
 

RESPONSE LETTER 
-- Ref1.1.1 – Presentation of in vivo validations -- 

<ASSIGN>MTG 
<PLAN>need to incorporate text into draft 
<STATUS>80%  

 
Reviewer 
Comment 

I understand that the authors tested 102 predicted mouse 
enhancers (plus 31 human orthologs) in transgenic mice, 
and had another 151 regions from an independent 
unpublished effort (Moore, in review) available for 
comparison. This is an unprecedented effort to assess 
enhancer predictions in vivo, making a systematic and 
rigorous comparison between the predictions and the 
experimental outcomes of the in vivo assays highly 
interesting. However, I find the presentation in the main 
text and figures not satisfying and partly confusing. For 
example, what does “61% predicted active rate versus 70% 
observed active rate” (page 10) mean? I interpret this 
statement as 61% of the tested regions were predicted to 
be positive and 70% of the tested regions were found to be 
positive – there is no indication if the predicted and 
observed positives actually agree.   
 
 

Author 
Response 

Thanks the reviewer for pointing this out. We agree that this sentence is 
a bit confusing and we’ll rewrite it. Here we are describing the 
experimental test result of 62 elements chosen from top, middle and 
bottom rank of forebrain H3K27ac signal (e.g. how many of them are 
active in each tier). We made a rough estimation of whether these 
elements would be active by their overlap with the DHS peaks, but 
since this estimation is not very relevant, we can remove it to avoid 
confusion. A rigorous assessment of the our model prediction using 
these experimental data is presented later in the table and ROC/PR 
curve of Figure 4. Here we are showing that indeed the highest ranking 
tier has the highest validation rate, and we provide the detail validation 
result of each element in the supplementary table.   
 

Excerpt From 
Revised Manuscript 

 
 
 

 

-- Ref1.1.2a – Presentation of in vivo validations -- 
<ASSIGN> MTG 
<PLAN> recalculation and revise figure 4 
<STATUS>75% 
 



 

Reviewer 
Comment 

It is my understanding that the authors have predictions 
for different mouse tissues and – for each tested 
candidate – have a readout of activity across the entire 
embryo, i.e. all tissues. This should allow the rigorous 
assessment of the prediction accuracy per tissue in 
comparison to an appropriate random model that accounts 
for the overall number of active regions per tissue (I 
assume Fig. 4B and C come close to this, but the 
corresponding text is confusing – I don’t understand what 
Fig. 4A corresponds to).  

Author 
Response 

Thanks to the referee’s comment. We have revised the 
manuscript and Figure 4 to clarify and incorporate the referee’s 
points. In addition, since ENCODE has updated its ChIP-seq 
processing pipeline and reprocessed many of the ChIP-seq data, 
we redid our evaluation on mouse with the newly processed data 
and updated the figures accordingly. Please refer to the excerpt 
below: 
 
 

Excerpt From 
Revised Manuscript 

 
To test the activity of predicted mouse enhancers in vivo, we performed 
transgenic mouse enhancer assay in e11.5 mice for 133 regions in heart and 
forebrain, including 102 regions selected based on the H3K27ac signals rank 
of corresponding mouse tissues, and 31 regions selected by an ensemble 
approach from human homolog sequences. For each tested candidate, a 
read out of activity across the entire embryo is collected. The number of 
transgenic mice that showed the pattern for each tissue is also recorded 
for reproducibility check (See Methods and Supplement Table S4, S5). In 
addition, we obtained another set of transgenic mouse enhancer assay results 
from ENCODE Phase III Encyclopedia (Moore et al., in review), which 
assessed 151 regions in mouse e11.5 hindbrain, midbrain and limb. The 
combined results from these two large sets of validations, as well as any 
previously tested tissue-specific e11.5 enhancers from VISTA database, allow 
us to comprehensively evaluate our enhancer predictions in all six e11.5 
mouse tissues.  
 
… 
 
We evaluated the predictability of our matched filter model for each 
individual histone marks and DHS, as well as the integrated SVM 
model (Figure 4). For each tissue, our model ranks all the tested 
candidate elements with their predicted activity in this tissue 
using either individual feature or the integrated SVM model. Then 
the label of each element from experiment read out is used to 
assess the predictions with ROC and PR curve. One average, the 
integrated model trained with drosophila STARR-seq data 
achieves an AUROC of 0.80 and an AUPR of 0.37 for tissue-
specific enhancer predictions in mouse (Figure 4A). Unlike 
AUROC, where the baseline is always 0.50, AUPR is more 



 

sensitive to the positive to negative ratio, with a baseline being 
just the positive rate. Since the positive rate from the experiment 
varies from 8.8% 17.6% among the tissues, the AUPR has a larger 
variance compared the AUROC.  
  
Consistent with previous findings from STARR-seq data, when we 
assess each histone modification signals independently in mice, 
H3K27ac signal remains best performed histone marks for 
predicting enhancers. In addition, the DHS signal also performs 
well as an independent source, as it likely shares some common 
information with H3K27ac. The integrated model performs similar 
with the highest prediction feature in each tissue. This is likely 
due to the fact that the model is trained entirely with drosophila 
matched filter scores and might not be best optimized in the 
mammalian systems. We believe that the integrated model would 
achive better performance when applying our framework directly 
to mouse tissue STARR-seq dataset when it becomes available. 
  
We also did similar evaluation using the regulatory elements identified 
by the transduction-based FIREWACh assay in mouse embryonic stem 
cells (mESC) [36]. With the same metaprofiles, the predictions are 
based on epigenetic signals of mESC available from ENCODE website. 
Again, we observe similar results for individual histone marks and 
combined SVM model (Figure S16). As the in vivo and FIREWACh 
assays utilized a single core promoter to validate regulatory regions, 
the performance of the different models in Figures 4 and S16 are 
probably underestimated. 
 



 

 
 
Figure 4: Performance of matched filters and integrated model for 
predicting active enhancers in mice. The performance of the 
DrosophilaSTARR-seq based matched filters and the integrated model 
for predicting active enhancers identified by transgenic mouse 
enhancer assays in 6 different tissues of E11.5 mice. A) The AUROC 
and AUPR for the integrated SVM model in 6 tissues. The weights of 
the different features in the integrated model is the same as the weights 
shown in Figure 3 for enhancers. B) The individual ROC curves of each 
feature and the integrated SVM model for each tissue. C) The individual 
PR curves of each feature and the integrated SVM model for each 
tissue. 
 
