inhibition of cell 

proliferation
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Frequency of MAST2 alterations across cancer types in the TCGA

Cancer type
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Canonical cancer pathway alteration by deleterious somatic SNVs

• 14 essential cancer pathways including sets of tumor suppressor genes and oncogenes[1]

14[1] Davoli, Teresa, et al. Science 355.6322 (2017): eaaf8399.
* Fisher exact test (one-side)

CELL.CYCLE

CHROMATIN.REMODELING

DIFFERENTIATION.AND.DEVELOPMENT

DNA.DAMAGE

IMMUNE.REGULATION

MAPK.AND.PI3K.PATHWAY

METABOLISM

PI3K.PATHWAY

RAS.PATHWAY

RNA.METABOLISM

RTK.PATHWAY

TGFB.PATHWAY

TRANSCRIPTION.REGULATION

WNT.SIGNALING

25%

55%

20%

55%

5%

15%

15%

30%

5%

20%

30%

5%

60%

20%

22%

61%

13%

70%

9%

43%

22%

48%

17%

9%

52%

13%

61%

26%

Somatic SNV
Absence
Presence

IBC NonIBC

CELL.CYCLE

CHROMATIN.REMODELING

DIFFERENTIATION.AND.DEVELOPMENT

DNA.DAMAGE

IMMUNE.REGULATION

MAPK.AND.PI3K.PATHWAY

METABOLISM

PI3K.PATHWAY

RAS.PATHWAY

RNA.METABOLISM

RTK.PATHWAY

TGFB.PATHWAY

TRANSCRIPTION.REGULATION

WNT.SIGNALING

25%

55%

20%

55%

5%

15%

15%

30%

5%

20%

30%

5%

60%

20%

22%

61%

13%

70%

9%

43%

22%

48%

17%

9%

52%

13%

61%

26%

Somatic SNV
Absence
Presence

IBC NonIBC
• Cell cycle
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Canonical cancer pathway alteration by deleterious germline SNVs

• 14 essential cancer pathways including sets of tumor suppressor genes and oncogenes[1]

[1] Davoli, Teresa, et al. Science 355.6322 (2017): eaaf8399.
* Fisher exact test (one-side)
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• PI3K pathway
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• RTK pathway

• TGFB pathway

• Transcription regulation

• WNT signaling
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TGFβ pathway alterations by deleterious germline SNVs
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• TGFβ signaling pathway
– The transforming growth factor-beta (TGF-beta) family members are structurally related secreted cytokines 
– A wide spectrum of cellular functions such as proliferation, apoptosis, differentiation and migration
– Localized and reversible TGFβ signaling switches breast cancer cells from cohesive to single cell motility[1]

– TGF-β signaling pathway is suppressed in IBC carcinoma tissues compared to non-IBC[2].
• Attenuation of TGF-β signaling pathway may contribute to tumor emboli formation and lymphatic invasion of IBC carcinoma cells[2].

[1] Giampieri, Silvia, et al. Nature cell biology 11.11 (2009): 1287. [2] Van Laere S.J., Ueno N.T., et al. Clin Cancer Res. 2013;19(17):4685–4696. 
[3] Robertson, F. M. et al. J. Clin. Exp. Pathol. 2, 119 (2012). [4] Zhang, Juan, et al. Protein & cell 5.7 (2014): 503-517.
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• SMAD4
o Three IBC samples have different deleterious variants
o A member of the Smad family of signal transduction proteins
o SMAD4 was blocked by SMAD6, which was a repressor of 

TGFβ signaling and significantly upregulated in IBC[3]

• USP9X
o Four IBC samples reported 5 deleterious variants, with 

two of them have identical location
o A deubiquitinating enzyme essential for TGFβ signaling
o Controls SMAD4 mono-ubiquitination[4]



Mutational Signature Analysis
Mutational spectrum of IBC vs. Non-IBC cohorts

• The top four dominant mutation types (C>G 

and C>T) are shared by two cohorts.

• Mutations in IBC were more broadly 

distributed.

