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Preamble 

The recent ENCODE data release provides a rich source of information for investigating 

questions both in basic biology and human disease. In large part, this wealth of information derives 

from the multiple genomic annotations provided across multiple cell types. An overarching 

objective of our study is to leverage ENCODE data to provide novel insights and resources for 

cancer research. We performed large-scale integration of various assays to construct a companion 

resource to the general encyclopedia focused on top-tier cell lines and their relevance to cancer 

biology. In particular, we aim to integrate ENCODE and cancer genomic data to gain a more 

comprehensive understanding of the non-coding elements involved in oncogenesis, their 

associated linkages to protein-coding genes and the background mutation rates therein, and the 

global regulatory nature of regulators in the context of matched tumor-normal cell lines. 

In addition to providing new opportunities, however, the very richness of this data introduces 

considerable challenges with respect to data integration and organization. Our analyses rely on an 

array methodologies, the details for which are difficult to include within the main text of this paper. 

As such, the purpose of this Supplement is to provide a clear and organized reference to support 

and explain the datasets, pipelines, and analyses associated with this study. In addition to 

supplementary text, the supplementary figures and tables provide additional information not 

included in the main figures. 

As reflected in the main text, our study is broadly organized into several main parts: a 

description of the assays, background mutation rate estimation, construction of compact 

annotations (for greater statistical power in identifying recurrence), linking genes to non-coding 

elements to produce models of “extended genes” (for idenifying mutationally burdened regions), 

generalized and cell-type specific network analysis, the workflow for prioritizing key genomic 

features associated with cancer, and experimental validations. This supplement is presented in 

roughly a parallel fashion to the main text. It is also connected to the main text through the major 

results presented in the form of main text figures – captions associated with main text figures point 

to relevant sub-sections within this supplement. In cases where the related supplementary section 

wasn't obvious, we said "(see supp. sect xxx) to refer to a specific section. With the aim of 

presenting data and results (including software packages) in an organized way, we have written 
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about this study in roughly a hierarchical fashion. The main text lies at the top of this hierarchy 

and synthesizes everything in a broad manner. It refers to more detailed descriptions of our 

methods and datasets, as provided in this supplement. Raw data files, which lie at the bottom of 

the hierarchy (and which are hosted as online resources) form the bedrock from which our results 

are built.  

We note that, in preparing this supplement, we adopt the conventions prescribed in the recent 

opinion piece by Greenbaum et al1. As such, labels that correspond to sections, sub-sections, 

figures, tables, and data files are labeled to indicate whether these items directly parallel (∥) or do 

not parallel (∦) the main text, as well as whether these items are high-level or technical in nature 

(designated by “HL” and “TL”, respectively). 

Part 1 of this document provides in-depth documentation of the ENCODE data that we use, 

along with the subsidiary steps in working with these data (including ENCODE data processing, 

enhancer and enhancer-target predictions, and extended gene definitions). Part 2 provides details 

on our recurrence analyses and background mutation rate estimation. Part 3 provides an in-depth 

look at how focused, compact annotations may be used to achieve greater statistical power when 

evaluating variant recurrence. Part 4 details our expression aggregation analyses. Part 5 is a 

discussion and in-depth look at our generalized and cell-type specific network analyses (including 

associated rewiring). Part 6 discusses our workflow for prioritizing key genomic features 

associated with cancer. Finally, Part 7 provides details on the EN-CODEC resource and how it 

may be accessed. 
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1 S (HL, ∥ ) More details about “data summary from 

ENCODE” 

1.1 S (HL, ∥ ) Summary of the cancer-related encyclopedia 

companion resource  

Mutations associated with cancer have been well characterized in many key oncogenes and 

tumor suppressors. However, the overwhelming bulk of mutations in cancer genomes – 

particularly those discovered from the recent large-scale cancer genomics initiatives – lie within 

non-coding regions. Whether these mutations drive cancer development or progression, or simply 

emerge as byproducts of genomic instability remains an open question. Newly-released data from 

the ENCODE Consortium can help to address this question by providing a comprehensive 

characterization of non-coding genomic elements, as well as by linking such elements to well-

known cancer associated genes.  

Here, we endeavor to provide a resource to the main ENCODE encyclopedia by building an 

“ENCODE Cancer-related encyclopedia companion” resource (EN-CODEC). The main 

encyclopedia is oriented toward the breath of the annotations to describe elements over thousands 

of cell types. In contrast, we focus on top cell types with a wide variety of profiles available. Most 

of these cell types are associated with cancers of the blood, liver, lung, cervix, and breast. We 

show that these cell types can be used to provide a better understanding of oncogenesis, and we 

provide a resource for interpreting the wealth of mutational and transcriptional profiles produced 

by the cancer community. We summarize our efforts in Figure S 1-1. This encyclopedia 

companion mainly provides three layers of resources: 1) Data provision: carefully collected and 

de-duplicated signal tracks from various experimental assays both within and outside ENCODE; 

2) pairing cell types and datasets to cancer types; 3) Detailed Annotations: enhancers and their 

gene linkages, cell-type specific and generalized networks, network hierarchies, rewiring status, 

gene expression regulating potentials, predicted mutation rates, and motif identifications. 

Figure S 1-1 (HL, ∥) Summary of the resources in cancer related encyclopedia companion 
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1.2 S (TL, ∥) Detailed annotation of TFs and RBPs  

In this study, we collected a total of 344 transcription-related factors and abbreviated them all 

as TFs in the main text for simplicity. For our main analyses, we further classified them into four 

major classes: 282 sequence-specific TFs, which bind DNA at particular motifs to regulate gene 
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expression; 16 general TFs, which comprise that segment of the cell’s transcriptional machinery 

that complexes with DNA; 19 chromatin-associated TFs, which comprise complexes that bind to 

and remodel chromatin; and 27 co-factors, which support the function of other TFs, do not directly 

bind DNA, and do not belong to another class.  A detailed classification was given in the 

supplementary datasheet, which is also available from our main data portal 

(http://encodec.encodeproject.org/).  

We further extracted 68 common TFs between K562 and GM12878, annotated in Table S 1-1. 

We searched the COSMIC Cancer Gene census2 and an authoritative list of cancer genes by 

Vogelstein et al. to identify TFs associated with cancer3. We further listed whether a TF has been 

reported to regulate the ABL gene or BCR-ABL transcript, or the BCR-ABL KEGG pathway4, 

because of the dominant role this fusion gene plays in CML and K5625,6. 

 

Table S 1-1 (TL, ∥, shadow table for data in Fig. 1) Detailed Annotation of common TFs in K562 

and GM12878 

TF Class FAMILY COSMIC Vogelstein ABL* BCR-ABL 
Pathway* 

Vogelstein* 
 

ATF3 TFSS bZIP 0 0 1 1 1 

BCLAF1 TFSS bZIP 0 0 0 1 1 

BHLHE40 TFSS HLH 0 0 0 0 0 
CBX5 chromatin  0 0 0 0 0 

CEBPB TFSS bZIP 0 0 0 1 1 
CEBPZ TFSS bZIP 0 0 0 0 0 
CHD1 chromatin Homeodomain 0 0 0 0 0 
CHD2 chromatin Homeodomain 0 0 0 0 0 
CTCF TFSS ZNF 1 0 0 1 1 
E2F4 TFSS wHTH 0 0 0 1 1 
EGR1 TFSS ZNF 0 0 0 1 1 
ELF1 TFSS ETS 0 0 0 1 1 
ELK1 TFSS ETS 0 0 0 0 0 
EP300 general  1 1 1 1 1 
ETS1 TFSS ETS 0 0 0 1 1 
ETV6 TFSS ETS 1 0 0 0 0 
EZH2 chromatin  1 1 0 0 0 
FOS TFSS bZIP 0 0 0 1 1 
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GABPA TFSS ETS 0 0 0 0 0 
HDGF TFSS  0 0 0 0 0 
IKZF1 TFSS ZF-C2H2 1 0 0 0 0 
JUNB TFSS bZIP 0 0 0 0 0 
JUND TFSS bZIP 0 0 0 1 1 
MAFK TFSS bZIP 0 0 1 1 1 
MAX TFSS HLH 1 0 0 1 1 
MAZ TFSS HLH 0 0 0 0 0 

MEF2A TFSS MADs-box 0 0 0 0 0 
MLLT1 TFSS  1 0 0 0 0 
MTA2 TFSS ZF-GATA 0 0 0 0 0 
MXI1 TFSS HLH 0 0 0 1 0 
MYC TFSS HLH 1 0 0 1 1 
NBN TFSS  1 0 0 0 0 
NFE2 TFSS bZIP 0 0 0 1 0 
NFYA TFSS CBF-NFY 0 0 0 1 1 
NFYB TFSS CBF-NFY 0 0 0 1 1 
NR2C2 TFSS NR 0 0 1 1 1 
NRF1 TFSS bZIP 0 0 1 1 1 
PML cofactor  1 0 0 0 0 

POLR2A general  0 0 0 0 0 
POLR3G general  0 0 0 0 0 
RAD21 chromatin  1 0 1 1 1 
RCOR1 TFSS MYB 0 0 0 0 0 
REST TFSS ZNF 0 0 0 1 1 
RFX5 TFSS wHTH 0 0 0 0 1 
SIN3A general  0 0 0 1 1 
SIX5 TFSS Homeodomain 0 0 0 1 1 

SMAD5 TFSS MH1 0 0 0 0 0 
SMC3 chromatin  0 0 1 1 1 

SP1 TFSS ZNF 0 0 0 1 1 

SPI1 TFSS ETS 0 0 0 1 1 

SRF TFSS MADs-box 0 0 0 1 1 

STAT5A TFSS STAT 0 0 0 0 0 
SUZ12 chromatin ZNF 1 0 0 1 1 

TAF1 general  0 0 0 1 1 

TARDBP TFSS  0 0 0 0 0 
TBL1XR1 cofactor  1 0 0 0 0 

TBP general  0 0 0 0 1 

UBTF TFSS HMG 0 0 0 0 0 
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USF1 TFSS HLH 0 0 0 1 1 

USF2 TFSS HLH 0 0 1 1 1 
YBX1 TFSS CSD 0 0 0 0 0 

YY1 TFSS ZNF 0 0 0 1 1 

ZBED1 TFSS ZNF 0 0 0 0 0 
ZBTB33 TFSS ZNF 0 0 1 1 1 

ZBTB40 TFSS ZNF 0 0 0 0 0 

ZNF143 TFSS ZNF 0 0 0 0 0 

ZNF274 TFSS ZNF 0 0 1 1 1 
 

To provide functional annotation of the RBPs included in our study, we used gene ontology 

(GO) categorizations from the Gene Ontology Consortium. Using the Amigo2 webserver 

(amigo.geneontology.org/goose), we selected 17 GO categories representing major functional 

categories of RBP function, and overlapped these with the list of RBPs generated by the ENCODE 

project. Our chosen functional categories correspond to RNA binding (GO:0003723), tRNA 

binding and splicing (GO:0000049 and GO:0006388), RNA splicing (GO:0043484 and 

GO:0000398), RNA polyadenylation (GO:0043631, GO:0006378, and GO:1900363), regulation 

of RNA stability (GO:0043488 and GO:0061157), rRNA processing/ribosome (GO:0006364 and 

GO:0003735), RNA editing (GO:0009451), and snoRNA binding (GO:0030515). Of the ~1000 

ENCODE annotated RBPs, 553 are listed as "RNA binding" by GO, and 327 have at least one 

specific functional annotation that involves RNA binding. A summary of the RBP annotations 

have been listed in Figure S 1-2. 
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1.3 S (TL, ∥) Matching of ENCODE cell types to major cancer 

types  

1.3.1 S (HL, ∥) ENCODE data is suitable for cancer analysis 

Of all the cell lines in ENCODE, we found around 70 percent of them to be cancerous (shown 

in Figure S 1-3). Many of the cell types are quite enriched with various experimental assays for 

functional characterization, leaving the ENCODE data quite suitable for cancer research (Figure 

S 1-4). 
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Figure S 1-2 (TL, ∥) Summary of RBP annotation  
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Figure S 1-3 (HL, ∥) Summary of the ENCODE cell lines 

 

 

Figure S 1-4 (HL, ∦) Broad spectrum of ENCODE cell types 

 

1.3.2 S (HL, ∥) Rationale for matching cell types  

Although wide-ranging functional characterization assays are available through ENCODE, 

applying this data to cancer research remains challenging. Biological heterogeneity among cancer 

types requires that cell types studied in cancer research be optimally matched to a particular cancer 
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of interest. However, well-matched tumor-normal pairs are only available for certain cancer types 

from among ENCODE cell types, and most cell types lack data from one or more key experimental 

assays (as shown in Fig 1). Therefore, it is necessary to create biologically relevant tumor-normal 

pairs and to develop algorithms to learn from sub-optimally matched data. Another challenge 

arises from the heterogeneous nature of raw data collected from experimental assays. Data must 

undergo de-duplication, unified processing, and proper normalization before accurate large-scale 

integration can be achieved. Here we endeavor to provide ENCODE data matched according to 

cancer type, and with appropriate tumor-normal pairs, for several high-incidence cancer types. A 

detailed matching summary is provided in Table S 1-2. 

To utilize extensive collection of advanced ENCODE assays on several “key cell types”, one 

can perform an approximate matching of cancerous cells to normal cells. For the normal cells, we 

could simply combine a collection of normal proxies to form a composite normal. In this way, we 

can maximize the functional coverages of approximately matched normal while minimizing 

artifacts by diluting unwanted cell type specific noises. 

A key feature of the ENCODE annotation is that it includes data from a great diversity of 

functional assays. Because it is not currently possible to perform such a wide variety of assays on 

tissue from individual cancer patients, we believe that this matching provides a unique opportunity 

to refine our understanding of the cancer genome, using large-scale data integration. 

Table S 1-2 (TL, ∥) Summary of cell line and cancer type matching  

Cancer Abbreviation ENCODE cell line 

Breast BRCA Tumor MCF-7 
Normal HMEC, MCF-10A 

Liver LIHC Tumor HepG2 
Normal Adult liver tissue 

Lung LUAD [SARC] Adenocarcinoma A549 
Sarcoma SK-N-MC 
Normal Lung tissue, IMR-90 

Blood CML 
[CLL/LAML] 

Tumor K562, DND-41 
Normal CD34+ common myeloid progenitor cell, 

GM12878 
Cervix CESC Tumor HeLa-S3 

Normal N/A 
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Colorectal COAD+READ Adenocarcinoma Caco-2, HCT116 
Prostate PRAD Adenocarcinoma LNCaP, PC-3 
Pancreas PAAD Adenocarcinoma Panc1 

 

1.3.3 S (TL, ∥) Blood cancer cell line matching 

Wherever possible, we have matched each ENCODE cancer cell type with a composite normal, 

which was derived from multiple of normal samples with the same cell type of origin. Exact 

matching was not possible with K562: this cancer cell-line derives from a myeloid lineage, but 

there is no data-rich noncancerous myeloid cell included in ENCODE. GM12878 is a data-rich 

ENCODE cell-line derived from the closely related lymphoid lineage. Supporting this choice, we 

determined that among all non-cancerous cell-lines provided by Roadmap Epigenome and GTEX, 

GM12878 has the highest Spearman correlation with K562, as shown in in Figure S 1-5. Hence, 

we used GM12878 as a rough pair for K562. 
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In addition, we found CD34+ common myeloid progenitor cells to be another close normal 

proxy to K562. Common myeloid progenitor cells are a direct ancester of many differentiated 

myeloid cells including granulocytes and monocytes, and therefore it can directly related to 

chronic myeloid leukemia. However, there is a limited range of data assays with CD34+ common 

myeloid progenitor cell, and therefore we merged them with data-rich GM12878 assays to build a 

composite normal. 