 

 
 



 

-- Ref1.1.2b – Presentation of in vivo validations -- 
<ASSIGN>MTG + CY 
<PLAN>didn't work on this yet , CY to match IDs in the tbl v the website  
<STATUS>25% 
Reviewer 
Comment 

Also, the raw images should be made available either as 
supplementary information of via a suitable website (e.g. 
the VISTA database).  
 

Author 
Resonse 

We have made the raw images of these experimental results 
available through the VISTA enhancer browser.  
 
 
 

Excerpt From 
Revised Supplement 

Need to add this to supplement 
 
CY: revise supplement table 
indicate which supplement table and make sure coordinates are 
searchable on VISTA enhancer browser 
 
 

 
 
 
 
 

-- Ref1.2.1 – Validation in human cell lines: Experimental design-- 
<ASSIGN> MTG (& Sutton) 
<PLAN> Redo experiments and represent the results in figures  
<STATUS>70% 
Reviewer 
Comment 

I find the presentation of the validation in human cell 
lines confusing and not sufficiently well controlled. Most 
importantly, the tests for the individual enhancers don’t 
seem to be replicated, such that one cannot d 
raw any statistically sound conclusion about the activity 
of each putative enhancer. Reported are only two numbers 
(corresponding to the fold change of gene expression of 
each enhancer in the forward and reverse orientation) in 4 
different cell lines (table S7). These numbers often don’t 
agree well and in some cases, the nature of these numbers 
is unclear. For example, what does “0. 1.06” or “0, 1.73” 
(note the “.” vs. “,”) mean – did the forward experiment 
fail or was the outcome exactly 0? These validations need 
to be performed in triplicates per cell line and construct 
such that each region’s activity can be rigorously 
assessed, allowing the subsequent assessment of the 
predictions for each cell line.  

Author 
Response 

We acknowledge the referee’s comment. We have revised both 
the manuscript and the supplement to describe the details of the 
human cell line validation experiments to make it more clear.  



 

 
The original experiment tested each enhancer in all four cell lines 
in replicates for both forward and reverse orientation.  Based on 
the referee’s suggestion, we performed another set of triplicate 
experiments on these randomly selected putative enhancers in 
H1-hESC. The triplicate experiment read out is consistent with 
our previous report. We show the result of each replicate in the 
supplementary tableXX and a supplementary figure is provided to 
visualize the data. As the figure shows, the validation 
experiments are highly reproducible, with the correlation between 
each pair of replicate being 0.9 and above.  
 
 

Excerpt From 
Revised Manuscript 
and Supplement 

 
Manuscript: 
 
We proceeded to validate our STARR-seq based model for predicting human enhancers using a 
cell-based transduction assay. A third generation, self-inactivating HIV-1 based vector system in 
which the eGFP reporter was driven by the DNA element of interest was used to test putative 
enhancers after stable transduction of various cell lines, including H1 human embryonic stem 
cells (hESC) (Figure 5). The predicted enhancers, ranging from 650 to 2500 bp, were PCR 
amplified from human genomic DNA and inserted immediately upstream of a basal Oct-4 
promoter of 142 bp. Each putative enhancer was tested in all four cell lines in replicates for 
both forward and reverse orientation. For controls experiments, VSV G-pseudotyped 
vector supernatants from each were prepared by co-transfection of 293T cells. These were 
used to transduce the same cell lines, with empty vector and FG12 vector serving as 
negative and positive controls respectively. Note that the empty vector did have the basal 
Oct-4 promoter along with the IRES-eGFP cassette. Putative enhancer activity was 
assessed by flow cytometric readout of eGFP expression 48-72 h post-transduction, 
normalized to the negative control 
 
 
Supplement: 
 
The activity of each element is assessed by the read out of FlowJo cytometer. The read-out 
were normalized to the control and the fold change is represented in table S7, where 0 
occurs when the number of positive cells is less than that of the negative control according 
to FlowJo gating.  
 
 



 

 

 

 
 

-- Ref1.2.2 – Validation in human cell lines: Experimental design-- 
<ASSIGN> MTG  
<PLAN> Agree and remove  
<STATUS> Done 
Reviewer 
Comment 

Alternatively, the cell lines for which replicate 
experiments cannot be performed should be removed to 
maintain a minimal quality standard for such validation 
experiments. 

Author 
Response 

Thanks and we agree with the referee’s suggestion. We have 
made this clear in the manuscript and removed the two elements 
for which the experiments cannot be performed from the table. 
 

Excerpt From 
Revised Manuscript 
and Supplement 

Of these 25 putative enhancers, 23 were successfully PCR-amplified and cloned into the HIV 
vector in both directions.  
 

 
 
       -- Ref1.2.3 – Validation in human cell lines: Main text statements-- 
<ASSIGN> MTG 
<PLAN>Remove the text  
<STATUS>90% 
Reviewer 
Comment 

The same applies to the two statements in the main text 
(page 11): “a few elements showed significantly higher 
levels of gene expression in one of the orientations” and 
“even though some of the elements were preferentially 
active in one of the cell lines”. Both statements are not 



 

sufficiently supported by data: neither has a systematic 
comparison been done, nor are the data on which these 
statements are based replicated. These experiments need to 
be performed according to minimal quality standards or the 
statements need to be removed. 

 
 

Author 
Response 

Here we are describing part of the experiment result rather than 
making strong statement about the directionality of general 
enhancer activity. As shown in the figure above, we find that 
some elements (eg, 7, 8 and A8) have significant different fold 
change (compared to control) for different directions, and the 
results are based on three replicates. However, as we are not 
trying to make strong statement about the directionality of 
enhancers, we agree to remove this description and present the 
raw data to the readers.  
 
As we clarified under section 1.2.1, the experiments are done in 
replicates and are normalized under the control. 
 

Excerpt From 
Revised Manuscript 

 

 
                  -- Ref1.2.4 – Validation in human cell lines: Figure 5 -- 
<ASSIGN> MTG 
<PLAN>break response into 2-3 parts 
<STATUS>90% 
Reviewer 
Comment 

The presentation is also confusing: for example, figure 5 
and the main text state that the Oct4 promoter is used, 
but also that a “housekeeping promoter is used” (page 11). 

Author 
Response 

We have made changes to the description in the manuscript so it 
is clearer. A minimal basal Oct4 promoter was used in the SIN 
HIV vector since a primary focus of the work was DNA elements 
active in hESC.  

