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Abstract 

RNA-binding proteins (RBPs) play key roles in post-transcriptional regulation and disease. Their binding 

sites cover more of the genome than coding exons; nevertheless, most noncoding variant-prioritization 

methods only focus on transcriptional regulation. Here, we integrate the portfolio of ENCODE-RBP 

experiments to develop RADAR, a variant-scoring framework. RADAR uses conservation, RNA structure, 

network centrality, and motifs to provide an overall impact score. Then it further incorporates tissue-

specific inputs to highlight disease-specific variants. Our results demonstrate RADAR can successfully 

pinpoint variants, both somatic and germline, associated with RBP-function dysregulation, that cannot be 

found by most current prioritization methods (e.g. variants affecting splicing). 
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Background  

Dysregulation of gene expression is a hallmark of many diseases, including cancer [1]. In recent years, the 

accumulation of transcription-level functional characterization data, such as transcriptional factor binding, 

chromatin accessibility, histone modification, and methylation, has brought great success to annotating and 

pinpointing deleterious variants. However, beyond transcriptional processing, genes also experience 

various delicately controlled steps, including the conversion of premature RNA to mature RNA, and then 

the transportation, translation, and degradation of RNA in the cell. Dysregulation in any one of these steps 

can alter the final fate of gene products and result in abnormal phenotypes[2-4]. Furthermore, the post-

transcriptional regulome covers an even larger amount of the genome than coding exons and demonstrates 

significantly higher cross-population and cross-species conservation. Unfortunately, variant impact in the 

post-transcriptional regulome has been barely investigated, partially due to the lack of large-scale functional 

mapping. 

 

RNA binding proteins (RBPs) have been reported to play essential roles in both co- and post-transcriptional 

regulation[5-7]. RBPs bind to thousands of genes in the cell through multiple processes, including splicing, 

cleavage and polyadenylation, editing, localization, stability, and translation[8-12]. Recently, scientists 

have made efforts to complete these post- or co-transcriptional regulome by synthesizing public RBP 

binding profiles[13-16], which have greatly expanded our understanding of RBP regulation. Since 2016, the 

Encyclopedia of DNA Elements (ENCODE) consortium started to release data from various types of assays 

on matched cell types to map the functional elements in post-transcriptional regulome. For instance, 

ENCODE has released large-scale enhanced crosslinking and immunoprecipitation (eCLIP) experiments 

for hundreds of RBPs[17]. This methodology provides high-quality RBP binding profiles with strict quality 

control and uniform peak calling to accurately catalog the RBP binding sites at a single nucleotide resolution. 
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Simultaneously, ENCODE performed expression quantification by RNA-Seq after knocking down various 

RBPs. Finally, ENCODE has quantitatively assessed the context and structural binding specificity of many 

RBPs by Bind-n-Seq experiments[18]. 

 

In this study, we aimed to construct a comprehensive RBP regulome and a scoring framework to annotate 

and prioritize variants within it. We collected the full catalog of 318 eCLIP (for 112 RBPs), 76 Bind-n-Seq, 

and 472 RNA-Seq experiments after RBP knockdown from ENCODE to construct a comprehensive post-

transcriptional regulome. By combining polymorphism data from large sequencing cohorts, like the 1,000 

Genomes Project, we demonstrated that the RBP binding sites showed increased cross-population 

conservations in both coding and noncoding regions. This strongly indicates the purifying selection on the 

RBP regulome. Furthermore, we developed a scoring scheme, named RADAR (RNA BinDing Protein 

regulome Annotation and pRioritization), to investigate variant impact in such regions. RADAR first 

combines RBP binding, cross-species and cross-population conservation, network, and motif features with 

polymorphism data to quantify variant impact described by a universal score. Then, it allows tissue- or 

disease-specific inputs, such as patient expression, somatic mutation profiles, and gene rank list, to further 

highlight relevant variants (Fig. 1). By applying RADAR to both somatic and germline variants from 

disease genomes, we demonstrate that it can pinpoint disease-associated variants missed by other methods. 

In summary, RADAR provides an effective approach to analyze genetic variants in the RBP regulome, and 

can be leveraged to expand our understanding of post-transcriptional regulation. To this end, we have 

implemented the RADAR annotation and prioritization scheme into a software package for community use 

(radar.gersteinlab.org).  

Results 
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Defining the RBP regulome using eCLIP data 

We used the binding profiles of 112 distinct RBPs from ENCODE to fully explore the human RBP 

regulome (Supplementary Table S1), which has been previously under-investigated. Many of these RBPs 

are known to play key roles in post-transcriptional regulation, including splicing, RNA localization, 

transportation, decay, and translation (Supplementary Fig. S1). 