1.3.4 S (TL, ∥) Breast cancer cell line matching 

MCF-7 is the most studied human breast cancer cell line, with nearly 25,000 scientific 

publications reporting results from studies of MCF-77. It is a human cell line derived from a 

malignant pleural effusion due to breast carcinoma8. MCF-7 is one of few cell lines that express 

substantial levels of estrogen receptor (ER), and so is widely used to mimic ER-positive invasive 

human breast cancers. It is also used to study intracellular binding constants, transport mechanisms, 

and DNA binding sites among ER target genes.7 T47D is also an ER-positive breast cancer cell 

line that has been widely used to study breast cancer, and is also derived from a malignant pleural 

effusion9.  Unlike MCF-7, T47D is a mutant for the tumor suppressor gene TP5310. 

MCF-10A is the human breast epithelial cell line most commonly used as an in vitro model 

for studying normal breast cell function and transformation11. It was derived from spontaneously 

immortalized benign fibrocystic mammary tissue, which is non-tumorigenic and does not express 

ER11,12. Numerous studies have utilized both MCF-7 and MCF-10A cell lines to facilitate the 

development of breast cancer treatment and therapy, by comparing the differential response of 

these two cell lines under multiple experimental settings13-15. 

A recent study challenges MCF-10A as a representative model for normal mammary cells, 

with the study authors claiming that this cell line exhibits phenotypes and expression profiles that 

have not been observed in mammary gland tissues11. However, these authors caution a need for 

further investigation into the appropriateness of MCF-10A cells as a model for normal human 

mammary epithelial cells. Though we cannot exclude differences between MCF-7 and MCF-10A 

from causes unrelated to malignant transformation, given the wealth of ENCODE data on MCF-7, 

and the high incidence of breast cancer, we consider the pairing of MCF-7 and MCF-10A 

worthwhile. 
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Human mammary epithelial cells (HMEC) is another representative model for normal 

mammary cells and numerous studies have used them for matching normal against MCF-716-18. 

HMEC is also widely used outside ENCODE and we were able to obtain external data such as Hi-

C, from literature search (GSM1551613). 

1.3.5 S (TL, ∥) Lung cancer cell line matching 

A549 is a carcinomic lung epithelial cell line19 and IMR-90 is a normal lung fibroblast cell 

line20. Lung fibroblasts and lung epithelial cells are closely related cell types, and conversion 

between these cell types is common and meaningful in tumor cells and normal cells21,22. Lung 

fibroblasts like IMR-90, are mesenchymal cells that arise in embryologic development subsequent 

to epithelial to mesenchymal transition (EMT). The dedifferentiation of mesenchymal cells into 

secondary epithelial tissue following mesenchymal to epithelial transition (MET) is also observed 

and is best characterized in kidney development23. It has been postulated that the dedifferentiation 

and metastasis of epithelial lung cancer cells, may occur through EMT and/or MET24-27. Such a 

process has been observed in other cancers22. Indeed, exposure of A549 epithelial cells to 

chemotherapeutic agents or TGF-B, causes differentiation to a mesenchymal phenotype, and EMT 

is thought to play a role in chemotherapeutic resistance of lung adenocarcinoma28,29. These cellular 

relationships support the benefit of using a tumor normal comparison between A549 cancer cells 

and IMR-90 normal cells. Indeed, IMR-90 is frequently used as a normal control for A549 in 

experiment30-36. 

ENCODE contains a wide range of data-rich assays on both fetal and adult lung tissues, 

including but not limited to DNase-seq, ChIP-seq, and RNA-seq. Not a single biosample can be 

used as a perfect match for A549, and therefore, we merged data-rich assays on normal lung 

biosamples from anatomical origin (IMR-90, fetal and adult lung tissue samples) or cellular origin 

(any normal epithelial cells) to form a composite normal. 
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1.4 S (TL, ∦ ) Normal to tumor cell line matching using 

replication timing data 

It is well known that replication timing significantly affects the mutational landscape in both 

germline and normal cells37. We also made a genome-wide correlation of replication timing data 

(excluding ChrX and ChrY to avoid gender differences) between the cancer cell lines and several 

candidate normal cell types. Results are listed in 

Figure S 1-6. As expected, the best matching normal data for K562 and HepG2 cell lines are 

Erythroid progenitors and Hepatocytes. However, we also noticed that replication timing data in 

A549 and MCF-7 shows the highest correlation with those in Mesenchymal Stem cells and 

Splanchnic mesoderm. However, our proposed matching normal cell lines, such as like IMR-90 

for A549, still showed a decent correlation regarding their replication timing profiles.  

Figure S 1-6 (TL, ∦) Comparison of tumor with normal cell lines by replication timing data 

 

 

1.5 S  (TL, ∥) Summary of data from each experimental assay 

from ENCODE 

We have integrated data sets from ENCODE and Roadmap Epigenomics Mapping 

Consortium (REMC), after performing quality control and uniform processing, to build one of the 

most comprehensive representations of how functional regulatory elements interplay in the human 
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genome. All datasets used in the analysis were mapped to a standardized version of the GRCh37 

(hg19) reference human genome. We used ENCODE data that was submitted and released up to 

October 31st, 2016 (Oct 2016 freeze). We summerized the ENCODE data with matched tumors 

in Figure S 1-7. 

Figure S 1-7 (HL, ∥, shadow figure) Summary of ENCODE data for mulitple cancer types 

 

1.5.1 S (TL, ∥) Collection of RNA-seq data 

We downloaded the signal tracks of all RNA-seq experiments and counted the average signal 

of a fixed bin size (e.g 1mb, or 100kb). If there are multiple RNA-seq data for each cell type, we 

prioritize data in the following order: ENCODE3 polyA mRNA > pair-end stranded > single-end 

unstranded > ENCODE2 RNA-seq.  

1.5.2 S (TL, ∥) Preprocessing of Repli-seq data 

The raw signal of 90 Repli-seq data sets for 15 different tissue or cell lines were downloaded 

from the ENCODE data portal (link here). For each tissue/cell line, in cell cycle phases G1, S1, 
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S2, S3, S4, and G2, newly replicated DNA positions were sequenced and analyzed by massive 

parallel sequencing were sequenced38. Similar to Suzuki et al38, we added up the signal strength in 

1mb bins by comparing the (G1 + S1) with the (S4 + G2) datasets by measuring the inverse tangent 

(arctangent) for each data point39. 

1.5.3 S (TL, ∥) Deduplication of ChIP-seq data 

We collected 1,040 TF ChIP-seq experiments released for ENCODE. There are 888 released 

TF ChIP-seq experiments for ENCODE2. We used a subset of 801 experiments that either had no 

treatment or ethanol treatment only. There were 570 TF ChIP-seq experiments released for 

ENCODE3, which had no treatment. 

For a common TF target in top-tier cell lines, ENCODE has multiple of the same experiments 

from different labs. We carefully de-duplicated the dataset by selecting one TF ChIP-seq 

experiment per each sample by the following prioritization scheme. When an ENCODE3 

experiment was available, it was prioritized over the ENCODE2 experiment. When there was the 

same type of experiments done by different labs, we prioritized using the following order 

determined by the total number of ChIP-seq experiments deposited on ENCODE: stanford, haib, 

broad, usc, uw, uta, uchicago, hms, yale. We removed epitope-tagged experiments if an 

endogenous antibody was available. After deduplication, there were 860 unique TF ChIP-seq 

experiments. 

1.5.4 S (TL, ∥) External data 

We deeply integrated our ENCODE functional characterization data with data from external 

cohorts to interpret cancer genome. Specifically, we downloaded both expression and WGS data 

from external cohorts. 
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1.5.5 S (TL, ∥) Expression data from external Cohort 

 All TCGA expression, methylation and mutation data were downloaded from GDAC firehose 

(http://gdac.broadinstitute.org) with data version of 2016_01_28. For cancer types with normal 

control samples profiled, the expression values of each gene are subtracted with the average value 

of all normal controls. For cancer types without any normal samples profiled, the expression 

profile of each gene is transformed to zero mean and unit deviation (see Figure S 1-8). The DNA 

methylation values are also normalized in the same way as RNA-seq data, according to the 

availability of normal control samples in each cancer type. For copy number alteration (CNA), 

GDAC firehose does not provide standardized data, and we downloaded the data matrix from 

cBioportal with data version of 2016_10_20 (http://www.cbioportal.org). 

1.5.6 S (TL, ∦) WGS data 

2709 WGS samples were collected for 5 cancer types (BRCA, LAML, LUAD, LIHC, UCEC). 

  

Figure S 1-8 (TL, ∦) Schemetics of RNA-seq data processing 
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2 S (TL, ∥) More details about “ENCODE data allows 

more accurate BMR estimation” 

2.1 S (TL, ∥) Variant calling 

2.1.1 S (TL, ∥) Liver Germline and somatic variant calling   

We called germline single nucleotide variants (SNVs) for a set of 88 liver cancer samples 

(Table S 2-1) that were whole genome DNA sequenced at the Beijing Genomics Institute (BGI) 

Shenzhen for a mutation analysis published in Genome Research40. The authors made the raw 

sequence data available in FASTQ format from the European Nucleotide Archive (ENA) under 

accession ERP001196. We downloaded these files and conducted a germline variant calling 

procedure in accordance with the Broad Institute’s Best Practices for read-to-variant workflows 

(https://software.broadinstitute.org/gatk/best-practices/index.php). Read alignments were 

generated using the Burrows-Wheeler Aligner (BWA v0.7.15; http://bio-bwa.sourceforge.net/), 

using the BWA-MEM algorithm. After that, we proceeded with preprocessing for variant calling, 

including cleaning out duplicate reads using Picard tools (MarkDuplicates tools v2.6.0), and base 

recalibration with the Genome Analysis Tookit (GATK; v3.6.0). Variant calls for individual 

samples were derived with the GATK HaplotypeCaller, followed by joint genotyping with the 

GenotypeGVCFs tool. The final variant set was subjected to standard quality filtration in 

accordance with the standard configuration of the GATK VariantFiltration tool. Each step was 

performed on the Mt Sinai Minerva scientific compute cluster, and utilized hundreds of CPU cores 

per compute step. Table S 2-1 summarizes the distribution of germline variant calls per sample. 

Table S 2-1 (TL, ∥) List of cancer whole genome DNA sequence data obtained for variant calling 

Cancer type Number of samples Median # of var per sample Source 

Liver - germline 88 4,156,068 BGI Shenzhen (Kan et al. 2013) 
Liver - somatic 88 13,647 BGI Shenzhen (Kan et al. 2013) 
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2.2 S (TL, ∥ ) Local context effect significantly affect local 

mutation rate 

We observed that BMR is significantly associated with local context effect in all cancer types 

up to several orders, which largely contributes to the mutation rate heterogeneity. Details are given 

in Figure S 2-1. For example, the average pooled mutation rate ranges from 1.58e−04 to 2.92e−03 

(18.35 fold). The observed mutation has been plotted in the following radial plots for each cancer 

type. In general, G/C positions are more prone to mutations as compared to A/T positions, but the 

local context effect within G/C positions still has a strong effect (2.40e−04 and 2.40e−04 vs. 

Figure S 2-1 (TL, ∦) Local context severely confounds BMR in multiple cancer types 
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1.21e−03 and 1.20e−03). In addition, we also observed that the local context effect varies 

significantly across multiple cancer types. Hence, it is important to separate cancer types during 

the BMR estimation process. 

 

2.3 S (TL, ∥) Local mutation rates are highly correlated with 

many genomic features 

Consistent with previous literature, we observed large mutational heterogeneity over the 

genome for all 3-mers in all cancer types41. As seen in Figure S 2-2 , the mutation rate changes 

significantly over different regions of the genome (large region of each violin bar) and over 

different local contexts. 

Figure S 2-2 (TL, ∦) Violin plot of estimated BMR over local context and genomic locations  

 

It is well-known that the somatic mutational process is affected by various external effects, 

such as replication timing and chromatin status. We also observed this phenomenon in many 
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cancer types. For example, the normalized pooled mutation rates in the 1Mb bins are given in 

Figure S 2-3 chromosome 11. It correlated replication timing data quite well. On the contrary, it 

has a negative correlation with both RNA-seq and DHS signal in liver cancer. Hence, it is 

important to correct BMR against the confounding effects of these external genomic features. 

We systematically explored the effect of multiple genomic features including replication 

timing, DHS, WGBS, RNA-seq and Hi-C and their correlation with the overall mutation rate in 

multiple cancer types is given in  

Figure S 2-4. For example, in breast cancer, the correlation between replication timing and 

mutation rate ranges from 0.47 to 0.55, while correlation from DHS signals ranges from -0.42 to 

-0.18. However, we observed an increased correlation of mutation rates to these features in liver 

cancer (0.59 to 0.74 for replication timing and -0.58 to -0.33 for DHS, details in Table S 2-2). 

Hence it is important to correct the effect of external features in a cancer specific way to achieve 

better burden analysis. 