Excerpt From 
Revised Manuscript 

We proceeded to validate our STARR-seq based model for predicting human enhancers using a 
cell-based transduction assay. A third generation, self-inactivating HIV-1 based vector system in 
which the eGFP reporter was driven by the DNA element of interest was used to test putative 
enhancers after stable transduction of various cell lines, including H1 human embryonic stem 
cells (hESC) (Figure 5). The predicted enhancers, ranging from 650 to 2500 bp, were PCR 
amplified from human genomic DNA and inserted immediately upstream of a basal Oct-4 
promoter of 142 bp.  
 
 

                  
 

 -- Ref1.2.5 – Validation in human cell lines: Figure 5 -- 
<ASSIGN> MTG 



 

<PLAN>  
<STATUS>90% 
Reviewer 
Comment 

Figure 5 shows an IRES-GFP construct, which is typically 
used in combination with a selection marker, yet no such 
marker is shown and the methods don’t indicate selection 
(which would distort enhancer activity measurements). 

Author 
Response 

IRES-eGFP was used downstream of the DNA elements to allow 
flow cytometric analysis of positive cells after cell transduction. 
The presence of a selectable marker gene would have needlessly 
increased the size of the vector, which would be problematic for 
some of the longer elements. IRES was used so that there would 
be eGFP translation/readout even if transcription began within the 
element itself, several kilobases upstream of eGFP start codon. 

Excerpt From 
Revised Manuscript 

 

 
 
 

 -- Ref1.2.5 – Validation in human cell lines: Figure 5 -- 
<ASSIGN> MTG 
<PLAN>  
<STATUS>90% 
Reviewer 
Comment 

The authors should also comment on the LTRs' promoter 
function and if this could influence their results. 

Author 
Response 

To address concerns regarding the HIV LTR, figure 5 now shows 
SIN HIV vector structure after genomic integration, with the 
duplication of ~400 bp deletion of the U3 portion of the LTR. This 
essentially renders the LTR inactive. However, to take into 
account possible residual activity (and any activity of the basal 
Oct4 promoter), all of the transduction data is normalized to that 
of EV, tested on the same cells. 

Excerpt From 
Revised Manuscript 

 
Figure 5: Enhancer Validation Experiments. A) Schematic of the 
enhancer validation experiment flow.  At top is the third generation HIV-



 

based self-inactivating vector (deletion in 3’ LTR indicated by red 
triangle), with PCR-amplified test DNA (blue, two-headed arrow 
indicates fragment cloned in both orientations) inserted at 5’ of a basal 
(B) Oct4 promoter driving IRES-eGFP (green). Vector supernatant was 
prepared by plasmid co-transfection of 293T cells. Targeted cells are 
tranduced and then analyzed by flow cytometry a few days later. 
Shown below is the expected post-transduction structure of the SIN HIV 
vector, with a duplication of the 3’ LTR deletion rendering both LTRs 
non-functional  B) Fold change of gene expression of eGFP is 
compared between negative elements and putative enhancers chosen 
at random, with p-value measured by Wilcoxon signed-rank test. 

 
 

-- Ref1.3.1a – Prediction algorithm: Optimization and cross-validation -- 
<ASSIGN> ANS 
<PLAN> split and edited. 
<STATUS>Almost done 
 
Reviewer 
Comment 

The brief description of the metaprofile-based predictions 
on page 6 suggests optimization steps that are not well 
explained and could break cross-validation if performed 
incorrectly.  

Author 
Response 

Thanks for the referee’s comment. We have clarified and added 
more details to explain how we did the cross validation in the 
methods section within the supplemental text. The training data 
for creating the metaprofile and machine learning models were 
distinct from the test data during all cross validation tests within 
the manuscript.  
 

Excerpt From 
Revised Manuscript 
(Suppl.) 

 
During the ten fold cross validation with a single histone mark, the 
profiles are created with 90% of the STARR-seq positives and 10% of 
the positives are used for testing the accuracy of the model. With the 
main SVM model within the manuscript, 6 different matched filter 
profiles are created with 90% of the STARR-seq positives and to train 
the model while 10% of the positives are used for testing the accuracy 
of the SVM model. 

 
 

-- Ref1.3.1b – Prediction algorithm: Templates #1 -- 
<ASSIGN> ANS 
<PLAN> split and edited. 
<STATUS>50% 
Reviewer 
Comment 

Specifically, the authors state that they “scanned with 
multiple matched filters with templates that vary in width 
between the two maxima in the double peak” (page 6). 



 

 How many such templates are used and how many parameters 
does this add to the model?  

Author 
Response 

Thanks to the reviewer for pointing this out. We have added 
some details to clarify this. We have tried to make this clearer in 
the text. We have modified the SI to clarify this. and the answer 
the questions posed by reviewer. 

Excerpt From 
Revised Manuscript 
(Suppl.) 

A single metaprofile or template is used for each epigenetic mark. 
However, the distance between the two peaks in the peak-trough-
peak can vary as shown in the supplementary information. We 
use a single template with an adjustable parameter set during 
fitting with matched filter. The width of the region was allowed to 
vary between 300-1100 basepairs (at steps of 25 basepairs). The 
width of the template adds a second variable during the fitting of 
the template to the regions of  the genome (in addition to the 
template itself).  

 
 

-- Ref1.3.1c – Prediction algorithm: Templates #2  -- 
<ASSIGN> ANS 
<PLAN> split and edited. 
<STATUS>50% 
Reviewer 
Comment 

Was the template created prior to cross validation or 
during cross validation? 

Author 
Response 

We have modified the methods section in the supplemental text 
to make this clearer.  

Excerpt From 
Revised Manuscript 
(Suppl.) 

During the ten fold cross validation with a single histone mark, the 
profiles are created with 90% of the STARR-seq positives and 10% of 
the positives are used for testing the accuracy of the model. With the 
main SVM model within the manuscript, 6 different matched filter 
profiles are created with 90% of the STARR-seq positives and to train 
the model while 10% of the positives are used for testing the accuracy 
of the SVM model. 

 
 
                    -- Ref1.3.2 – Prediction algorithm: H3K27ac and DHS -- 
<ASSIGN> MTG 
<PLAN>Mostly agree and explain    
<STATUS> 80% 
Reviewer 
Comment 

I also note that the result that H3K27ac has the highest 
predictive value and that DHS is partly redundant to 
H3K27ac is highly confounded by 1. the choosing of 
templates based on H3K27ac and subsequent application to 
the other histone modifications (page 12, top paragrah) 
and 2. the fact that the metaprofile with the two maxima 
and the dip in-between (plus its width) already captures 
the DHS signal, which is complementary. 