• COSMIC[1] delivered 30 validated signatures

• Found in breast, ovarian, and pancreatic cancers.
• Associated w/ germline and somatic BRCA1/2 

mutations
• failure of DNA double-strand break-repair by HR

Decomposition of mutational spectrum by 
validated mutational signatures

Mutation
Spectrum Validated

Signatures

Weights/Contributions of
each signature

• Goal: find optimal E while M and S are known
• Methods:

• Generalized linear model[2]

• Linear programming/optimization

17

Different mutational processes generate unique combinations of mutation types, termed “Mutational Signatures”

[1] COSMIC : Catalogue of somatic mutations in cancer 
[2] Rosenthal, Rachel, et al. Genome biology 17.1 (2016): 31. 
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Clonal Architecture
Mutant-Allele Tumor Heterogeneity (MATH[1]) 

score of IBC and Non-IBC

[1] Mroz, Edmund A., and James W. Rocco. Oral oncology 49.3 (2013): 211-215.
[2] Miller, Christopher A., et al. PLoS Comput Biol 10.8 (2014): e1003665.

p=0.8377

Number of cell cones estimated by SciClone[2]

in IBC and non-IBC

There is no difference in overall mutational heterogeneity, but there seems to be a lower clonality in IBC 
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Profile of somatic CNV events in IBC cohort
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Somatic gain events profiles: IBC vs. NonIBC
• For each 1Mb bin across the entire genome, compare the frequency of gain events in two cohorts; 

implement the fisher’s exact test

Chr1: BCL9, FCGR2B,
SDHC, DDR2, FH

Chr16: AXIN1, GRIN2A, CIITA, SOCS1,
RMI2, TNFRSF17, RUNDC2A, ERCC4,

MYH11, IL21R, FUS
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Somatic loss events profiles: IBC vs. NonIBC
• For each 1Mb bin across the entire genome, compare the frequency of loss events in two cohorts; 

implement the fisher’s exact test

Chr2: LRP1B, ACVR1,
ACVR2A, ERBB4, ATIC

Chr4: RAP1GDS1,
TET2, LEF1 Chr16: CDH11
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Types of somatic structural variants: IBC vs. NonIBC
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Deletion Insertion Invertion

Tandem duplication Interchromosomal translocation
Wilcoxon test

Deletion 7.3E-04

Insertion 6.7E-07

Inversion 1.1E-04

Tandem_Dup 1.1E-07

Transl_Inter 3.3E-02

IBC has higher fractions of complex structural variants, while lower fractions of simple structural variants.



Landscape of somatic variants in IBC whole-genome sequences
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IBC-101

• From outer to inner rings, each represents:
• chromosome ideogram ( HG19.Human.CytoBand)
• SNV : purple
• CNV: green->loss; red->gain
• SV: green->deletion; red: tandem duplication; black -> 

Inversion; blue: Interchromosomal translocation
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Top 100 most frequent non-human sequences in the IBC cancer and normal DNA

• Propionibacterium acne
• linked to the skin condition 

of acne
• In another study, detected in 

12/23 IBC vs. 0/3 NonIBC[1]

• common skin contamination in 
cancer & normal samples

[1] Fernandez, S. V., et al. (2013): Cancer Research P6-12.



Summary of genomic difference between IBC vs. NonIBC

Genomic features Existence of significant difference
Single nucleotide variants (SNV), insertions/deletions (indel) MAST2 is more frequently mutated in IBC

Structural variations (SV) More complex SVs in IBC while overall loads are similar

Copy number variations (CNV) CN loss: chr2, chr4 and chr16; CN gain: chr1 and chr16

Germ-line polymorphisms (SNP) USP9X is more frequently mutated in IBC

Mutation signatures No

Clonal composition No; maybe a lower clonality in IBC 

Bacteria or non-human genome common skin contamination in IBC cancer & normal samples

Canonical cancer pathway-level alterations TGFβ pathway is significantly more mutated in IBC
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Conclusions

• The overall mutation load, genomic heterogeneity and mutation signatures are similar between IBC 
and non-IBC.

• However,
- Some genes maybe more frequently mutated in IBC, e.g. our lead candidate is MAST2
- A few of canonical cancer pathways differentially mutated in IBC vs. NonIBC. 

- TGFβ pathway is significantly more mutated in IBC by germline variants
- There are significantly different frequency of copy number changes in IBC vs. NonIBC

- copy number losses in Chr2, Chr4 and Chr16
- copy number gains in Chr1 and Chr16

- Complex structural variants more frequently appear in IBC
- Interchromosomal translocation & Tandem duplication

• We find no plausibly pathogenic non-human infectious agents in the IBC genome. Propionibacterium 
acne seems to be a common skin contamination in both normal and cancer samples.
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