Table S 2-2 (TL, ∥) Summary of correlation of mutation rate at 1mb bins with different external 

features in multiple cancer types 

  BRCA CLL LUAD LIHC 

repTime Min 0.467300058 0.410292073 0.589242196 0.594308714 

Figure S 2-3 (TL, ∥) Example of external effects on local mutation rate 
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repTime Median 0.493598234 0.4637348 0.67495952 0.642464943 

repTime Max 0.547374543 0.504968332 0.715431489 0.737831334 

RNA Min -0.276898241 -0.284573043 -0.419458551 -0.397504844 

RNA Median -0.126228292 -0.114417754 -0.181953795 -0.162453668 

RNA Max -0.019998871 -0.019088747 -0.027760515 -0.021616959 

HiC Min -0.258214534 -0.240053286 -0.355389238 -0.388864195 

HiC Median -0.124167655 -0.047070425 -0.144698057 -0.114903485 

HiC Max 0.190402416 0.274050935 0.283105375 0.31333984 

WGBS Min -0.391201031 -0.379756186 -0.560373539 -0.572058872 

WGBS Median -0.28162047 -0.321745409 -0.442804565 -0.503776857 

WGBS Max -0.250846402 -0.28621958 -0.35169477 -0.37209731 

DHS Min -0.416168532 -0.406787562 -0.576209738 -0.578067199 

DHS Median -0.321014839 -0.344702489 -0.480339053 -0.502492181 

DHS Max -0.180644113 -0.262259514 -0.276360875 -0.333674803 

Histone Min -0.525809902 -0.487246457 -0.703446634 -0.658923263 

Histone Median -0.35312576 -0.376874169 -0.533489718 -0.517573323 

Histone Max 0.567295147 0.527731502 0.74483745 0.717959133 
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Figure S 2-4 (TL, ∥) Correlation of mutation rate and external features across multiple cancer 

types (shadow figure for Fig. 2B) 

 

 

2.4 S (TL, ∥) Background mutation rate estimation and P-value 

calculation 

Here we proposed a regression based somatic mutation recurrence analysis in cancer. The 

schematic of this method is shown in Figure S 2-5. 
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Figure S 2-5 (HL, ∥) Schematic of the recurrence analysis 

 

 

2.4.1 S (HL, ∦) Covariate data collection  

We collected uniformly processed and non-redundant set of confounding genomic features 
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to correct for the background mutation rate (BMR). To ensure that the covariate matrix is not 

affected by processing bias and artifacts, we manually curated the dataset processed by the latest 

uniform processing pipeline and de-duplicated signal tracks from either untreated or ethanol-

treated experiments. To build a covariate matrix, we then averaged the signal over specified 1Mb 

bin size. 

2.4.2 S (TL, ∦) Covariate table creation  

We trained our model using the master covatiate matrix. Different from the calibrated training 

data selection mentioned in Lawrence et al41, we divided the whole genome into bins with fixed 

length, such as 1mb, 100kb, 50kb, etc. Only autosomal chromosomes and chromosome X were 

included in our analysis to remove the gender imbalance in mutation data or covariates.  

Repetitive regions on human genome are known to generate artifacts in high throughput 

sequencing analysis mainly due to their low mappability. We downloaded the mappability 

consensus excludable table used in the ENCODE project from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/wgEncodeD

acMapabilityConsensusExcludable.bed.gz. Any fixed length bins that overlap with this table 

would be removed from the training process. We also downloaded the gap regions of hg19 from 

the UCSC genome browser, which include gaps from the telomere, short_arm, heterochromatin, 

contig, and scaffold. The fixed length bins that intersect with these gap regions were also removed 

in our analysis. 

All the bigWig files generated in step one were used to calculate the average signal using the 

bigWigAverageOverBed tool for each fixed length bin we generated above. In the end, we 

summarized all the covariates values in each bin into a covariate table, with 475 columns indicating 

different features and rows representing different training bins. 
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2.5 S  (TL, ∦) PCA analysis of the covariate matrix 

It has been reported that many genomic signal tracks demonstrate noticeable correlations 

across features and tissues. A heatmap of the Pearson correlation of the 475 features from 229 cell 

types was given in Figure S 2-6. We observed strong correlations among the used features. For 

example, Pearson correlation of colors ranges from -0.874 to 0.998 at the 1Mb bins.  

−1.0 −0.5 0.0 0.5 1.0

feature correlation heatmapFigure S 2-6 (TL, ∦) Heatmap of feature correlations 



 

 

36 

Hence we first centered and scaled the covariate matrix 𝑋 and then performed PCA on it to 

obtain 𝑋. Then the cumulative proportion of variance explained by the PCs was given in Figure S 

2-7. As expected, the covariate table is highly redundant, as implied by the fact that the first PC 

may explain as much as 47.41% of variance, and the 2nd PC explains an additional 13.19%. 

Nonetheless, the various data tyoes to contribute some unique information since it takes up to 28 

and 169 PCs to capture 90% and 99% of variance (details in Figure S 2-7). 

 

 

 

We also calculated the Pearson correlation of PC 𝑗 with mutation counts in cancer type 𝑑 as 

𝜌*+. Then the absolute correlation value 𝜌*+  were averaged over different cancer types as 𝜌, to 

rank the PCs. The top 10 PCs with highest 𝜌, were selected and boxplot for each of the PCs was 

given in Figure S 2-8. 

 

Figure S 2-8 (TL, ∦) Boxplot of Pearson correlations of top PCs to mutation counts  
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2.6 S (TL, ∦) Training model details 

First we divide the whole genome into bins with fixed length 𝑙. In this stage, 𝑙 is usually large, 

such as 1 Mb. Any bins overlapping either of the two blacklist regions are removed. Then, 475 

features are extracted from both REMC and ENCODE, and the average signal in the bins is 

calculated. We let 𝑥/,* denote the average signal strength for the 𝑖23 bin and 𝑗23 covariate, where 

𝑖 = 1,⋯ , 𝑛 and 𝑗 = 1,⋯ ,𝑚. 

Suppose there are 𝑑 = 1,⋯ , 𝐷 different diseases (or disease types) in the collected WGS data, 

and 𝑠 = 1,⋯ , 𝑠+ unique samples, for example different patients, for each disease (or disease type 

such as liver cancer or lung cancer) 𝑑. Let 𝑦/
+,< and  𝜆/

+,< denote the observed mutation count and 

rate for the 𝑖23 bin defined above for sample 𝑠 in disease 𝑑. In previous efforts, scientists assume 

that mutation rate 𝜆/
+,< is constant across different regions of the human genome, samples, and 

diseases, so they have that 𝜆/
+,< ≜ 𝜆  for ∀	𝑖, 𝑑, 𝑠. Hence 𝑦/

+,< follows a Poisson distribution with 

the probability mass function (PMF) given in equation (2-1). 
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p Yi
d,s = yi

d,s{ }=
e−λi

d ,s

λi
d,s( )

yi
d ,s

yi
d,s!

! e
−λλ yi

d ,s

yi
d,s!

                                         (2-1) 

However, somatic genomes are highly heterogeneous because mutation rates vary 

considerably among various diseases, samples, and regions of the same genome, severely violating 

the assumption in equation (2-1). As a result, fitting of 𝑦/
+,<  is usually very poor because 

overdispersion is often observed42. Simply assuming a constant mutation rate will generate 

numerous false positives. Instead, in our model we assume that different 𝜆/
+,< are random variables 

that follow a Gamma distribution with probability density function (PDF) 

P λi
d,s = x{ } = 1

Γ ci
d( ) υi

d( )ci
dci
x ci

d−1( )e
− x
υi
d

                                         (2-2),  

where 𝑐/+ > 0 and 𝜐/+ > 0. In equation (2-2), 𝑐/+ and 𝜐/+ are the shape and scale parameters 

respectively. Assume that 𝜆/+ = 𝜆/
+,<<E

<FG  is the overall mutation rate from all samples in bin 𝑖 of 

disease 𝑑. Its distribution can be readily obtained through convolution as  

P λi
d = x{ } = 1

Γ sdci
d( ) υi

d( )sdci
d x

sdci
d−1( ) exp − x

υi
d

⎛
⎝⎜

⎞
⎠⎟

                             (2-3). 

If we let 𝑦/+ = 𝑦/
+,<<E

<FG  represent the total mutation counts in region 𝑖  from all disease 

samples, 𝑑, then the conditional distribution of 𝑦/+ given 𝜆/+ can be written as 

P yi
d λi

d( ) = λi
d( )yi

d

exp −λi
d( )

yi
d( )!                                                    (2-4). 

By integrating (2-3) into (2-4), the marginal distribution of 𝑦/+ can be denoted as a negative 

binomial distribution43. 

P yi
d ci

d,υi
d( ) = 1

1+υi
d

⎛
⎝⎜

⎞
⎠⎟

sdci
d

Γ sdci
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Γ sdci

d( ) yid( )!
υi
d

1+υi
d

⎛
⎝⎜

⎞
⎠⎟

yi
d

                                (2-5a). 

Equation (2-5a) is the PDF of a negative binomial distribution with 𝐸 𝑦/+ = 𝑠+𝑐/+𝜐/+  and 

𝑉𝑎𝑟 𝑦/+ = 𝑠+𝑐/+𝜐/+ 1 + 𝜐/+ . To better interpret (2-5a), we define 𝜐/+ = 𝜇/+𝜎/+ and 𝑠+𝑐/+ = 1/𝜎/+. 

Then equation (2-5a) can be rewritten as (2-5b). 



 

 

39 

p
Yi
d yi

d µi
d ,σ i

d( ) = 1
1+σ i

dµi
d

⎛
⎝⎜

⎞
⎠⎟

1
σ i
d Γ yi

d + 1
σ i

d
⎛
⎝⎜

⎞
⎠⎟

Γ 1
σ i

d
⎛
⎝⎜

⎞
⎠⎟ Γ yi

d +1( )
σ i

dµi
d

1+σ i
dµi

d

⎛
⎝⎜

⎞
⎠⎟

yi
d

                      (2-5b) 

The mean and variance of 𝑦/+  from (2-5b) can be described as 𝜇/+  and 𝜇/+	 1 + 𝜇/+𝜎/+  

respectively. Our model in equation (2-5b) is convenient due to its explicit interpretability. First, 

it assumes that the individual mutation rates are heterogeneous by modeling 𝜆/
+,< as i.i.d. Gamma 

distributed random variables. Unlike the constant mutation rate assumption where 𝑉𝑎𝑟 𝑦/+ =

𝐸 𝑦/+ , our model captures the extra variance of 𝑦/+ due to population heterogeneity. Our model 

in (2-5b) also clearly separates the two main parameters 𝜇/+ and 𝜎/+ with physically interpretable 

meanings: the mean and overdispersion, respectively. Here a larger 𝜎/+ indicates a more severe 

degree of overdispersion, which is usually due to larger differences in mutation rates. 

After modeling 𝑦/+ with a negative binomial distribution, we then estimate the local mutation 

rate by correcting the covariate matrix 𝑿 described above. Again 𝑥/,* denotes the average signal 

strength in the 𝑖23 bin and 𝑗23 covariate, where 𝑖 = 1,⋯ , 𝑛 and 𝑗 = 1,⋯ ,𝑚. Because the genomic 

features in the covariate matrix are highly correlated and may introduce multicollinearity if directly 

used in regression, we first apply principal component analysis (PCA) to matrix 𝑿. We define 𝑿′ 

to be the covariate matrix after PCA and 𝑥/,*Q  as each element in 𝑿′.  

A generalized regression scheme is used here. Suppose 𝑔G and 𝑔S are two link functions. We 

then use linear combinations of covariate matrix 𝑿Q to predict the transformed mean parameter, 

𝜇/+, and overdispersion parameter, 𝜎/+, as 

g1 µi
d( ) = log µi

d( ) = β0d +β1d ʹxi,1 +!+β j
d ʹxi, j +!+β j

d ʹxi,m

g2 σ i
d( ) = log σ i

d( ) =α0
d +α1

d ʹxi,1 +!+α j
d ʹxi, j +!+αm

d ʹxi,m
                    (2-6). 

Here we use a log link function for both 𝑔G and 𝑔S, so the regression model in (6) is a negative 

binomial regression. Note that 𝑿 contains 475 genomic features in all available tissues. In the 

following analysis, we use all features to run the regression in (2-6) to achieve better performance. 

The GAMLSS package in R is used to estimate the parameters in (2-6) as 𝛼U+,⋯ , 𝛼V+ , 𝛽U+,⋯ , 𝛽V+ . 

Generally, there are biological reasons to explain how 𝜇/+ changes with covariates. For example, 
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single-stranded DNA in the later replicated regions usually suffers from accumulative damage 

resulting in larger 𝜇/+ . It is more difficult to interpret such a relationship with 𝜎/+ . Hence, we 

simplify equation (2-6) by assuming 𝜎/+ is constant in our real data analysis. In order to separate 

the local context effect, we separate the 64 local 3 mers to train 64´2 parameters during the training 

process. 

2.7 S (HL, ∦) Testing details 

Suppose there are 𝐾  regions to be tested. We use the local mutation rate to evaluate the 

mutation burden. For the 𝑘23 target region (𝑘 = 1,⋯ ,𝐾), one way of calculating the covariates is 

to extend it into length 𝑙 (illustrative figure given in Figure S 2-5). Then we calculate the average 

signal for feature 𝑗 as 𝑥Z,*, 𝑗 = 1,⋯𝑚 for this extended bin, and after PCA projection let 𝑥Z,*Q  

represent the value for the 𝑗23 PC.  The local mutation parameters 𝜇Z+ and 𝜎Z+ in the extended bin 

for the 𝑘23 target region can be calculated as 

 

µ̂k
d = exp β̂0

d + β̂1
d ′xk ,1 +!+ β̂ j

d ′xk , j +!+ β̂m
d ′xk ,m( )

σ̂ k
d = exp α̂ 0

d + α̂1
d ′xk ,1 +!+ α̂ j

d ′xk , j +!+ α̂m
d ′xk ,m( )

                               (2-7). 

In real data analysis, the length of the 𝑘23 test region 𝑙Z is much shorter than the length of the 

training bins (up to 1Mb). Hence 𝜇Z+ needs to be adjusted by a factor of 𝑙Z/𝑙. Then 𝜎Z+ and the 

adjusted 𝜇Z+ can be used to calculate the disease specific P-value, 𝑝Z+. This above scheme is usually 

computationally expensive because there are typically millions of target regions to be tested. 

Therefore, we also propose an alternative approximation using fixed, optimized values for 𝜇Z+ and 

𝜎Z+ in our analysis. In order to separate the local context effect, we separate the 64 3-mers and run 

individual regression models for each 3-mer..  

The negative binomial model mentioned in equation (2-5) can effectively control the false 

positive rate when there is large overdispersion. However, the downside for (2-5) is that when 

there is little heterogeneity among patients, such that heterogeneity over different regions of the 

genome are completely removed by regressing against the external features, then estimation in (2-

7) might fail. In other words, it cannot handle the non over-dispersed data well. In order to solve 

this problem, we first use Poisson regression which assumes equal mean and variance. Then we 
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run a test using the method mentioned in Cameron et al44 for the following hypothesis: provided 

the regression function is correctly specified and ordinary least squares parameter estimates are 

consistent, whether variance is equal to the mean. Specifically, we assume 𝐻U: 𝑣𝑎𝑟 𝑦/+ = 𝜇/+, and 

the alternative hypothesis is 𝐻U: 𝑣𝑎𝑟 𝑦/+ = 𝜇/+ + 𝛼𝑔 𝜇/+ . In particular, we tested whether 𝛼 =

0. When this test for Poisson regression fails, we swich to negative binomial regression for better 

fitting. During the implementation stage, we used the AER package in R (the dispersiontest 

function) to run this test. We provided the summary of estimated overdispersion parameter in 

multiple cancer types in Figure S 2-9. It clearly shows that different cancer types and local 3mers 

have distinct overdispersion status. In CLL, the overdispersion parameters range from 0.8285 to 

0.9784, indicating Poisson regression models for all 3mers are enough during the training process. 