Author We see the referee’s point that there could be different 



 

Response interpretations of the weights of features from trained SVM mode. 
Specifically: 
 
In relation to #1 above, we agree that choosing the template 
based on H3K27ac could potentially gives H3K27ac more 
weights. However, H3K27ac has the highest performance even 
when we compare all histone marks independently. So it’s not 
surprising that the model selects H3K27ac as the highest 
predictive value. The choose of templates based on H3K27ac is 
to define a consistent double peak region so the matched filter 
scores can be calculated on the same region for different histone 
modifications. However, the double peaks of these histone 
modifications usually align very well, so the templates based on 
H3K27ac should not introduce large bias to the weights of 
different features in the SVM model.  
 
 
As for #2 the redundancy between DHS and H3K27ac, we agree 
that the dip in between the two maxima is usually where the DHS 
peak would occur, which provides good explanation for the 
redundancy. We have added this discussion in the manuscript as 
shown below. 
 
 

Excerpt From 
Revised Manuscript 

According to the model, the acetylations (H3K27ac and H3K9ac) are the most 
important feature for predicting active regulatory regions. The DHS matched 
filter performed well as an individual feature (AUPR in Figure 2) to predict 
enhancers, but had a lower weight among the six features likely due to the fact 
that the information in DHS is redundant with the information contained 
within the histone mark, eg. the DHS peaks usually occur at the trough 
region between two maxima in the histone signal. Despite the redundancy, 
combination of the DHS and histone signals is more predictive of 
regulatory activity as the complementary signals are strengthened 
compared to the uncorrelated noise in each signal. 
 

 
 

-- Ref1.4 – Comparison with previous methods -- 
<ASSIGN> MTG 
<PLAN> recalculation/Exclude midbrain   
<STATUS> 50% 
Reviewer 
Comment 

The authors compare their approach to chromHMM and SegWay, 
which are both not built for enhancer prediction but 
rather to segment the genome into different types of 
regions. A more relevant comparison to a supervised 
machine learning approach (Capra, ref 64) is presented 
only superficially in the methods section and without any 



 

(supplementary) figure.  

Author 
Response 

With the referee’s suggestion, we did more comparison with other 
published methods, and we have included the results in our 
manuscript as shown below. 
  
In our original submitted manuscript, we compared our method 
with ChromHMM and SegWay because the ChromHMM and 
SegWay enhancer annotations of the Roadmap Epigenetics 
samples has been used in many publications to define enhancer 
regions. We want to compare with them to show that our 
framework provides a better set of enhancers readily available for 
related studies.  
 
 

Excerpt From 
Revised Manuscript 

In addition to the comparison with unsupervised segmentation 
based methods, we also compared with other published 
enhancer prediction tools, including CSIANN, a neural network 
based approach; DELTA, an ensemble model integrating different 
histone modifications; RFECS, a random forest model based on 
histone modifications, and REPTILE, a more recent published 
method that integrates histone modifications and whole genome 
bisulfite sequencing data. We used their published results and 
compared their methods with our model on the same 
experimental data reported in their paper(\cite()). The comparison 
was done in a tissue specific manner for all four mouse tissues 
with all required ChIP-seq and DNase experiment data available. 
For 3 out of 4 tissues in the comparison, our prediction shows 
higher AUROC than the other four published methods. In 
midbrain, the AUROC for our prediction is slightly lower than 
REPTILE and RFECS, possibly due to the data quality of the 
DNase experiment performed in midbrain.  The DNase 
experiment of mouse E11.5 stage midbrain is marked as low spot 
score in ENCODE. We found that while 75% to 81% of the 
genome regions has DNase signals in the other three tissues, 
only 52% of the genome regions show DNase signal in the 
experiment in midbrain. It is also worth noticing that our model is 
trained using the drosophila STARR-seq data whereas the other 
methods were trained directly with mouse data. We believe that 
our method would have better performance if mouse STARR-seq 
data could be applied for training in our framework. 



 

 
  
 

 

-- Ref1.5 – Critique to main text and referencing -- 
 
<ASSIGN>ANS  
<PLAN>Rewrite the response. Will do when we move to making changes in main text. 
<STATUS>25% 

 
Reviewer 
Comment 

The main text needs to be substantially revised to improve 
clarity and avoid repetitiveness. While some parts explain 
fundamental basics in great detail, such as the difference 
between ROC and PR statistics (pages 5-6), other more 
important details are missing. For example, it only 
becomes obvious in the methods but not in the main text 
(page 5) that only STARR-seq enhancers with a H3K27ac and 
DHS peaks are considered (page 3 in the supplement).  
 



 

Author 
Response 

We thank the reviewer for pointing this inconsistency and have 
added critical details to the main text of the manuscript. 

Excerpt From 
Revised Manuscript 

As STARR-seq quantifies enhancer activity in an episomal fashion, all 
STARR-seq peaks may not be active in the native chromatin 
environment. Stark and coworkers showed that the STARR-seq peaks 
that occur in enriched DNase hypersentivity or H3K27ac modifications 
tend to be near active genes while other STARR-seq peaks tend to be 
associated with enrichment of repressive marks such as H3K27me3. 
Hence, we took the overlap of the STARR-seq enhancers with 
H3K27ac and/or DHS peaks to get a high confident set of enhancers 
that are active in vivo. 

 

-- Ref1.6 – Negative control regions -- 
<ASSIGN> MTG 
<PLAN>Reword  
<STATUS>85% 
Reviewer 
Comment 

The restriction of the STARR-seq enhancers to those that 
intersect with H3K27ac and DHS peaks (supplement page 3, 
see also my last point) and the selection of negatives as 
“randomly chosen regions in the genome with H3K27ac signal 
that had the same width distribution of the distance 
between double peaks near STARR-seq peaks (supplement 
pages 3-4) makes me wonder how H3K27ac can be the most 
predictive feature: if the negatives controls are chosen 
to match the positives in H3K27ac signals (which is a very 
powerful control), the predictive value of H3K27ac should 
be minimal or even zero. In this respect, the results are 
strange and the authors need to investigate the reasons 
for this outcome. 

Author 
Response 

Thanks the referee for the comment. For negative regions we 
match the width distribution which is essentially selecting regions 
that has similar lengths to the enhancers. These regions does not 
have the same H3K27ac signals in terms of the signal strength 
and pattern, but mostly have some background H3K27ac signals 
that the model would learn to distinguish from. We didn’t choose 
non-STARR-seq peaks with no H3K27ac signal as they wouldn’t 
provide enough information for training. Based on the comment, 
we have made it more clear how we select the negatives in this 
section of supplement as reproduced below.  
 
  
 

Comment [1]: +anurag.sethi@gmail.com fix 
_Assigned to Anurag Sethi_ 



 

Excerpt From 
Revised Manuscript 

The negatives are randomly chosen non-STARR-seq-peak regions in the 
genome that had the same lengths distribution as the enhancers from the 
STARR-seq. We require most of the regions contain some H3K27ac 
signals, since negatives with no H3K27ac signal at all wouldn’t provide 
enough information for training.    

 
 

-- Ref1.7.1 – Minor comments: Title and Abstract -- 
<ASSIGN>  
<PLAN>didn't work on this yet   
<STATUS>To discuss later   
Reviewer 
Comment 

The message that the authors’ approach is trained on 
Drosophila enhancers und functions successfully across 
different species does not come across very clearly in the 
title and abstract, which could be improved. 

Author 
Response 

To discuss 
Current: 
A framework for supervised enhancer prediction with epigenetic patternrecognition and 
targeted validation across organisms 
 

Excerpt From 
Revised Manuscript 

 

 
 

                  -- Ref1.7.2 – Minor comments: Reference -- 
<ASSIGN> MTG 
<PLAN>Fix the reference  
<STATUS>Done  
Reviewer 
Comment 

The referencing of manuscripts is broken and needs to be 
fixed: several references seem to not be correctly 
formatted (e.g. “cite 31, 50” on page 5, “linear SVM [54]” 
on page 7 points to the wrong paper, “(see Supplement)” on 
page 12 is an unclear reference). 

Author 
Response 

We thank the referee for pointing out the formatting issue and 
we’ve fixed the citations accordingly.  
  

Excerpt From 
Revised 
Manuscript 

The STARR-seq studies on Drosophila cell-lines provide the most 
comprehensive MPRA datasets as the whole genome was tested for 
regulatory activity within these assays and these assays were 
performed with multiple core promoters [31, 49]. 
  
We built an integrated model with combined matched filter scores of the 
most informative epigenetics marks (H3K27ac, H3K4me1, H3K4me2, 
H3K4me3, H3K9ac, and DHS) associated with active regulatory regions 
using a linear SVM [59]. 



 

  
  

 
 

                  -- Ref1.7.3 – Minor comments: BG3 cells -- 
<ASSIGN> MTG 
<PLAN>Fix in the manuscript  
<STATUS>Done  
Reviewer 
Comment 

On page 7, it seems that the authors conclude from a good 
performance in BG3 cells that the SVM model 'is applicable 
across species'. Please note that BG3 cells are also 
Drosophila cells. 

Author 
Response 

Thanks for pointing this out. Indeed, the validation experiments 
described later in the paper shows that the model is applicable 
across species, but the BG3 cell line validation here is to show 
that our model is applicable across different cell lines.  

Excerpt From 
Revised Manuscript 

The model is highly accurate at predicting active enhancers and promoters in 
the S2-cell line (Figure S6), indicating our framework of combining epigenetic 
features with a linear SVM model to predict enhancers is applicable across 
different cell lines. 

 
 

-- Ref1.7.4 – Minor comments: Term correction -- 
<ASSIGN> MTG 
<PLAN>Fix in the manuscript  
<STATUS>Done  
Reviewer 
Comment 

“impute chromatin status” (page 12) should be “segment the 
genome based on chromatin features” or similar. 

Author 
Response 

We have rephrased the sentence as shown in the excerpt below. 

Excerpt From 
Revised Manuscript 

We first did the comparison with ChromHMM[63], a well known 
method to segment the genome based on chromatin features 

 

-- Ref1.7.5 – Enhancer-specific factors -- 
<ASSIGN> ANS 
<PLAN>  
<STATUS> 80% 
Reviewer 
Comment 

The differential distribution of factor binding between 
enhancers and promoters (page 12 and figure 6) shows many 
signals for promoters but only very few (and relatively 
weak ones) for enhancers. Are there no enhancer-specific 
factors? 

Author 
Response 

Thank you for the question. There are some TFs that 
preferentially bind to enhancers as compared to promoters and 



 

we have expanded the text in the results to include a discussion 
of enhancer-specific TFs.  

Excerpt From 
Revised Manuscript 

As expected, TATA-binding proteins bind to most of the predicted 
active promoters according to our model. In comparison, among 
the TFs with experimentally measured ChIP-seq experiment, 
there is no single TF that binds to a majority of predicted 
enhancers. This indicates that unlike promoters, there is no single 
set of TFs that bind to a majority of active enhancers. Instead, the 
TFs that bind to active enhancers tend to bind to smaller subsets 
of enhancers. This could explain why, unlike promoters, it has 
been hard to find a single sequence signature associated with 
active enhancers in a tissue. However, a few of the TFs (for 
example, POUF1 and BCL11A) do bind preferentially to 
enhancers as compared to promoters according to our model. 

 

-- Ref2.1a – Comparison with FANTOM5 and ENCODE -- 
<ASSIGN> MTG 80% 
<PLAN>Compare 
<STATUS>80% 
Reviewer 
Comment 

Page 3: “In addition to the small numbers, the validated 
enhancers were typically selected based on conserved 
noncoding regions [17] with particular patterns of 
chromatin [18], transcription-factor binding, [19] or 
noncoding transcription [20].” 
 
Since the FANTOM5 Atlas is the most comprehensive 
collection of transcribed enhancers across different 
primary cells and tissues, I would like to see a 
comparison of the model predictions in human to the 
enhancer dataset of the FANTOM5 Atlas dataset taking into 
account cell-type/tissue specificity. In a similar 
fashion, what is the overlap with the integrative ENCODE 
annotation proposed by Hoffman et al. NAR 2013.  
 

Author 
Response 

Thanks to the referee for this point. The FANTOM5 Atlas contains 
a good set of transcribed enhancers, although there is only a 
relatively small number of transcribed enhancers detected in 
each cell. Based on the referee’s suggestion, we’ve checked our 
predictions against the FANTOM5 enhancer set and compared 
our overlap with the annotation provided by Hoffman et al, NAR 
2013. We included the result in the supplement as reproduced 
below: 
 
 

Excerpt From 
Revised Manuscript 
(in suppl.)? 