However, in breast cancer, the overdispersion parameter ranges from 0.81 to 3.08 out of the 64 

3mers need to use the negative binomial models to handle the extra variance. 

Figure S 2-9 (TL, ∦) Summary of estimated overdispersion parameter in multiple cancer types 
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Figure S 2-10. We observed that in all cancer types, using more features significantly 

improves the BMR estimation precision. However, to avoid overfitting, we first run a regression 

using projected PCs on the feature matrix, and then all PCs with adjusted P-value greater than 0.05 

are removed during the training process. 

Figure S 2-10 (TL, ∦ ) Performance of BMR model training using different number of 

parameters. 

 

Sometimes it is necessary to analyze several related diseases (or disease types) to provide a 

combined P-value. One typical example is in pan-cancer analysis.  In the above section, we 

calculated the P-value for disease/disease type 𝑑 as 𝑝Z+ for test region 𝑘. Fisher’s method can be 

used to combine these P-values. Specifically, the test statistic is 
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Tk = −2 ln pk

d( )d=1

D∑ ∼ χ 2 2D( )                                      (2-8).  

Here 𝑇Z follows a centered chi-square distribution with 2𝐷 degrees of freedom, where 𝐷 is 

the total number of diseases/disease types. The final P-value, 𝑝Z, can be calculated from 𝑇Z. 

2.8 S (TL, ∦) BMR estimation using umatched data 

As shown in Figure S 2-6, features across mulitple cell types are highly correlated. This 

charateristic enables us to estimate BMR of a potentially unmatched cancer type with acceptable 

accuracy. For example, ENCODE has very limited functional charateristic data for prostate cancer. 

However, the correlation between the observed and estimated variant counts per 1 Mb bin is as 

high as 0.80 from our model (Figure S 2-11).  

Figure S 2-11 (TL, ∦) BMR estimation with unmatched data 

 

●

●
●

●

●
●

● ●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

● ●
●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

● ●● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●
●

●

●●
●

●

●

●
●

●●

●
●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●
●●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

● ●
●●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●

●

● ●

●
●

●

●
●

●
●

● ●

●
● ●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

● ●
●●

●●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●
●

●

●

●
●

●●

●

● ●
●

●

●
●●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●●
● ●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●
●

●
●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●
●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●
●

●

●
●

●●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●

●
●

●●●
●

●
●

●

●●

●
●

●
●● ●

●

●●
●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

● ●
●

●

●

●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●●●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●●
● ●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
● ●●

●

●
● ●

●●

●

●●

●

●

●●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●
●●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●
●

●

●
●

100 200 300 400

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0

ProstateCancer Cor=0.801

observed VarCount per 1mb

pr
ed

ic
te

d 
Va

rC
ou

nt
 p

er
 1

m
b



 

 

44 

 

3 S (TL, ∥ ) More details about “A focused, compact 
annotation increases power for detecting cancer 

drivers” and “An extended gene annotation by linking 

non-coding elements to genes” 

3.1 S (TL, ∥) Power analysis 

In this section, we discussed in detail how the annotation quality and quantity would affect 

the statistical power of burden analysis. 

3.1.1 S (TL, ∥) Power of individual burden test 

Similar to the power calculation mentioned in previous papers45,46, let 𝐿 and 𝜇 denote the 

length of test region and background mutation rate for this region. The probality that there is at 

least one mutation can be fomulated as 

𝑝U = 1 − 1 − 𝜇 b                                                       (3-1) 

For the driver regions, the faction of mutations over population is 𝑟 and miss detection rate 

during the variant calling process is 𝑚. Then under the alternative hypothesis, the mutation rate 

should be  

𝑝G = 𝑝U + 𝑟 1 −𝑚                                                     (3-2) 

Suppose the total number of test regions is 𝐾, then the P value needed to claim significance 

would be  

𝑃23de =
U.Ug
h

                                                           (3-3) 

Let 𝑁V/j is the minimum number of samples needed under the null hypotheysis that has p 

value at 𝑃23de. Then the power can be calculated as  

𝑃𝑜𝑤𝑒𝑟 = 𝑃 𝐵𝑖 𝑁V/j, 𝑝G                                            (3-4) 
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If 𝜇 = 6/𝑀𝑏𝑝, 𝑚 = 0.5, 𝑟 = 5%,  and 𝐾 = 25000 (roughly the number of genes), then from 

the simulation in Error! Reference source not found., it is obvious that longer regions needs 

larger number of sample to achieve similar power level. Hence it is better to maintain a minimum 

length of the functional regions with true functional impact. 

3.1.2 S (TL, ∥) Power of mulitple burden tests 

We also fixed the length of the annotation and checked the effect of annotation numbers on 

burden tests. Since a large number of annotation will introduce huge penalty due to multiple test 

correction, it is better to confine tests on core annotations with high confidence  (Error! 

Reference source not found.).  

Figure S 3-1 (TL, ∥) Power analysis of annotation length effect 
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Figure S 3-2 (TL, ∥) Power analysis of annotation number 

 

 

3.2 S (TL, ∦ ) An stepwise screening method to predict 

enhancers and their gene linkages  

In contrast to previous approaches to enhancer annotations (many of which use only histone 

modification and chromatin accessibility data47), we proposed an ensemble method to accurately 

pinpoint active enhancers and link them to protein coding genes. It composes three computational 

pipelines (CASPER, ESCAPE, and JEME) to integrate tens of data sets from six different 

experimental assays, including ChIP-seq, DNase-seq, STARR-seq (CapSTARR-seq), RNA-seq, 
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ChIA-PET, and Hi-C for higher accuracy. The overall schematic has been summarized into Figure 

S 3-3. 

Figure S 3-3 (HL, ∦) Overall schematic of enhancer and gene linkage 

 

For the enhancer prediction part, we integrated prediction results from different methods and 

data source, as shown in Figure S 3-4. First, we proposed a computational method, called CASPER, 

to make enhancer predictions based on pattern recognitions of histone marks ( details in Figure S 

3-5). The upper white panel of Figure S 3-4 shows an example of the signal tracks (DNase, 

H3K27ac, H3K4me1 and H3K3me3) of GM12878. Based on these signals and other experiment 

results, we have a collective data source including enhancers predicted from CASPER and 

ESCAPE, an enhancer-gene linkage map from JEME and Hi-C, cREs from Phase III encyclopedia 

and transcription factor (TF) binding sites (middle panel). Specifically, we took intersections of 

predicted enhancers from CASPER and ESCAPE and furhter filtered them  from target predictions 
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with JEME and Hi-C results. The resulting list is further refined by intersecting with cREs from 

the main encyclopedia paper. In the last step, we pruned the enhancers in the list to trim both ends 

that are not covered by any transcription factor binding motifs (TFBS). The final list is a set of 

precisely refined and high-confident enhancers. 

Figure S 3-4 (TL, ∦) Integrated approach to generate high-confidence enhancers list 

 
 

3.2.1 S (TL, ∦) Enhancer prediction Pipeline based on ChromAtin Shape 

PattErn Recognizer (CASPER) 

We first developed a framework to detect enhancer regions across the genome through 

aggregated signals of epigenetic features. Previous analysis demonstrated that regulatory regions 

are depleted of histone proteins while surrounding regions tend to contain histone proteins with 

certain post-translational modifications48. This characteristic is revealed in many ChIP-seq 

experiments as enriched peak-trough-peak (double peak) signal at the distal regulatory regions for 

many activating histone marks. A supervised machine-learning model is well suited to identify 

this pattern. 
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For each histone modification, we aggregated the ChIP-seq signals around known enhancer 

regions. The two maxima in each region are aligned, interpolated and smoothened before averaged 

to generate meta profile. An additional flipping step was applied to maintain the asymmetry of the 

two maxima since it might be associated with the directionality of transcription. The meta profile 

is then used to scan the whole genome to find matched patterns. A 10-fold cross-validation is 

performed to assess the accuracy of prediction through this method. We found that H3K27ac is 

the most accurate feature for predicting active regulatory regions. Other features including 

H3K4me1 and H3K4me2 also achieved high performance. 

To achieve higher accuracy, we further developed an ensemble method to combine the 

normalized pattern-matching result from several different epigenetic marks with linear support 

vector machine (SVM) (Figure S 3-5). This includes ChIP-seq signals for H3K27ac, H3K4me1, 

H3K4me2, H3K4me3, H3K9ac and DHS signals associated with active regulatory regions. The 

ChIP-seq data is available through ENCODE Consortia (https://www.encodeproject.org) and 

Roadmap Epigenomics (http://www.roadmapepigenomics.org). The integrated model performs 

better than each of the individual histone marks, and different integration methods perform 

similarly. We use linear SVM to assemble the signals to form a discriminant function, where the 

sign of the result value is used to predict whether a specific region is an enhancer. The resultant 

enhancers have been summarized in Table S 3-1. 

Table S 3-1 (TL, ∥) Number of enhancers predicted by histone-shape based method 

 
Cell Type GM2878 HepG2 K562 MCF-7 

Number of Enhancers 45,202 61,005 45,801 59,827 
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3.2.2 S (TL, ∦ ) Enhancer prediction by EnhancerS Peak CAlling 

PipEline from STARR-seq (ESCAPE) 

The whole-genome STARR-seq was performed using a protocol conceptually similar to the 

previously published STARR-seq technique that was done in the Drosophila melanogaster 

Figure S 3-5 (TL, ∦) Schematic of shape-based enhancer prediction method 

Figure S 3-6 (TL, ∦) Flowchart of capture STARR-seq target region selection procedure 



 

 

51 

genome49. The CapSTARR-seq is a variant of STARR-seq technique which combines STARR-

seq with genome capturing technology50. In brief, the genomic DNA from each cell line was 

fragmented into ~500 bp by sonication and built into plasmid library, which was named as 

screening library. The screening library was subjected for next generation sequencing. We verified 

the sequence complexity and genome coverage of screening libraries, which were then transfected 

into GM12878, K562 or MCF-7 cells by electroporation. After 24 hours of transfection, the 

plasmid-specific mRNA was purified, reverse transcribed and PCR amplified. The PCR products, 

which are the so-called STARR-seq libraries, were subjected to sequencing. Both screening library 

and STARR-seq libraries were sequenced as 100 bp paired-end on the Illumina HiSeq 2500/4000 

platforms. The general workflow of the MCF-7 CapSTARR-seq is similar to the whole-genome 

STARR-seq, however, we captured ~10,000 DNase I hypersensitivity sites (a total length of 9.7 

Mb) from fragmented genomic DNA to build the screening library. Compared to the published 

STARR-seq work, we'd like to note the following innovation and improvement: (1) We 

significantly increased the complexity of the screening libraries to ensure comprehensive coverage 

to the human genome; (2) We significantly increased the electroporation scale and efficiency to 

maximize the size of screening library that got into the cells; (3) We introduced an extra 

multiplexing step to minimize the bias introduced by PCR duplicates. For the capture based assay 

for MCF-7 cell line, a total of 10,825 target regions consisting of 9,825 candidate enhancer regions 

and 1,000 negative control regions were selected tested for regulatory potential. Candidate 

enhancer regions were selected based on DHS peaks excluding both 1kb upstream and downstream 

of TSS. Negative control regions were selected from 500 randomly selected regions and 500 non-

E2-responsive DHS regions. Details of the selection procedure can be found in Figure S 3-6. (L. 

Ma et al for GM12878 and K562 whole-genome STARR-seq; S. Yu et al for MCF-7 CapSTARR-

seq, in preparation). Candidate enhancer regions were primed and inserted into 3’ UTR. 

Schematics of the experimental procedure can be found in Figure S 3-7. 
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To uniformly process the data from whole genome and capture-based STARR-seq assays, (TL, 

∦)we developed a new analysis pipeline named ESCAPE (Figure S 3-8). The pipeline is tailored 

for optimally processing the output from STARR-seq experiments. The output from an STARR-

seq experiment is two datasets for each cell line. First is screen library that contains the sequencing 

of plasmids from which the enrichment is performed. This screen library serves as a control in the 

STARR-seq analysis. Second is the actual STARR-seq enriched sequencing data that contains the 

actual enhancer signal.  

We have removed low-quality reads and mapped them using BWA version 0.7.1251. We have 

used the reference genome from 1000 Genomes Project’s decoy genome52. ESCAPE then removes 

the reads with mapping quality lower than 20 and removes PCR duplicates and estimates fragment 

length distribution using cross-correlation between the strands (Figure S 3-9). Then the STARR-

seq signal tracks are generated to perform peak calling. The STARR-seq signal shows lower fold 

change characteristics compared to ENCODE ChIP-seq datasets (Figure S 3-9). 

Figure S 3-7 (TL, ∦) Capture STARR-seq experiment design 
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Figure S 3-8 (TL, ∦) Schematic of ESCAPE pipeline 

 

For peak calling, ESCAPE uses the following strategy: First, the peak candidates are identified. 

For the whole genome assay, ESCAPE uses a multiscale decomposition based peak calling 

strategy53. For this, we have decomposed the signal using smoothing filters with lengths varying 

between 100 and 2000 base pairs. The filtering can be summarized with following formula: 

𝑥/< = median {𝑥{}{∈ /~��� ,/�
��
�

, 𝑙< 	 ∈ (	𝑙<2{d2, 𝑙<2{d2×𝜎 ,⋯ , 𝑙ej+)                  (3-1) 

where 𝑥/< is the 𝑖23	signal level at scale decomposition 𝑠. The smoothing window length is 𝑙<. 

Then we identified the local minima in the smoothed signal profiles and used these as possible 

enriched regions. For this, ESCAPE first estimates the derivative at each point:  

𝑑𝑥/< = (𝑥/< − 𝑥/~G< )                                               (3-2) 

where 𝑑𝑥/< is the derivative of the smoothed signal 𝑥/<. The local extrema are found as the 

points where the derivative flips its sign: 

𝐼V/j = 𝑖	 	𝑑𝑥/< < 0, 𝑑𝑥/~G< > 0}                                               (3-3) 

𝐼V{� = 𝑖	 	𝑑𝑥/< > 0, 𝑑𝑥/~G< < 0}                                               (3-4) 

where 𝐼V/j and 𝐼V{� are the sets of positions of minima and maxima of 𝑥/<, respectively. The 

scale specific candidate enriched regions of 𝑥/<  are identified as the regions between the 

consecutive minima. The multiscale decomposition approach identifies enriched regions at 

different length scales that correspond to punctate features like enhancers. Then, ESCAPE 
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computes the fold change on each peak candidate as the ratio of total signal in the STARR-seq 

signal and screening library signal. We refer to this as 𝐹𝐶: 

𝐹𝐶 = ��
��

���
��
��

���
                                                     (3-5) 

where 𝑦/<  represents the value of screening library signal profile at position 𝑖. For capture 

based assay, ESCAPE uses a more focused analysis to identify candidate peak regions. For each 

capture region, ESCAPE selects a bins size that balances the peak calling sensitivity and specificity. 