 
For predictions in human we compared with the integrative 
annotation of ChromHMM and Segway using CAGE-defined 
enhancers from FANTOM5 Atlas. We checked the overlap 



 

between our predictions with the FANTOM5 enhancers and 
compared that of the integrative annotation provided by Hoffman 
et al, NAR 2013 in a cell-type specific manner. The FANTOM5 
Atlas has included three human cell lines from ENCODE project 
with enhancer predictions from both methods: GM12878, K562 
and HepG2. We found that the percentage of overlap for our 
predicted enhancers is more than three times higher than that of 
the combined ChromHMM and Segway enhancers in each of 
these cell lines. Despite the fact that our framework predicted a 
smaller number of enhancers, the exact number of overlap is still 
higher for our predictions. Around 40% of the CAGE-defined 
enhancers overlap with our predicted enhancers, while 23% to 
34% overlap with the enhancers predicted by integrative 
ENCODE annotation method.  
 
 

 
 
The cell-type specific percentages of overlap between FANTOM5 enhancers and two sets of 
predicted enhancers are shown in the bar plots. The left panel bar plot shows the fraction of 
overlap over the total number of enhancers predicted in each method. The right panel shows the 
fraction of overlap over the total number of FANTOM5 enhancers.  
 

 
 

-- Ref2.1b – Saturation analysis-- 
<ASSIGN>MTG  
<PLAN>Refer to 2.3 
<STATUS>done 
Reviewer 
Comment 

Assuming that the size of training datasets is the only 
limiting factor for achieving high discrimination 
performance, what is the minimum number of samples that 
guarantees good performance in the deployed method? 

 
 

Author 
Response 

We performed detailed saturation analysis under comment 2.3.  
 
 



 

Excerpt From 
Revised Manuscript 

 

 
 
 
 
 
 

-- Ref2.2 – Method justification -- 
<ASSIGN> ANS 
<PLAN> 
<STATUS> 60% 
Reviewer 
Comment 

Page 3: “For example, two widely used methods for 
predicting enhancers were based on the fact that these 
elements are expected to contain a cluster of 
transcription factor binding sites [24] and their activity 
is often correlated with an enrichment of particular post-
translational modifications on histone proteins [27, 30].”  
    
In a similar fashion one can argue that the authors use 
STARR-seq peaks that overlap with DHS or H3K27ac peaks to 
identify active regulatory regions in the genome. See 
comment below. This requires much better justification. 

 
 

Author 
Response 

 
We acknowledge that we are utilizing information from epigenetic 
marks to define our positives. Due to the biases present within different 
massively parallel regulatory assays, it is difficult to define the positives 
for training utilizing information from a single regulatory assay. We have 
defined the training positives by overlapping STARR-seq peaks with 
epigenetic marks as these were shown by Alexander Stark to be more 
accurate at identifying active enhancers and promoters in the genome 
than using all STARR-seq peaks as explained in the manuscript now. In 
addition, unlike previous methods that just looked for enrichment of 
histone marks or DNase hypersensitivity as a predictor for active 
enhancers, we look for the occurrence of a template in the presence of 
noise for predicting enhancers.  

Excerpt From 
Revised Manuscript 

While STARR-seq identifies regions that could be potential enhancers 
or promoters, it does not guarantee that the region will be active or 
repressed in that cell-type as the activity of the region is tested in a 
plasmid. In machine learning models, the training data should be as 
well annotated as possible. As our attempt is to use the cleanest set of 
experimentally verified enhancers that could be active in a cell-type 
specific fashion, we used the experimentally active STARR-seq peaks 
that overlapped with DHS or H3K27ac peaks as our training data as 
these are more correlated with active regions in the genome as per the 
STARR-seq study. While we do utilize information from epigenetic 
marks to define our positives for training, we differ from previously 
published enhancer prediction methods as all our positives have 



 

already displayed potential enhancer activity in an experimental assay. 
 

-- Ref2.3 – Training and test data -- 
<ASSIGN> MTG 
<PLAN>Saturation analysis 
<STATUS>80% 
Reviewer 
Comment 

Page 3: “However, the optimal method to combine 
information from multiple epigenetic marks to make cell-
type specific regulatory predictions remains unknown. For 
the first time, using data from several MPRAs, we have the 
ability to properly train our models based on a large 
number of experimentally validated enhancers and test the 
performance of different models for enhancer prediction 
using cross validation” 
 
By no means this is an optimal method. This may only be 
considered optimized but under very specific constraints. 
Most of the existing methods for the prediction of 
regulatory regions based on epigenetic markers such as 
RFECS, ChromaGenSVM, DEEP, CSI-ANN, Chromia, DELTA and 
others including the proposed method apply heuristic 
techniques to identify solutions that are close to the 
best possible answer. So, they are optimized. The sub-
optimality of the achieved solutions using epigenetic 
markers is not due to the training procedure of the 
methods, but mainly due to the variability of the 
epigenetic profiles across different cells or 
developmental stages. However, the problem-solving 
technique (e.g., heuristic or analytic) is not related by 
any means to the proper training of the method, meaning 
that a method is properly trained as long the training 
data are completely independent from the testing. 
Following, the previous points, the authors need to 
provide more evidence about the effect of the number of 
training samples on the performance maximization and make 
clear in their manuscript that the testing data are 
completely independent from the training. 

Author 
Response 

Thanks for the comment. In our original text, we didn’t mean to 
claim that our method is the optimal method. Here, our goal is to 
build a framework with small number of inputs requirement to 
ensure that we had a widely applicable method that could be 
used across species. Our advantage was to use large scale 
STARR-seq experimental data to train the model, which was not 
used in previous methods.  
 
As suggested by the referee, we did a saturation analysis where 
we down-sampled the training data to demonstrate the effect of 
the training sample size on model performance. We included the 
result of this analysis in the supplement as reproduced below. 
 
For each cross-validation performed in this paper, the test 



 

dataset is completely separated from the training dataset. We 
have made that clear in the main manuscript and supplement as 
well. In addition, the many independent sources of validation 
performed in this paper shows that the model has good ability to 
generalize and has wild applications. 
 
 

Excerpt From 
Revised Manuscript 

To evaluate the impact of the training sample size on model 
performance, we did a saturation analysis where we down sampled the 
training data to different levels of fractions and evaluated the model 
performance on the remaining data. For each fraction level, we did a 10-
fold cross-validation (see methods) and then took the average of the ten 
output result. The result shows that the average AUPR increases with 
increasing size of training data, and it starts to saturate for our SVM 
model with 80%-90% of the experimental data for training. In contrast 
to that, the average AUROC remain comparable with varying training 
size, but the performance variances decrease with increasing training 
data size.  
 
 
[[ In methods section: The metaprofile and SVM models are trained 
on x% of samples and tested on the rest of the data, so the 
testing data is completely independent from the training.]] 
 
 

 
 



 

 
 
Figure SXX: Evaluating model performance with varying training data size. Model performance 
measured by A) area under the ROC curve (AUROC) B) area under the PR curve (AUPR) with 
different fractions of training data used. Error bar indicates the standard deviation from 10-fold 
cross-validation. 
 
 

 

-- Ref2.4.1 – Exclude Marks (Figure 2) -- 
 

<ASSIGN> ANS 
<PLAN>Redo the calculation and response 
<STATUS> 
 
Reviewer 
Comment 

Figure 2 requires more information: The authors assessed 
the performance of the deployed matched filter algorithm 
by predicting active STARR-seq peaks, and they concluded 
that H3K27ac is the most informative predictor. However, 
H3K27ac together with DHS has been used for the selection 
of the active STARR-seq peaks. Thus, the authors should 
exclude those two markers and repeat the analysis without 
them.  

Author 
Response 

Thanks the reviewer for the comment. We have created a new 
model that utilized all STARR-seq peaks to create metaprofiles 
for different epigenetic marks and redone the ROC and PR 
calculations by training with all STARR-seq peaks without taking 



 

any additional information from epigenetic assays and show 
H3K27ac is the most informative predictor. We have added a 
figure to evaluate the performance of this model in the 
Supplemental Information. 
 

Excerpt From 
Revised Manuscript 

SI figure will be added. 

 
 

--- Ref2.4.2 – Cross-validation Figure 2 -- 
<ASSIGN> MTG 
<PLAN>Refer to 2.3 saturation analysis   
<STATUS>80% 
Reviewer 
Comment 

Another more technical comment is about usage of 10-fold 
cross validation. If the number of training and testing 
sample is large enough 10-fold cross validation is not 
necessary. 5-fold cross validation is sufficient or even 
2-fold cross validation assuming big numbers of training 
and testing data (e.g., more than few thousands).  

Author 
Response 

We thank the referee for the comment. We agree to the referee 
that the 5-fold or even 2-fold cross validation might be sufficient. 
This can be viewed from the saturation analysis under the above 
section 2.3. We added this point in the supplement shown below.  

Excerpt From 
 supplement 

The result shows that the average AUPR increases with increasing size 
of training data, and it starts to saturate for our SVM model with 80%-
90% of the experimental data for training. In contrast to that, the 
average AUROC remain comparable with varying training size, but the 
performance variances decrease with increasing training data size. 
Therefore, instead of doing 10-fold cross validation, a 5-fold cross 
validation might be sufficient with this size of data, as a 5-fold 
cross validation uses 80% of the data for training and the 
remaining 20% of the data for testing. Even a 2-fold cross 
validation could work as the AUPR is close to saturation with 50% 
of the data for training. 
 

 

--- Ref2.4.3 – Minor comment Figure 2 -- 
<ASSIGN> MTG 
<PLAN>Use high resolution PDF     
<STATUS>80% 
Reviewer 
Comment 

Finally, there is a minor comment about the quality of 
Figure 2 and some other figures. In my pdf many of them 
appear a bit blurry. 

Author 
Response 

 
We used the original PDF of figure 2 but we apologize it looks a 
bit blurry upon upload. We’ll make sure it is upload in full 



 

resolution and is in the clear form. 
Excerpt From 
Revised Manuscript 

 
 

 

 

-- Ref2.5 – Feature selection -- 
<ASSIGN> ANS 
<PLAN> 
<STATUS>50% 
Reviewer 
Comment 

I need more justification about the selection of six 
predictors for the development of the integrated model. I 
agree that the selected epigenetic marker datasets are 
widely available for many cell-lines from publicly 
available resources. Without doubt, this way increase the 
utilization of the method in new cases. My question is why 
six and not another combination out of the 30? Continuing 
the previous comment about optimality of the heuristically 
identified solutions, is there any guarantee that the 
integration of the selected six predictors is optimized? 
For example, one can apply an exhaustive search algorithm 
and find the best combination. One also can argue that 
since the performance differentiation with Random Forests 
is small, the latter classifier is more effective since it 
integrates an “out-of-bag” feature selection technique. 
For example, this is the biggest advantage of RFECS method 
that pooled together multiple epigenetic markers and 
identifies the most informative. Authors have to elaborate 
more on the available dimensionality reduction techniques 
to select the best combination of predictors. To keep it 
as simple as possible, combining filtering techniques such 
as mRMR or Gini index with the linear SVM is quite 
powerful and provides interpretable results.  
 
 
 

Author 
Response 

Thanks to the referee for the question. The 30 histone marks we 
tested are from drosophila experiments, and most of them of 
them does not have available data even in top tier tissues and 
cell lines for mouse and human. We have created SVM as well as 
random forest models with all 30 epigenetic marks and added the 
performance of these models to supplement. Using these models 
you can identify the 6 epigenetic marks that provide the most 
information for enhancer prediction.  
In our model, we chose these 6 histone marks because we 
wanted to test the applicability of the model trained with fly data 
for predicting active enhancers and promoters in mouse and 
human tissues. We didn’t seek to pursue an optimal combination 
of all histone marks. While optimality of marks could potentially 
be used to identify other histone marks that provide 
complementary information about activity of enhancers and 



 

promoters, it could potentially reduce the applicability of the 
model to mouse and human tissues and cell-lines. We select the 
features to which are both widely available and have good 
individual performance.  
Based upon GINI index for the random forest model (Supporting 
Information), H3K27ac and H3K9ac are two of the epigenetic 
marks whose matched filters provide the best performance 
among the thirty marks for identifying active enhancers and 
promoters. In addition, H3K4me1 and H3K4me3 marks provide 
the ability to distinguish between promoters and enhancers 
(Figure 3). In addition, DHS and H3K4me2 are also widely used 
within the literature to identify enhancers and promoters. The set 
of histone marks selected in our model is in agreement with 
REFCS, where H3K4me1, H3K4me2, H3K4me3 are identified as 
the most predictive histone marks, with H3K9ac following as the 
commonly available highly predictive histone mark. They also 
adopted H3K27ac as it is the most commonly available histone 
mark with prior knowledge of being predictive for enhancers, 
although H3K27ac is not among the top important histone marks 
in their importance analysis. Also, we allow our model to be 
flexible so even one of the histone mark is missing the model still 
works. 
 