To set a threshold for the fold change to select candidate peaks, we exchanged screening library 

and STARR-seq and we computed the fold change on the candidate peaks, which we refer to as 

𝐹𝐶d{j+�V: 

𝐹𝐶d{j+�V = ��
��

���
��
��

���
                                                   (3-6) 

These fold change scores serve as a random distribution of fold change scores. We use this 

distribution for selecting a fold change threshold. For a 𝐹𝐶 threshold fc, we estimated the false 

discovery rate as the ratio of number of peaks that for which 𝐹𝐶d{j+�V > fc and the number of 

peaks for which 𝐹𝐶 > fc. We set the FDR threshold at 0.1% and filtered the peaks that do not 

satisfy the 𝐹𝐶 threshold selected using this FDR threshold. For capture based assay, ESCAPE uses 

the candidate enriched regions with top 10% 𝐹𝐶 values. 
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Figure S 3-9 (TL, ∦) Whole genome STARR-seq signal enrichment properties 

Figure S 3-10 (TL, ∦) Capture STARR-seq experiment properties 
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3.2.3 S (TL, ∦) Enhancer Target prediction 

3.2.3.1 S  (TL, ∦) Enhancer Gene linkage prediction using JEME 

Enhancer targets were predicted using JEME (Joint Effect of Multiple Enhancers, Yip et al., 

Nature Genetics, in press), which involves two main steps (Figure S 3-11). In the first step, the 

transcript levels around each transcription start site (TSS) in 49 ENCODE and Roadmap 

Epigenomics cell lines (Table S 3-2) were modeled based on histone modification data at nearby 

enhancers without requiring any known enhancer-target pairs as examples. Specifically, for each 

enhancer feature 𝑖 the expression level 𝑦 of a TSS is modeled as 𝑦 = 𝑎/U + 𝑎/** 𝑥/*, where the 

summation is over all enhancers 𝑗 within 1Mbp from the TSS, and 𝑥/* is the value of feature 𝑖 of 

enhancer 𝑗. The coefficients 𝑎/* of the enhancers are learned by LASSO, which minimizes the 

regression error over all samples while selecting a small number of enhancers to have non-zero 

coefficients. The features considered include H3K4me1, H3K27ac and H3K27me3 (A separate 

model involving only the latter two features was built when constructing the enhancer-target 

network in MCF-7 since H3K4me1 data were unavailable). 

In the second step, single-enhancer error terms were first computed. Specifically, an error term 

is computed to check how much the expression 𝑦Z of the TSS in sample k can be explained by 

considering each feature 𝑖 of each enhancer 𝑗, i.e.,𝑒/*Z = |𝑦Z − (𝑎/U + 𝑎/*𝑥/*Z)|, where 𝑥/*Z is the 

value of feature 𝑖 of enhancer 𝑗 in sample 𝑘 and 𝑎/U and 𝑎/* are the coefficients learnt in the first 

step. These error terms were then combined with genomic distance and cell-line-specific data (i.e. 

the levels of histone modifications across the enhancer, the TSS and the window between them in 

sample	𝑘) to predict the enhancers that regulate a TSS in a particular cell line using a Random 

Forest model. The parameter values of these second-level models were learned from published 

ChIA-PET data from K562 and MCF-7 cell lines. A 5-fold cross-validation procedure was used to 

evaluate the accuracy of the predicted enhancer-target pairs. The model was then applied to those 

samples without ChIA-PET data. 
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Table S 3-2 (TL, ∦) The 49 ENCODE and Roadmap Epigenomics cell lines used to construct 

enhancer-target networks by JEME 

Data source Cell lines 

ENCODE GM12878 

ENCODE HepG2 

ENCODE K562 

ENCODE MCF-7 

ENCODE A549 

ENCODE HeLa-S3 

ENCODE HMEC 

ENCODE HSMM 

ENCODE HUVEC 

ENCODE NHEK 

ENCODE NHLF 

REMC H1 Cells 

REMC H1 BMP4 Derived Mesendoderm Cultured Cells 

REMC H1 BMP4 Derived Trophoblast Cultured Cells 

REMC H1 Derived Mesenchymal Stem Cells 

REMC H1 Derived Neuronal Progenitor Cultured Cells 

REMC hESC Derived CD184+ Endoderm Cultured Cells 

REMC hESC Derived CD56+ Ectoderm Cultured Cells 

REMC hESC Derived CD56+ Mesoderm Cultured Cells 

REMC HUES64 Cells 

REMC Primary T helper memory cells from peripheral blood 2 

REMC Primary T helper naive cells from peripheral blood 

REMC Primary T CD8+ naive cells from peripheral blood 

REMC Primary hematopoietic stem cells G-CSF-mobilized Female 

REMC Foreskin Fibroblast Primary Cells skin01 

REMC Foreskin Fibroblast Primary Cells skin02 

REMC Foreskin Keratinocyte Primary Cells skin03 

REMC Foreskin Melanocyte Primary Cells skin01 
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REMC Foreskin Melanocyte Primary Cells skin03 

REMC Primary mononuclear cells from peripheral blood 

REMC Aorta 

REMC Liver 

REMC Brain Hippocampus Middle 

REMC Esophagus 

REMC Fetal Intestine Large 

REMC Fetal Intestine Small 

REMC Pancreatic Islets 

REMC Gastric 

REMC Left Ventricle 

REMC Lung 

REMC Ovary 

REMC Pancreas 

REMC Psoas Muscle 

REMC Right Atrium 

REMC Right Ventricle 

REMC Sigmoid Colon 

REMC Small Intestine 

REMC Thymus 

REMC Spleen 
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Figure S 3-11 (TL, ∦) Schematic of JEME 

 

3.2.3.2 S (TL, ∦) Enhancer gene linkage pruning using Hi-C data 

Enhancer target predictions are further filtered by using Hi-C data. Contact maps of individual 

chromosomes (in 5kb bins) for both K562 and GM12878 cell lines were obtained from Rao et al54. 

MCF-7 contact maps (40kb) were obtained from Barutcu et al55. Element 𝑖, 𝑗  in a contact map 

represents the frequency of interactions between genomic loci 𝑖 and 𝑗. For all possible  𝑖, 𝑗 , we 
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used the tool Fit-Hi-C to estimate the statistical significance of the contact frequency based on the 

coverage of the loci as well as their genomic distance56 and to keep the interactions with q-

value<0.1. We then used the list of significant loci to filter the enhancer-target predictions. Only 

enhancer-gene pairs in which enhancer and gene are respectively belong to a pair of significantly 

interacting loci are kept for further analysis. 

3.3 S  (TL, ∥) Extended gene neighborhood generation 

Here we generated the extended gene neighborhoods by combing the coding region with the 

key non-coding proximal and distal regulatory elements together for a joint mutation burdening 

quantification. Details of the schematic are given in Figure S 3-12. 

Figure S 3-12 (HL,∥, shadow figure for Fig. 2 C) Schematic of extended gene definition 

 

 

3.4 S  (TL, ∦) P-value summaries 

To check the distribution of P-values vs. the theoretical ones, the Q-Q plots were given in 

Figure S 3-13 to Figure S 3-15. 
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Figure S 3-13 (TL, ∦) Q-Q plots of P-values for CLL. 

 

Figure S 3-14 (TL, ∦) Q-Q plots of P-values for BRCA 
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Figure S 3-15 (TL, ∦) Q-Q plots of P-values for LIHC 
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4 S  (TL, ∥ ) More details about “Interpreting tumor 

expression profiles using ENCODE networks identifies 
key regulators” 

4.1 S (TL, ∦) Expression pattern of TF and RBPs across cancer 

types. 

We plotted the expression values of TF and RBPs across different cancer types to show the 

difference in expression in different cancer types. 

 

Figure S 4-1 (TL, ∦) Expression patterns of transcription factors across cancer types 
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4.2 S  (TL, ∦) TCGA expression data processing 

All TCGA expression, methylation and mutation data were downloaded from GDAC firehose 

(http://gdac.broadinstitute.org) with data version of 2016_01_28. For cancer types with normal 

control samples profiled, the expression values of each gene are substracted with the average value 

of all normal controls. For cancer types without any normal samples profiled, the expression 

profile of each gene is transformed to zero mean and unit deviation. The DNA methylation values 

are also normalized in the same way as RNASeq data, according to the availability of normal 

control samples in each cancer type. For copy number alteration (CNA), GDAC firehose does not 

provide standardized data, therefore we downloaded the data matrix from cBioportal with data 

version of 2016_10_20 (http://www.cbioportal.org). 

 

 

4.3 S  (TL, ∦ ) Probabilistic Regulatory network construction 

from ChIPSeq and eCLIP data 

For regulatory analysis, we only considered transcription factors (TF), chromatin regulators 

(CR), and RNA binding proteins (RBP). In total, there are 978 TF/CR ChIPSeq profiles and 159 

RBP eCLIP profiles downloaded from ENCODE DCC as of January 4th, 2017 

(https://www.encodeproject.org). 

All ChIP-seq and eCLIP peak scores are linearly scaled into range (0,1). The regulatory score 

between TF peaks and gene promoters were built with “connect_host” commands from RABIT 

Figure S 4-2 (TL, ∦) Schematic of RNA-seq 

normalization 
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package (Regression Analysis with Background InTegration, http://rabit.dfci.harvard.edu) 

following an exponential decay model (Figure S 4-3 a). A regulatory score between RBPs and 

genes were built through counting eCLIP peaks within gene 3’UTR regions (Figure S 4-3 b). The 

following steps were made to construct the network. a) For ChIP-seq data, A regulatory potential 

score is calculated between each pair of ChIP-seq peak and gene TSS by multiplying the ChIP-seq 

intensity score with an exponential decay score exp(-A*Distance) of their distance between. The 

coefficient A is set as log(2)/10K, so that a binding peak 10K bps away from gene TSS will decay 

by 50%. For each gene TSS, if there are several peaks of a TF nearby, we merged their regulatory 

potential scores by noisy-or: (b) For eCLIP data, only binding peaks over gene 3’UTR regions 

were considered for possible regulatory role of transcript stability. For each gene 3’UTR region, 

if there are several peaks of a RBP, we merged their regulatory potential scores by noisy-or 

operation. All regulatory potential scores stay within range (0,1). 

 

 

−40 −20 0 20 40

0.
2

0.
6

1.
0

distance (Kb)

re
du

ct
io

n

TSS
0.5

a

5'

5' UTR
Start Stop
Coding sequence 3' UTR Poly-A

tail

3'

b binding peak

Figure S 4-3 (TL, ∦) Regulatory network construction 



 

 

66 

ChIPSeq and eCLIP profiles were excluded from further analysis if the total sum of regulatory 

scores across all human genes is less than 100. All general TFs including Pol2 and Pol3 were 

excluded from further analysis. For certain TF, there exist many ChIP-seq profiles profiled in 

different conditions. We run a hierarchical clustering among all of its ChIP-seq profiles and cut 

the hierarchical tree at correlation distance of 0.2. Only profiles in the largest cluster are used for 

further analysis. The final size of regulatory networks constructed are shown in Table S 4-1. For 

each data type, column “Profile” represents the number of experimental profiles (ChIP-seq or 

eCLIP) that passed our quality controls. Column “Regulator” represents the number of regulators 

(TF, CR or RBP) analyzed. Column “Condition” represents the number of experimental conditions 

included in profiles. Column “Target” represents the total number of human genes profiled as 

targets of analyzed regulators. 

Table S 4-1 (TL, ∦) Statistics of regulatory networks. 

 Profile Regulator Condition Target 

ChIPSeq 762 496 44 21,348 
eCLIP 159 112 2 14,593 

 

To systematically search for TFs that drive tumor-specific gene expression patterns, we used 

a previously developed integration framework RABIT (Regression Analysis with Background 

InTegration, http://rabit.dfci.harvard.edu). In the RABIT framework, for a given TF ChIP-seq 

binding profile, candidate target genes are identified by weighting the number of binding sites by 

their distance to the transcription start site (TSS) of each gene. For a given eCLIP RBP binding 

profile, candidate genes are identified through searching the binding sites within the gene 3’UTR 

regions. RABIT uses three steps to identify TFs (or RBPs) that drive tumor-specific gene 

expression patterns at both the individual tumor level and the whole cancer type level. In Step one, 

RABIT screens for TFs that significantly affect the gene expression patterns in each tumor, and 

selects the most relevant ChIP-seq (or eCLIP) profile if multiple profiles exist for the same 

regulator. In Step two, RABIT further selected a subset of TFs among those screened in Step one 

to achieve an optimized model error. In Step three, RABIT investigates how well the public ChIP-

seq profiles can capture the active TF targets in each cancer type, and clean up insignificant TFs. 
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The final output of RABIT framework is a set of TFs or RBPs that shape the tumor-specific 

expression patterns at individual tumor level in each cancer type.  

Based on ENCODE ChIPSeq data and TCGA profiles, we applied RABIT framework to 

identify TFs whose target genes are differentially regulated in cancer. The fractions of patients 

with TF targets differentially regulated are shown. Only TFs with targets differentially regulated 

in over 40% patients in at least two cancer types are included, and results were summarized into 

Figure S 4-4. We further extracted those TFs with stronger signals to shown in Figure S 4-4. Except 

the well-known MYC targets showing consistent up-regulation pattern across multiple cancer 

types, we also found novel TFs such as ZNF687 to be strongly up-regulated in breast and prostate 

cancer (star in Figure S 4-4). Also, the breast tumors were further classified into subtypes 

according to PAM50 classification and ER status to show the scores predicted by RABIT for each 

subtype by boxplots. We further checked in each TCGA cancer type, the fractions of patients 

detected with different types of ZNF687 alterations (Figure S 4-5 b). 
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SUB1 was also predicted to be significantly associated with expression changes in multiple 

tumor types. Here we have listed the full predictions in all cancer types for SUB1. In each cancer 

type, the association between SUB1 expression and SUB1 regulatory activity predicted by RABIT 

was tested through t-test in linear regression. Only significant associations above FDR threshold 

0.05 are shown in Table S 4-2. 

For the SUB1 survival plot in Fig. 4, the association between SUB1 regulatory activity 

computed for each TCGA tumor for each cancer type studied in TCGA and overall survival was 

tested through two-sided Ward test in Cox-PH regression. In the KM-plot, all patients with SUB1 

regulatory activity larger than 2 were categorized as high and the rest were categorized as low. 