 

Excerpt From 
Revised Manuscript 
(Figure in 
Supplement) 

 
 

-- Ref2.6 – Definition of promoters and enhancers -- 
<ASSIGN> ANS and MTG 
<PLAN>More calculations ### Leave out this section, to be finished  
<STATUS> 

 
Reviewer 
Comment 

Separation of active STARR-seq peaks to promoters and 
enhancer based on the distance from known TSSs is the 
adopted practice, however it is too “quick and dirty”. The 
truth is that, it is very difficult to discriminate 
sharply enhancers from promoters based on the distance 
from TSSs since promoters have frequently function of 
enhancers and vice versa, and both of them share similar 
transcriptional architecture and have similar properties 
(ref. PMID: 26073855). From a technical point of view and 
based on the existing results, I would like to see the 
performance of the deployed method by varying the distance 
from TSS for selecting enhancers and promoters for 
testing. In the extreme case the binary classification 
problem is transformed to one-class classification problem 
that the method should handle. An alternative way is to 
repeat the analysis, using appropriate CAGE-defined 
promoter and enhancer datasets that coincide with STARR-



 

seq peaks. There are also data from studies such as 
“Systematic dissection of regulatory motifs in 2000 
predicted human enhancers using a massively parallel 
reporter assay” or “High-throughput functional testing of 
ENCODE segmentation predictions” that could be used as 
baseline for benchmarking the performance of the method in 
a more orthogonal way.  

Author 
Response 

 
The referee is making a reasonable point. We have varied the 
promoter definition from a distance of 500-2500 bp upstream and 
downstream of transcription start sites and evaluated the 
sensitivity of our results to the cutoff. While accuracy of enhancer 
predictions reduce as the distance cutoff is increased, the 
importance of different histone marks for the enhancer model 
remains similar as the distance is increased. We have included a 
supplemental figure to display these results. 
 

Excerpt From 
Revised Manuscript 

Figure to be added. 

 

-- Ref2.7 – Comparison analysis for human cell lines -- 
<ASSIGN> MTG and CY 
<PLAN> To compare with other methods on FANTOM; ANS to find hela predictions 
<STATUS> 25% 
Reviewer 
Comment 

Page 9: “Similarly, we did genome wide prediction of 
regulatory regions in ENCODE top tier human cell lines, 
including H1-hESC, GM12878, K562, HepG2 and MCF-7 (all 
available through our website)”. 
 
Following my previous comment, I would like to see the 
comparison analysis with CAGE-defined enhancers and 
promoters for some cell-specific cases, comparison with 
the integrative ENCODE annotation proposed by Hoffman for 
all top-tier cell-lines as well as comparison with other 
studies (see previous papers) that validated the 
regulatory activity of different segments in K562, HepG2 
or H1-hESC cell-lines.  

Author 
Response 

Thanks for the suggestion. As the referee suggested in section 
2.1a, we did a comparison with the integrative ENCODE 
annotation using the CAGE-defined enhancers in a cell-type 
specific manner. We find that our predictions has higher 
percentage of overlap with the transcribed enhancers from 
FANTOM5 Atlas.  
 
We also did a comparison with CAGE defined promoters too. We 
show that again our prediction has higher percentage of overlap 
with CAGE promoters and we included the result in the 
supplement as reproduced below. 
 



 

Excerpt From 
Revised Manuscript 

 
We also compared the overlap of our predicted promoters and 
the CAGE defined promoters, with the overlap between the 
integrative annotation and the CAGE defined promoters. We 
found that 70% of our predicted GM12878 promoters overlap with 
CAGE defined GM12878 promoters, whereas only 37% of the 
integrative annotations overlap. In K562 65% of our prediction 
overlaps versus 51% of the integrative annotation, and in HepG2 
it is 63% versus 33%. Again, the enhancers predicted using our 
framework has higher percentage of overlap with FANTOM5 
Atlas promoters. 
 
 
 
 
 
 

 

-- Ref2.8 – Comparison with previous methods -- 
<ASSIGN> CY and MTG 
<PLAN> TF-binding comparison - to be finished  
<STATUS> 
Reviewer 
Comment 

The comparison analysis is limited to ChromHMM and Segway. 
However, there are more methods available such as RFECS, 
DEEP, CSI-ANN that provide predictions for top tier ENCODE 
cell-lines. I would like to see a comparison analysis 
similar to the one presented in Figure 5 of the RFECS 
paper. Are the predictions of the competitor methods 
supported by same TF-binding sites? This might reveal that 
STARR-seq peaks that overlap with specific TFs such as 
p300 or CBP provide a better training dataset. Related to 
the comparison with ChromHMM and Segway. Both ChromHMM and 
Segway are based on probabilistic graphical models (HMM 
and Bayes). They should include a method of different type 
for example using SVM or Random Forest that is more close 
to what they have been developed. 

Author 
Response 

We compared with ChromHMM and SegWay as their enhancer 
annotation has been used in many publications as a way to 
define enhancer regions. Based on the referee’s suggestion, we 
also did more comparison with other published methods, and we 
have included the results in our manuscript as shown below. 
 

Excerpt From 
Revised Manuscript 

In addition to the comparison with unsupervised segmentation 
based methods, we also compared with other published 
enhancer prediction tools, including CSIANN, a neural network 
based approach; DELTA, an ensemble model integrating different 
histone modifications; RFECS, a random forest model based on 
histone modifications, and REPTILE, a more recent published 

Comment [2]: +chengfei.yan@yale.edu help! 
_Assigned to chengfei.yan_ 



 

method that integrates histone modifications and whole genome 
bisulfite sequencing data. We used their published results and 
compared their methods with our model on the same 
experimental data reported in their paper(\cite()). The comparison 
was done in a tissue specific manner for all four mouse tissues 
with all required ChIP-seq and DNase experiment data available. 
For 3 out of 4 tissues in the comparison, our prediction shows 
higher AUROC than the other four published methods. In 
midbrain, the AUROC for our prediction is slightly lower than 
REPTILE and RFECS, possibly due to the data quality of the 
DNase experiment performed in midbrain.  The DNase 
experiment of mouse E11.5 stage midbrain is marked as low spot 
score in ENCODE. We found that while 75% to 81% of the 
genome regions has DNase signals in the other three tissues, 
only 52% of the genome regions show DNase signal in the 
experiment in midbrain. It is also worth noticing that our model is 
trained using the drosophila STARR-seq data whereas the other 
methods were trained directly with mouse data. We believe that 
our method would have better performance if mouse STARR-seq 
data could be applied for training in our framework. 
 

 



 

 