Table S 4-2 (TL, ∥) Correlation between SUB1 expression and target activity 

Cancer Coef Stderr t-value p-value 

THCA 4.79 0.46 10.46 9.03E-23 

OV 4.47 0.61 7.37 1.53E-12 

LUAD 2.87 0.46 6.22 3.25E-09 

PRAD 2.9 0.48 6.02 4.56E-09 

HNSC 2.61 0.46 5.72 2.73E-08 

KIRP 3.6 0.63 5.73 5.66E-08 

GBM 2.93 0.54 5.47 2.60E-07 

LIHC 3.22 0.64 5.02 1.18E-06 

BLCA 3.21 0.66 4.83 3.91E-06 

LUSC 2.8 0.66 4.25 6.39E-05 
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Figure S 4-5 (TL, ∥) The potential role of ZNF687 in cancer 
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KIRC 1.91 0.5 3.83 1.62E-04 

STAD 2.16 0.57 3.76 2.14E-04 

ESCA 1.67 0.54 3.09 2.34E-03 

UCEC 1.47 0.52 2.84 5.28E-03 

KICH 1.64 0.58 2.8 6.71E-03 
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5 S (TL, ∥ ) More details about “Cell-type specific 

regulatory networks highlight extensive rewiring 
events during oncogenesis” 

5.1 S (TL, ∦) Regulatory network 

5.1.1 S (TL, ∦) TF network 

We defined the TF network directly from the TF-gene interactions based on ENCODE 

uniformly processed ChIP-seq peak calls. We first defined TF-gene regulatory network in each 

cell type by searching for TF to gene linkages based on their proximities to the TSS. In addition, 

we also used target identification from profiles (TIP) method that quantitatively measures the 

regulatory relationships between TFs and target genes to define a subset of the full TF-gene 

network57. We also provide a more generalized network by reconciling networks from multiple 

cancer types and applied it in a pan-cancer analysis. All networks were summarized in the 

supplementary datasheet. For more details, please refer to the section 5.3.2 S.  

5.1.2 S (TL, ∦) RBP network 

We defined the RBP network based on the RBP-gene interactions from eCLIP peak calls. 

eCLIP peak scores between RBPs and genes were built through counting eCLIP peaks within 

gene’s 3’UTR regions and then linearly scaled into range (0,1). For more details, please refer to 

section 4.3 S. To provide a strict and lenient RBP network, we use 0.9 and 0.1 as the threshold for 

interaction cutoffs. RBP networks are summerized in the supplementary datasheet. 

5.2 S  (TL, ∦) Reconcile with the main ENCODE encyclopedia 

Both promoter and enhancer annotations from EN-CODEC were carefully consolidated with 

the main ENCODE Encyclopedia resources. The ENCODE Encyclopedia comprises of three 

levels, two integrative levels of annotations and the ground level raw data. The ground level 

includes peaks and quantifications produced by uniform processing pipelines for individual data 

types. The integrative level contains annotations produced by integrating multiple data types. The 
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core of the integrative level is the Registry of candidate Regulatory Elements (cREs). The registry 

contains approximately ~1.31M human cREs and each cRE has a cell-type non-specific accession 

number, which then can be browsed from SCREEN (Search Candidate Regulatory Elements by 

ENCODE, http://screen.umassmed.edu/). 

Annotations from EN-CODEC were merged against the Registry of candidate Regulatory 

Elements (cREs). We assigned cell type non-specific cRE accession numbers to ESCAPE and 

CASPER integrated enhancer annotations when the region had more than 1bp overlap. When there 

were more than one accession numbers associated with the annotation, we assigned multiple 

accession numbers to the element. Overall, there was 99% overlap between integrated enhancer 

annotations and cREs with each element being mapped to 2.5 cRE accessions on average. 

For cases without an overlap, we assigned special accession numbers EH37EXXXXXXX-C 

where XXXXXXX are replaced with numbers starting from 0000001. 

To access the cRE using accession number, one can use the URL 

http://screen.umassmed.edu/search/?q={accession}&assembly=hg19# where {accession} is 

replaced with the cRE accession number. From SCREEN, one can look up H3K4me3, H3K27ac, 

CTCF, and DNase Z-scores and signal profiles across all available ENCODE cell types. 

5.3 S  (TL, ∥) Rewiring analysis based on direct counts 

5.3.1 S (HL, ∥) TF-gene linkage 

We evaluated the rewiring of TF to gene linkages between normal and cancerous cells. To 

define TF rewiring between cell types, we first defined TF-gene regulatory network in each cell 

type using simple count based target gene linkage. We used two different methods that examine 

TF to gene linkages based on their proximities to the TSS. For the TSS-based method, we simply 

used 2,500bp upstream and downstream of transcription start site (TSS) based on Gencode v19 

annotation as a boundary for the proximal regulatory region. On average, 33.5% of TF ChIP-seq 

peaks fell into promoter region. We defined a target gene linkage if TF ChIP-seq peak was found 

within the boundary. However, we discovered, in Gencode annotation, there were numbers of 

genes that have more than 50 alternative TSS, which gave these genes unfair advantages of having 

more target gene linkages than others since their proximal regulatory regions can span up to 
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250kbp. Therefore, we selected one canonical TSS for each gene based on the total number of 

aggregated ENCODE TF ChIP-seq peaks. While this method is far from perfect, we believe this 

is the best method to capture the high-level TF network rewiring and quantify epigenetics changes 

around TSS while minimizing artifacts when counting all TSSs from all possible alternative 

transcripts. 

In addition to TSS-based TF-gene linkages, we used target identification from profiles (TIP) 

method that quantitatively measures the regulatory relationships between TFs and target genes to 

define a subset of the full TF-gene network. For each TF, TIP model builds a characteristic, 

averaged profile of binding around the TSS and then uses this to weight the sites associated with 

a given gene, providing a continuous-valued 'regulatory' score relating each TF and potential 

target57. We used false discovery rate of 0.1 for cutoff. Since TIP uses narrower promoter definition 

than TSS-based method, we defined the TIP-based network as a subnetwork of the TSS-based 

network. 

5.3.2 S (HL, ∥) Full regulatory network, merged network, and network 

rewiring 

Both promoter-based linkages and enhancer target based linkages were merged into one to 

build a complete TF-gene network. For more information about enhancer target based linkages, 

please refer to section 3.2.3 S. Two versions of full regulatory networks were constructed; one 

larger network by concatenating TSS-based network and enhancer-based network and another 

subnetwork by concatenating TIP-based network and enhancer-based network. In addition, we 

built a merged network by combining all available ENCODE tissue types. 

Rewiring of edges between TF and target genes were compared in normal and tumor cells as 

shown in Figure S 5-1. If a target gene linkage was found in normal but lost in tumor, the edge 

was marked as loss edge. Similarly, if a target gene linkage was found only in tumor, it was labeled 

gain edge, and for edges found in both, they were labeled common or retained edges 

5.3.3 S (TL, ∥) Rewiring score 

To quantify rewiring events, we first calculated rewiring score for each regulators (TFs). The 

fraction of the number of gain, loss, and common edges to the number of fully connected network 
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edges, where all available TF nodes are fully connected with all available gene targets in the whole 

network was used to calculate the raw rewiring score. 

 

 

(5-1) 

The rewiring score, rScore, after taking normalization over the maximum rScore, was used to 

rank the TF from the gainer to loser. 

𝑛fully-connected = 𝑛TF ∗ 𝑛gene − 1	

𝑟𝑆𝑐𝑜𝑟𝑒TF =

𝐺in + 𝐺out
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Figure S 5-1 (HL, ∥) Network rewiring schematics 
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5.3.4 S (TL, ∥) Clustering of rewired TFs 

Based on the fraction of gained, lost, and retained edges with respect to the total number of 

edges for each TF, rewired TFs were clustered into three groups using Kmeans clustering. 

Hartigan-Wong algorithm with 10 iterations were used a K-means algorithm by Hartigan58. Figure 

S 5-2 shows the clustering result for rewired TFs between K562 and GM12878. NFE2 and RCOR1 

were identified as one of the strongest members of the gained group, CTCF was identified as a 

member of the common group, and YBX1 was identified as a member of loss group. 

Figure S 5-2 (TL, ∥) Kmeans clustering of rewired TFs in K562 and GM12878 
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5.4 S (TL, ∥) Rewiring analysis based on mixed membership 

algorithm  

We used mixed membership algorithm to investigate the rewiring changes between GM12878 

and K562 cell lines (Figure S 5-3). TF-target matrix (M x V) is converted from enhancer and TSS 

regulatory network, where M is the number of TF and V is the number of unique target genes for 

all TFs. Each row represents a target gene of a TF i=1,2,…, M. The regulatory pattern of each TF 

is comprised of K latent communities. Each community includes contributions from N target gene 

and N varies for different TF. 

The target gene of TF 𝑤/, 𝑤 = 𝑤/,G� , 𝑤/,S� , … , 𝑤/,j�  and = 1 means target, 0 means non-target. 

The observation denotes TF 	𝑖 , target gene 𝑗  with status 𝑣 .  Similarly 𝑍/,*,�  is the community 

distribution of each target gene 𝑗 for TF 𝑖 with status 𝑣. 𝛽 𝑀×𝑉  denotes the probability of target 

gene 𝑗 belong community 𝑘, which is parameter of multinomial distribution. 𝜃/ each and denote 

the distribution of communities for TF 𝑖. 𝜃	~	Dirichlet 𝛼 , where 𝛼 is the super-parameter of 𝜃. 

When inferring the latent gene community model, we are most interested in the communities’ 

parameter 𝛽, the Dirichlet parameter 𝛼 and the latent community distribution 𝜃	of TF. So, the key 

is to find the posterior distribution of latent variables. 

Variational EM algorithm (implemented using mixedMem R package) is used to infer the 𝛼 

and 𝜃 as described in Blei et al59 However, computational benefits of EM lead to optimization 

uncertain and make it easily converge to local maxima. We have no prior knowledge for the 𝜃 and 

𝛼, which is impossible to use near plausible value to find a reasonable optimum. To hack this, we 

Figure S 5-3 (TL, ∥) Schematic of gene community based rewiring analysis 
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repeat multiple times (100) and use the median of rewiring changes from all the non-early stops 

simulation to represent the most optimal regulatory changes of TF. One example of the 𝜃 

distribution was given in Figure S 5-4. 
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Figure S 5-4 (TL, ∥) Example of θ distribution difference in tumor and normal cell lines 
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The rewiring of TF regulation is defined by the changes of distribution in K gene communities 

using 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒/ = 𝑞hg¤S,/,*¥ − 𝑞¦§GS¨©¨,/,*¥ 3∗∗/,*
¥ , where 𝑞/  is the distribution of 

communities for TF 𝑖. 

 

5.5 S (TL, ∥) Rewiring analysis associated with H1-hESC  

Rewired edges of tumor-normal TF network were compared to H1-hESC TF network to 

evaluate if the rewiring is in the direction favoring toward or moving away from stem cell-like 

transformation. In doing so, the target genes of gain and loss edges were sub-divided into target 

genes in the same direction as H1 or not (Figure S 5-5).  

Figure S 5-5 (TL, ∥) Comparison of rewiring direction with respect to H1-hESC 

 

For K562-GM12878 network as an example, there were 25 TFs that were common among 

K562, GM12878, and H1-hESC. The following table (Table S 5-1) summarizes the rewired edges 

target genes in the same direction and overall evaluation of whether the rewiring is resembling H1 

or not. About one third of MXI1 edges were rewiring in the same direction of H1, while rewired 

edges of REST were the most distant from H1. 
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K562 H1-hESC
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Loss (same direction)

Gain (same direction)

Gain
(not H1 direction)
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Table S 5-1 (TL, ∥) Comparison of rewired edges between K562-GM12878 network with H1-
hESC 

TF Toward H1 
direction 

Against H1 
direction Overall 

MXI1 2478 1033 1445 

ZNF143 2491 1131 1360 

CHD2 2015 891 1124 

SUZ12 1325 232 1093 

SRF 1541 451 1090 

RFX5 1353 360 993 

YY1 1914 1023 891 

USF2 1157 682 475 

SIX5 716 249 467 

RAD21 1193 1019 174 

CTCF 1221 1060 161 

EZH2 337 335 2 

USF1 1053 1058 -5 

SP1 1249 1475 -226 

MAFK 663 1724 -1061 

CHD1 982 2147 -1165 

ATF3 883 2243 -1360 

EGR1 985 2418 -1433 

CEBPB 1167 2660 -1493 

GABPA 930 2535 -1605 

MAX 1055 2707 -1652 

JUND 1248 4028 -2780 

MYC 917 3788 -2871 

NRF1 313 3978 -3665 

REST 832 4868 -4036 

5.6 S (TL, ∥) Rewiring of TF across tumor types 

Rewiring of several key TFs in leukemia (K562) were evaluated across lung (A549), liver 

(HepG2), and breast (MCF-7) cancer models.  In some extreme cases, the overall direction of 

rewiring was reversed. For BHLHE40 in CML as an example, the direction of rewiring is mostly 

towards gaining patterns, whereas in lung adenocarcinoma, the edges were dominantly lost. For 

both JUND and MYC, the pattern of gain edges were consistently observed in liver or breast cancer 

samples. 



 

 

79 

Figure S 5-6 (TL, ∥) Rewiring of TF across tumor types
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5.7 S  (TL, ∥) Patient survival analysis based on TF activities 

To prioritize TF based on clinical values, patient survival analysis was performed on activity 

scores of TFs. This section was largely divided into two sections: first, we systemically surveyed 

TF activities on AML datasets and second, we focused on a specific TF’s activity (MYC) to look 

at its target genes in both cancer and normal counterpart. TFs were prioritized based on their 

prognostic potential by performing survival analysis using TF activity scores as the primary 

predictor. This section is comprised of two primary analyses: 1. We systematically interrogated 

TF activity in several AML datasets and 2. Perform detailed analysis of MYC activity using MYC 

target genes specific to either cancer or non-cancer cell lines derived from the same tissue. 

5.7.1 S (TL, ∥) Systematic survival analysis of TFs on AML cohorts 

In this analysis, we systematically calculated TF activity in 6 different AML datasets using 

the ENCODE ChIP-seq data. 292 ChIP-seq experiments from K562 (231 TFs) and 120 ChIP-seq 

experiments from GM12878 (101 TFs) were used to generate TF binding weight profiles from the 

TIP output. Specifically, the binding score of a TF to each gene (outputted by the TIP algorithm) 

was z-transformed and a one-sided z-test was carried out to generate p-values corresponding to 

each TF-gene binding interaction. P-values were -log10-transformed and trimmed at -10 or 10. 

Weight profiles were re-scaled by subtracting each value in a TF weight profile by the minimum 

and dividing by the range so that all values fell between 0 and 1. These weight profiles were used 

as input into the BASE algorithm60. The BASE algorithm takes in a single sorted (decreasing) 

patient’s gene expression profile and calculates a running sum statistic by moving the down the 

profile and weighting each gene by its corresponding weight taken from the TF weight profile. 

This generates a foreground function. Similarly, a background function can be generated by 

repeating the process by multiplying by 1-weight instead of multiplying the gene by its weight. 

The maximum deviation between these two functions represents the TF activity score. This score 

is high when the highly-expressed genes in a patient’s profile also tend to be bound tightly by the 

TF (as determined by the TF weight profile). It calculates TF activity scores for AML patient 

samples derived from the following gene expression datasets. 

Table S 5-2 (TL, ∥) Gene expression dataset of AML patients 
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Source Accession Author Cohort 
GEO GSE37642 (GPL_96) Herold n=422 
NCI caArray willm-0019 Wilson n=170 
GEO GSE14468 Wouters n=526 

 

Survival analysis was performed for each TF to identify those that were significantly 

associated with AML patient mortality. Namely, the TF’s iRASs (activity scores) across patient 

samples were used as the independent variable in a Cox proportional hazards model. A hazard 

ratio <1 indicates that a TF’s activity is associated with favorable prognosis and a hazard ratio 

of >1 indicates that a TF’s activity is associated with unfavorable prognosis in AML patient 

samples. Since a separate model was fit to each TF’s iRASs, p-values corresponding to the hazard 

ratios were adjusted for multiple hypothesis testing by using the Benjamini-Hochberg correction 

procedure.  

In the results, we report the HR, P-value, and Adjusted P-value for each TF and their 

association with patient survival in each of the 3 AML gene expression datasets. The column 

labeled “number_datasets_significant_P005” indicates the number of datasets in which the TF’s 

activity was observed to be significantly associated with AML patient prognosis at P<0.05. In 

particular, EZH2, STAT1, and NR2C2 TFs were found to be significantly associated with 

prognosis in all 3 datasets. 15 other TFs were found to be significant in 2 datasets. Notably, IKZF1, 

a well-known oncogene in hematopoetic and lumphoid cancers, was found to be significantly 

associated with prognosis in 2 atasets with p-value of 9.7E-4 and 1.9E-2 in Herold and Wouters 

set, respectively. For more details, please refer to the supplementary datasheet for a complete list 

of TFs associated with patient prognosis. 

5.7.2 S (HL, ∥) TF specific survival analysis 

For this analysis, we focused on the METABRIC breast cancer cohort61, which contains 

comprehensive survival information and gene expression profiles for 2,509 breast cancer patients. 

Using this dataset, we investigated the association between TF activity and disease-specific 

survival (DSS). Presumably, DSS provides stronger evidence compared to overall survival (OS) 

when evaluating whether some variable (TF activity) is associated with mortality from the actual 

disease of interest. In some cases, cancer patients die from some other co-morbid condition or the 
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cause of death is unclear. Unlike OS where any deaths are considered “events” in a survival 

analysis, DSS considers only deaths caused by cancer. In most cases, evaluating overall survival 

provides greater statistical power but may not be as accurate as disease-specific survival. Since the 

METABRIC dataset provides detailed survival information which includes DSS, we used this 

metric over OS. Please note that all target genes were defined as those with p<0.01 from the TF 

TIP profile. 

5.7.3 S  (TL, ∥) Survival analysis of MYC in breast cancer cohort: 

5.7.3.1 S  (TL, ∥) TF-level analysis (cell-line specific): 

To determine if MYC activity was associated with breast cancer patients’ survival, we utilized 

three separate MYC target gene sets to interrogate patient gene expression profiles derived from 

the METABRIC breast cancer gene expression compendia (n=1992).  

First, based on ChIP-seq signal profiles, target genes of MYC were grouped into three 

categories; MCF-7 specific, MCF-10A specific, and common targets of the two cell lines. MYC 

activity as well as target genes from each of the three gene categories were calculated in each 

METABRIC breast cancer patient sample using BASE algorithm60. Second, we extracted time-to-

event (death from breast cancer) information from the patients’ metadata and correlated disease-

specific patient survival with MYC activity score using univariate Cox regression models 

(proportional hazards).  

An individual regression model was built for each MYC activity score corresponding to the 

three different gene sets. A positive association indicated that patients with high MYC activity 

exhibited longer survival compared to patients with low MYC activity and coversely, a negative 

association indicated that high MYC activity is associated with shorter patient survival time. 
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Figure S 5-7 (TL, ∥) Survival analysis on MYC’s common target genes between MCF-7 and 

MCF-10A 

 

Figure S 5-8 (TL, ∥) Survival analysis on MYC’s MCF-7 specific target genes 

 

 

 

Figure S 5-9 (TL, ∥) Survival analysis on MYC’s MCF-10A specific target genes 
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Figure S 5-10 (TL, ∥) Survival analysis on MYC’s target gene expression levels in three 

replicates 
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5.7.3.2 S (HL, ∥) TF-level analysis (MCF-7) 

MYC activity survival analysis was also carried out focusing on the entire MYC binding 

profile in MCF-7 cell lines. Briefly, the p-values outputted by the TIP algorithm were transformed 

and used as weights as performed in the AML TF activity analysis. MYC activity levels were then 

used as the independent variable in a Cox regression model. This analysis was performed for three 

ENCODE replicates. 

5.7.4 S (TL, ∥ ) Association of MYC and patient severity in chronic 

myeloid leukemia 

5.7.4.1 S (TL, ∥) TF-level analysis 

For the CML analysis, target genes of MYC were categorized as K562-specific or GM12878-

specific.  MYC activity was calculated in each CML patient sample belonging to the GSE4170 

dataset using target genes from each of the three gene categories. MYC activity scores were then 

compared between three different severity levels (chronic, accelerated phase, and blast crisis) 

using ANOVA. 

 

●

●

●

●

●

GM12878 K562 GM12878/K562

0

5

10

ira
s

type
chronic

accelerated phase

blast crisis

MYC

p=0.13 p=8.9e-6 p=6e-6

Figure S 5-11 (TL, ∥) MYC activity scores were then compared between three different 

severity levels using ANOVA 
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5.8 S  (TL, ∥) Target gene analysis 

To evaluate the effect and extent of TF-gene network rewiring, target gene’s expression and 

epigenetic changes were evaluated for genes that have gained and lost edges between normal and 

tumor samples. For expression, we used RESM quantification of ENCODE DCC uniformly 

processed long polyA RNA-seq and averaged TPM values over all available replicates. For 

DNase-seq, histone ChIP-seq, and methylation features, we further processed from fold 

enrichment signal tracks as follows.  We averaged the fold enrichment signal across 200bp 

upstream and downstream of the unique TSS, the same canonical TSS site used define proximal 

TF-gene linkage. For all expression, DNase-seq, histone ChIP-seq, and methylation feature was 

expressed as a log2 ratio between tumor to normal samples. To avoid division by zero error, a 

pseudo-count of 0.0001 was added to each feature. 

5.9 S  (TL, ∦) Co-binding analysis 

A score for each transcription factor pair (i,j) is calculated based on the intersection of their 

binding sites. Let TFi has ni binding sites, each with a length of li,t . Using the intersect function of 

bedtools, we found ni,j intersecting binding sites, each with length lk between TFi and TFj and 

calculated the co-binding score between TFi and and TFj as; 

𝑐 𝑖, 𝑗 =
«¬

�,®
¬�¯

«�,°
�
°�¯

                                                        (3-2)   

Please note that c(i,j)≠c(j,i), as the denominator is the total length of binding sites of TFi. We 

calculated the co-binding scores for each transcription factor pair in both GM12878 and K562 cell 

lines. We then calculated the differences between the cell lines by subtracting the co-binding scores.  

TF
i
 

TF
j
 

Figure S 5-12 (TL, ∦) Illustration of the binding sites and their length on both TFi and TFj. Red and blue 

rectangles denote the binding sites of TFi and TFj, respectively. Blue shades depict the intersection of binding 
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We found that among all common transcription factors of GM12878 and K562 cell lines, 

ZNF274 has a larger binding score in K562 cell line compared to in GM12878 cell line. ZNF274 

has the highest difference in the co-binding score with 54 out of 68 transcription factor partners, 

with an average difference of 0.61. The average difference for co-binding scores for all 

transcription factor pairs is 0.02. This shows that co-binding of ZNF274 increased significantly in 

K562 cell lines. 

Figure S 5-13 (TL, ∦) Co-binding scores c(i,j) of the transcription factors both in GM12878 and 
K562 cell lines. Rows represent TFi  and columns represent TFj. Red color indicates high co-

binding score, where blue color indicates low co-binding scores.  

 



 

 

88 

Figure S 5-14 (TL, ∦) Difference of co-binding scores c(i,j) of the transcription factors between 
K562 and GM12878 cell lines. Rows represent TFi  and columns represent TFj. ZNF274, which 
has consistently higher co-binding scores with other TFs in K562 cell line compared to 
GM12878 is highlighted. 
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6 S  (TL, ∥) More details about “Step-wise prioritization 

scheme pinpoints deleterious SNVs in cancer” and 
“Small-scale validation experiments on prioritized 

genomic elements and variants” 
The description of the regulatory network and mutation recurrence analysis provide a way to 

prioritize key genomic features associated with cancer. Here we proposed a step-wise scheme to 

prioritize the SNVs for small scale validations. First, we start by searching for key regulators that 

frequently rewired, locate in network hubs or on top of the network hierarchy, or significantly 

drive expression changes in cancer. We then prioritize functional elements that are associated with 

top regulators, undergo large regulatory and chromatin changes, or (most importantly) are highly 

mutated in tumors. Finally, on a nucleotide level, we can pinpoint impactful SNVs for small-scale 

functional characterization by their ability to disrupt or create specific binding sites, or which occur 

in positions of particularly high conservation or chromatin changes. 

 

6.1 S (TL, ∦) Motif analysis using MotifTools (D-score) 

To prioritize the variant within high-confidence enhancer sets, we first searched for recurrent 

non-coding variants or multiple non-coding variants occurring in a known TF motif. However, we 

could not find any somatic variants that are either recurrent or recurrent within a TF motif. 

 

Figure S 6-1 (TL, ∦) Variant prioritization scheme based on STARR-seq 
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Alternatively, we prioritized somatic variants based on its motif breaking power, or D-score, 

where D stands for disruptive-ness or deleterious-ness. Motif disruption score was calculated based 

on the difference between sequence specificities of reference to alternative sequence. 

motif-scoreref = −10 ∙ logGU(p-valueref) 

motif-scorealt = −10 ∙ logGU(p-valuealt) 

D-score (Disruptive-ness or Deleterious-ness)                                (6-1) 

= motif-scoreref −motif-scorealt 

= −10 ∙ logGU
p-valueref
p-valuealt
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A positive D-score denotes a variant that decreases the likelihood that a TF will bind the motif 

(motif-break), and negative D-score denotes a variant that increases the likelihood that a TF to 

bind the motif (motif-gain). For assessing D-score, uniform nucleotide background was assumed 

(A:C:G:T=1:1:1:1), and the p-value threshold of 1e-3 was used. For position weight matrix (PWM), 

JASPAR TF profiles (2016 core non-redundant vertebrates, 

http://jaspar.genereg.net/html/DOWNLOAD/JASPAR_CORE/pfm/nonredundant/pfm_vertebrat

es.txt) were used, and variants that affect multiple TF binding profiles were averaged over all D-

scores. More details about the tool and code can be found at https://github.com/hoondy/MotifTools. 

Somatic variants were further prioritized using conservation score (high positive GERP score). 

 

 

Table S 6-1 (TL, ∥) Validated mutations in MCF-7 and luciferase assay tested region 

 

 

Figure S 6-2 (TL, ∦) Schematic of Motiftool output	
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6.2 S  (TL, ∥) Experiment Details about SNV validation 

 

Each regulatory region (both wild and mutant types) was separately synthesized. Enhancer 

regions were designed in such a fashion where based on the candidate SNV site, 250bp upstream 

and 250bp downstream was included for each enhancer region. These regions were then cloned 

into the pGL4.23[luc2/minP] vector (Promega, Cat# E841A). Each candidate region was placed 

upstream of the minP promoter to determine the effect of each putative enhancer region on 

luciferase expression. 100ng of each candidate construct and 100ng of Nano-luc control was co-

transfected into MCF-7 cells (5,000 cells per well in DMEM media containing 10% FBS and 1% 

Penicillin-Streptomycin antibiotic) using the Lipofectamine 3000 reagent (Thermo Fisher, Cat# 

L3000001) according to manufacturer’s instructions. Cells were incubated for 48 hrs before 

reading the luciferase signal using Promega Nano-Glo luciferase kit (Promega, Cat# N1521) 

according to manufacturer’s instructions. 

 

SAMPLE CHR POS REF ALT TEST_START TEST_END NOTE 

Sample01 chr16 85604242 C G 85603992 85604491 issue with plasmid isolation 

Sample02 chr21 27541982 G A 27541732 27542231  

Sample03 chr8 21541726 A G 21541476 21541975 issue with plasmid isolation 

Sample04 chr17 38474408 C G 38474158 38474657  

Sample05 chr20 43971343 G C 43971093 43971592  

Sample06 chr7 1598567 C T 1598317 1598816  

Sample07 chr20 58563412 C T 58563162 58563661  

Sample08 chr7 150759483 C G 150759233 150759732  

Sample09 chr7 5596005 T G 5595755 5596254  

Sample10 chr6 134700462 G T 134700212 134700711  
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The raw data of the experiment have been listed in Table S 6-2 and Table S 6-3. 

Table S 6-2 (TL, ∥) Details of SNV replication technical replicate 1 

 Normal Rep 1 Normal Rep 2 Normal Rep 3 Mutant Rep 1 Mutant Rep 2 Mutant Rep 3 

Background 831 388 416 2623 1296 1065 

2 7698 5193 6893 161889 132344 179837 

4 587863 778963 603304 465322 408546 460135 

5 10281 16083 17192 40103 63770 48912 

6 39090 20019 23419 7614 6760 4959 

7 15039 18873 13468 57945 47666 59931 

8 117702 115358 150245 189131 295907 247173 

9 26775 30804 34042 58424 104433 27587 

10 21705 22249 17162 107077 31005 76174 

Empty 61423 87225 46835 774 789 1111 

Background 562 1461 748 4582 967 473 

Background 238 500 395 857 635 921 

 

 

Table S 6-3 (TL, ∥) Details of SNV replication technical replicate 2 

 Mutant Rep 1 Mutant Rep 2 Mutant Rep 3 Normal Rep 1 Normal Rep 2 Normal Rep 3 

Background 11852 13823 14402 15111 13245 9858 

2 1922952 1854116 1882977 2326518 1637299 1927383 

4 1969924 1947206 2088052 1606057 1133593 1246025 

5 1396532 1408962 1879464 2110566 1890350 1594218 

Candidate	
region

Nano-luc
control

Vectors Co-transfection 48	hrs incubation

minPenhancer luciferase

minP luciferaseenhancer

pGL4.23	control

pGL4.23	mutant

Luciferase	
measurement

MCF7	cells

Figure S 6-3 (TL, ∥) Schematic of SNV validation  
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6 1756884 1798060 1859447 1825321 1597249 1658538 

7 1884514 2197614 2393865 2124074 1385636 1888050 

8 1695866 1711603 1488882 2405882 1487463 1516048 

9 1715909 1943040 1916404 2058790 1385673 1241105 

10 1771446 1498757 2030086 1736458 985080 1237019 

Empty 2575562 2699389 2494020 22537 10758 6625 

Background 12437 14855 12235 7338 4629 2613 

Background 3835 4041 4182 2990 1698 1009 

 

6.3 S (TL, ∥) Details about siRNA RNA-Seq experiments 

MCF-7 cells were seeded at an initial density of 2 x 105 cells at basal media conditions 

(DMEM media supplemented with 10% FBS and 1% penicillin/streptomycin). After 24 hours, 

cells were transfected with siRNA control (Santa Cruz, Cat#: sc-37007) or siRNA targeting MYC 

(Santa Cruz, Cat# sc-29226) using the Viafect reagent (Promega, Cat#: E4981) in biological 

triplicate according to manufacturer’s instructions. Cells were harvested 72 hours later using Trizol 

Reagent (Thermo Fisher, Cat#: 15596026) and RNA was isolated using the Direct-zol RNA 

Miniprep Plus kit (Zymo Research, Cat#: R2072). RNA-seq libraries were prepared using the 

TruSeq Stranded Total RNA Library Prep Kit (Illumina, Cat#: RS-122-2201). RNA-seq library 

quality was assessed using Bioanalyzer and Qubit analysis before subjected to deep sequencing on 

the HiSeq 4000. 

We used RNA-STAR (version 2.3.0) to map the reads to hg19 genome with gencode v19 as 

annotation input for junction mapping. Defaut settings were used for the read mapping. After 

mapping, we used Cufflinks (version 2.0.2) for the gene and transcription level quantifications for 

both knockdown and control experiments. 
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7 S (TL, ∦) EN-CODEC resource accessibility  
 

All of EN-CODEC resources are available to download as flat files or tarballs from our 

website http://encodec.encodeproject.org. All resource files follow the uniform naming convention 

as follows: 

 

EC-XXX-YYY.fileDescription 

 

Table S 7-1 (TL, ∦) Naming convention - primary category 

XXX description 

001 Data Provision 

002 Annotation 

003 Processed Data (Analysis) 

004 Experimental Validation 

005 Software 

 

Table S 7-2 (TL, ∦) Naming convention - secondary category 

YYY description 

MET Meta information (data summary) 

CRE Cis-regulatory elements (enhancer, promoter) 
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DBP DNA-binding proteins (TF, histone) related 

RBP RNA-binding proteins (RBP) related 

BMR Background mutatation rate (BMR) related 

NET Network related 

EXT Extended gene 

COH Cohort 

ETC Others 

 

7.1 S (TL, ∦) Data Provision 

7.1.1 S (TL,∦) Deduplicated ENCODE assays 

List of all EN-CODEC experiments (inc. external data) 

• EC-001-MET.encodec_all_experiments.csv 

TF ChIP-seq data summary (Oct 2017 freeze) 

• EC-001-MET.encodec_Oct17_TF_ChIP-seq_data.csv 

Deduplicated ChIP-seq list (Oct 2017 freeze) 

• EC-001-MET.encodec_Oct17_deduplicated_ChIP-seq_list.csv 

Decuplicated ChIP-seq matrix (Oct 2017 freeze) 

• EC-001-MET.encodec_Oct17_deduplicated_ChIP-seq_matrix.csv 

ENCODE key cell line ChIP-seq summary 

• EC-001-MET.encode_key_cell_line_ChIP-seq_data.csv 
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7.1.2 S (TL, ∦) Variant calls of liver cancer patients 

• EC-001-COH.LIHC-Germline.txt 

• EC-001-COH.LIHC-Somatic.txt 

7.1.3 S (TL, ∦) Normalized cancer patient expression data 

• EC-001-COH.TCGA_data_2016_01_28.tar.gz 

 

7.2 S  (TL, ∦) Annotation 

7.2.1 S (TL, ∦) ENCODE cancer annotations 

ENCODE cancer sample summary 

• EC-002-MET.encode_cancer_cell_type_summary.csv 

• EC-002-MET.encode_cancer_cell_line_summary.csv 

7.2.2 S (TL, ∦) TF and RBP annotations 

K562 vs GM12878 common TF summary 

• EC-002-MET.encodec_KG_common_TF_summary.csv 

K562 vs GM12878 common TF classification 

• EC-002-MET.encodec_KG_common_TF_class.csv 

TF annotations 

• EC-002-DBP.TF_annotation.txt 

RBP annotations 

• EC-002-RBP-RBP_annotation.txt 

7.2.3 S  (TL, ∦) Extended Gene  

List of all extended gene definitions in major cell types 

• EC-002-EXT.merge.post.extendedGene.K562.txt 
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• EC-002-EXT.merge.post.extendedGene.MCF-7.txt 

• EC-002-EXT.merge.post.extendedGene.HepG2.txt 

 

7.3 S (TL, ∦) Processed Data (Analysis) 

7.3.1 S (TL, ∦) Cis-regulatory element related 

7.3.1.1 S (TL, ∦) CASPER 

List of all CASPER results in major cell types 

• EC-003-CRE.CASPER_K562.bed 

• EC-003-CRE.CASPER_HepG2.bed 

• EC-003-CRE.CASPER_GM12878.bed 

• EC-003-CRE.CASPER_MCF-7.bed 

• EC-003-CRE.CASPER_A549.bed 

• EC-003-CRE.CASPER_HeLa-S3.bed 

• EC-003-CRE.CASPER_H1-hESC.bed 

• EC-003-CRE.CASPER-merged_K562.bed 

• EC-003-CRE.CASPER-merged_HepG2.bed 

• EC-003-CRE.CASPER-merged_GM12878.bed 

• EC-003-CRE.CASPER-merged_MCF-7.bed 

• EC-003-CRE.CASPER-merged_A549.bed 

• EC-003-CRE.CASPER-merged_HeLa-S3.bed 

• EC-003-CRE.CASPER-merged_H1-hESC.bed 

7.3.1.2 S (TL, ∦) ESCAPE 

List of all ESCAPE results in major cell types 

• EC-003-CRE.ESCAPE_K562.bed 

• EC-003-CRE.ESCAPE_GM12878.bed 

• EC-003-CRE.ESCAPE_MCF-7.bed 
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7.3.1.3 S (TL, ∦) JEME (enhancer target gene prediction) 

List of all JEME results of CASPER predictions in major cell types 

• EC-003-CRE.JEME_of_CASPER_K562.bed 

• EC-003-CRE.JEME_of_CASPER_HepG2.bed 

• EC-003-CRE.JEME_of_CASPER_GM12878.bed 

• EC-003-CRE.JEME_of_CASPER_MCF-7.bed 

• EC-003-CRE.JEME_of_CASPER_A549.bed 

• EC-003-CRE.JEME_of_CASPER_HeLa-S3.bed 

• EC-003-CRE.JEME_of_CASPER_H1-hESC.bed 

7.3.1.4 S (TL, ∦) CRE integration and compact annotation 

Integrative enhancer annotation with the encyclopedia cRE accession 

• EC-003-CRE.CASPERxESCAPE_GM12878.bed 

• EC-003-CRE.CASPERxESCAPE_K562.bed 

List of all Hi-C filtered JEME predictions in major cell types 

• EC-003-CRE.JEME_of_CASPER_K562_FitHiC.bed 

• EC-003-CRE.JEME_of_CASPER_GM12878_FitHiC.bed 

• EC-003-CRE.CASPERxESCAPExJEME-

targetGene_FitHiC_GM12878_merged.bed 

• EC-003-CRE.CASPERxESCAPExJEME-

targetGene_FitHiC_K562_merged.bed 

Integrative “compact” enhancer annotation 

• EC-003-CRE.hg19-cRExCASPERxJEME_Hi-C_GM12878_merged.bed 

• EC-003-CRE.hg19-cRExCASPERxJEME_Hi-C_K562_merged.bed 
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7.3.2 S (TL, ∦) BMR related 

7.3.2.1 S (TL, ∦) Covariate matrix 

• EC-003-BMR.covariate_region_1mb.txt  

• EC-003-BMR.covariate_region_100kb.txt 

• EC-003-BMR.blacklist_region.txt 

• EC-003-BMR.feature_details.txt 

7.3.2.2 S (TL, ∦) BMR estimation 

• EC-003-BMR.LiverCan_mu_nb.txt 

• EC-003-BMR.LiverCan_theta_nb.txt 

• EC-003-BMR.LiverCan_mu_pois.txt 

• EC-003-BMR.LiverCan_dispersion.txt 

• EC-003-BMR.BreastCan_mu_nb.txt 

• EC-003-BMR.BreastCan_theta_nb.txt 

• EC-003-BMR.BreastCan_mu_pois.txt 

• EC-003-BMR.BreastCan_dispersion.txt 

• EC-003-BMR.BloodCan_mu_nb.txt 

• EC-003-BMR.BloodCan_theta_nb.txt 

• EC-003-BMR.BloodCan_mu_pois.txt 

• EC-003-BMR.BloodCan_dispersion.txt 

• EC-003-BMR.LungCan_mu_nb.txt 

• EC-003-BMR.LungCan_theta_nb.txt 

• EC-003-BMR.LungCan_mu_pois.txt 

• EC-003-BMR.LungCan_dispersion.txt 

• EC-003-BMR.README.txt 

7.3.2.3 S  (TL, ∦) P-values for extended genes 

• EC-003-EXT.pval_K562.tar.gz  

• EC-003-EXT.pval_MCF-7.txt 
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• EC-003-EXT.pval_HepG2.txt 

• EC-003-EXT.pval_A549.txt 

7.3.3 S  (TL, ∦) Network related 

7.3.3.1 S (TL, ∦) Cell-type specific network  

Proximal TIP-based network 

• EC-003-NET.ENCODE_TIP_Profiles_693.txt 

• EC-003-NET.edgeList_TIP_GM12878.tsv 

• EC-003-NET.edgeList_TIP_K562.tsv 

Proximal TSS-based network, using all TSS annotations 

• EC-003-NET.edgeList_TSS_GM12878.tsv 

• EC-003-NET.edgeList_TSS_K562.tsv 

Proximal TSS-based network, using 1 TSS annotation per gene 

• EC-003-NET.edgeList_uniqTSS2500_A549.tsv 

• EC-003-NET.edgeList_uniqTSS2500_GM12878.tsv 

• EC-003-NET.edgeList_uniqTSS2500_H1-hESC.tsv 

• EC-003-NET.edgeList_uniqTSS2500_HeLa-S3.tsv 

• EC-003-NET.edgeList_uniqTSS2500_HepG2.tsv 

• EC-003-NET.edgeList_uniqTSS2500_IMR-90.tsv 

• EC-003-NET.edgeList_uniqTSS2500_K562.tsv 

• EC-003-NET.edgeList_uniqTSS2500_MCF-10A.tsv 

• EC-003-NET.edgeList_uniqTSS2500_MCF-7.tsv 

• EC-003-NET.edgeList_uniqTSS2500_liver.tsv 

• EC-003-NET.edgeList_uniqTSS2500_lung.tsv 

Distal enhancer-based network 

• EC-003-NET.edgeList_ENH_GM12878.tsv 

• EC-003-NET.edgeList_ENH_K562.tsv 
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Probability-based network 

• EC-003-NET.probNet_README.txt 

• EC-003-NET.probNet_TF.txt 

• EC-003-NET.probNet_RBP.txt 

7.3.3.2 S  (TL, ∦) Reconciled merged network 

Proximal TSS-based merged network 

• EC-003-NET.mergedNet_uniqTSS2500_ALL.tsv 

Proximal TIP-based merged network 

• EC-003-NET.mergedNet_TIP_FDR_0.1.tsv 

7.3.3.3 S  (TL, ∦) Network hierachy  

• EC-003-NET.hierarchy_mergedNet_README.txt 

• EC-003-NET.hierarchy_mergedNet_TFss.merged.TIP.network.txt 

• EC-003-NET.hierarchy_mergedNet_tval.mean.across.patients.txt 

• EC-003-NET.hierarchy_cellTypeSpecNet_README.txt 

• EC-003-NET.hierarchy_cellTypeSpecNet_GM12878.tfcom.ss.txt 

• EC-003-NET.hierarchy_cellTypeSpecNet_K562.tfcom.ss.txt 

• EC-003-NET.hierarchy_cellTypeSpecNet_node.properties.txt 

7.3.4 S (TL, ∦) TF & RBP regulatory score in multiple cancer types 

• EC-003-DBP.regulatoryScore_README.txt 

• EC-003-DBP.regulatoryScore.tar.gz 

• EC-003-RBP_regulatoryScore.tar.gz 

7.3.5 S  (TL, ∦) Network rewiring and rewiring index 

K562 vs GM12878 proximal-distal combined TF-GENE network rewiring 

• EC-003-NET.KG_TIP_ENH_mnet.csv 

• EC-003-NET.KG_TSS_ENH_mnet.csv 
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K562 vs GM12878 proximal-distal combined TF-TF network rewiring 

• EC-003-NET.KG_TIP_ENH_tfnet.csv 

• EC-003-NET.KG_TSS_ENH_tfnet.csv 

TF attributes 

• EC-003-NET.KG_TIP_ENH_TFattrib.csv 

• EC-003-NET.KG_TSS_ENH_TFattrib.csv 

GENE attributes 

• EC-003-NET.KG_TIP_ENH_GENEattrib.csv 

• EC-003-NET.KG_TSS_ENH_GENEattrib.csv 

K562 vs GM12878 network rewiring index 

• EC-003-NET.KG_rewiringIndex_TIP+ENH.csv 

• EC-003-NET.KG_rewiringIndex_TSS+ENH.csv 

• EC-003-NET.KG_rewiringIndex-

geneCommunity_TFrand_mixedM_median_cubicroot.txt 

• EC-003-NET.KG_rewiringIndex-

geneCommunity_TFrand_mixedM_median.txt 

 

7.4 S  (TL, ∦) Experimental Validation 

7.4.1 S (TL, ∦) Luciferase assay related 

Details about the validataion regions and the results 

• EC-004-CRE.luciferase_raw.csv 

• EC-004-CRE.luciferase_normalized.csv 

7.4.2 S (TL, ∦) MYC knockdown experiments 

Details about the knockdown experiments 
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• EC-004-DBP.README.txt 

• EC-004-DBP.MYC-KD_geneFPKM_target.txt 

• EC-004-DBP.MYC-KD_geneFPKM_knockdown.txt 

 

7.5 S (TL, ∦) Code Release 

• EC-005-MET.README.txt 

• EC-005-BMR.BMR_related.tar.gz 

• EC-005-CRE.ESCAPE_related.tar.gz 

• EC-005-NET.Rewiring_directConnection_related.tar.gz 

• EC-005-NET.Rewiring_geneCommunity_related.tar.gz 
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