 

Our definition of the RBP regulome covers 52.6 Mbp of the human genome after duplicate and blacklist 

removal (Fig. 2A). It is 1.5 and 5.9 times the size of the whole exome and lincRNAs, respectively. In 

addition, only 53.1% of the RBP regulome has transcription-level annotations, such as transcription factor 

binding, open chromatin, and active enhancers. 55.1% of the RBP regulome is in the immediate 

neighborhood of the exome regions, such as coding exons, 3’ or 5’ untranslated regions (UTRs), and nearby 

introns (Fig. 2C; see methods section for more details). Furthermore, we observed significantly higher 

cross-species conservation score in the peak regions versus the non-peak regions in almost all annotation 

categories, providing additional evidence of regulatory roles of RBPs (Fig. 2C). In summary, the large size 

of the regulome, the limited overlap with existing annotations, and the elevated conservation level highlight 

the necessity of computational efforts to annotate and prioritize the RBP regulome. 

Using universal features for RADAR score 

To annotate and prioritize variants in RBP binding sites, we built a universal score framework for RADAR 

that includes three components: (1) sequence and structure conservation; (2) network centrality; and (3) 

nucleotide impact from motif analysis. 

Sequence and structure conservation in the RBP regulome 

Cross-species sequence comparisons have been widely used to discover regions with biological functions 

[19, 20]. For example, GERP score maps the human genome to other species to identify nucleotide-level 
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evolutional constraints[21, 22]. Therefore, we used the GERP score in our RADAR universal framework 

to detect potentially deleterious mutations in the RBP regulome (see methods section for more details). 

 

Since the enrichment of rare variants indicates a purifying selection in functional regions in the human 

genome[19, 23, 24], here we inferred the conservation of RBP binding sites by integrating population-level 

polymorphism data from large cohorts (i.e. the 1,000 Genomes Project)[25, 26]. GC percentage may 

confound such inference by introducing read coverage variations, which is a sensitive parameter in the 

downstream variant calling process[27, 28]. Therefore, we calculated the fraction of rare variants, defined 

as those with derived allele frequencies (DAFs) less than 0.5%, within the binding sites of each RBP. Then 

we compared them with those from regions with similar GC content as a background (see methods section 

for more details). In total, 88.4% of the RBPs (99 out of 112) showed elevated rare variant fraction in coding 

regions after GC correction (Fig. 3A). Similarly, in the noncoding part of the binding sites, 93.8% of RBPs 

(105 out of 112) exhibited an enrichment of rare variants. This observation convincingly demonstrates the 

accuracy of our RBP regulome definition (Supplementary Table S3). 

 

Some well-known disease-causing RBPs demonstrate the largest enrichment of rare variants. For example, 

the oncogene XRN2, which binds to the 3’ end of transcripts to degrade aberrantly transcribed isoforms, 

showed significant enrichment of rare variants in its binding sites[29]. Specifically, it demonstrates 12.7% 

and 10.3% more rare variants in coding and noncoding regions, respectively (adjusted P values at 1.89×10-

9 and 2.85×10-118 for one-sided binomial tests)[30]. Hence, we used the enrichment of rare variants to infer 

the selection pressure in RBP binding sites and adjust the universal variant scores in such regulator regions 

(see methods for more details). 
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RNA secondary structures have been reported to affect almost every step of protein expression and RNA 

stability[31]. We incorporated structural features predicted by Evofold, which uses a phylogenetic 

stochastic context-free grammar to identify functional RNAs in the human genome that are deeply 

conserved across species[32]. We found that the RBP binding sites demonstrated significantly higher 

conversation after intersecting with conserved structural regions defined by Evofold. Thus, we used the 

Evofold regions in our universal scoring system. 

Highlighting variants in binding hubs 

It has been reported that genes within network hubs demonstrate higher cross-population conservation — 

a sign of strong purifying selection[23, 24, 33]. We hypothesized that RBP binding hubs could show similar 

characteristics because once mutated they might introduce larger regulation alterations. To test this, we 

separated the regulome based on the number of associated RBPs. Most regulome regions (62%) were 

associated with only one RBP (Supplementary Fig. 6). As the number of RBPs increased, we observed a 

clear trend of larger rare variant enrichment (Fig. 3D). For instance, noncoding regions with at least five or 

10 RBPs exhibited 2.2% or 13.4% more rare variants, respectively (top 5% and 1%, Fig 3D). This 

observation supports our hypothesis that the RNA regulome hubs are under stronger selection pressure and, 

therefore, should be given higher priority when evaluating functional impact of mutations. 

 

Emphasizing genes differentially expressed after RBP knockdown 

RNA-seq expression profiling before and after shRNA mediated RBP depletion from ENCODE can help 

to infer the gene expression changes introduced by RBP knockdown. Variants with disruptive effects on 

RBP binding may affect or even completely remove the RBP binding and hence affect gene expressions in 

a similar way. Therefore, we extracted the differentially expressed genes from RNA-Seq before and after 

shRNA-mediated RBP depletion. Then, we up-weighted all variants that were located near the differentially 
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expressed genes and simultaneously disrupted the binding of the corresponding RBPs (schematic in 

Supplementary Fig. S9). 

 

Using motif analysis to determine nucleotide level impact 

Mutations that change the RBP binding affinity may alter RBP regulation via motif disruption. We 

quantified the difference of position weight matrix (PWM) scores of the mutant allele against the reference 

allele. RADAR consists of two sources of motifs. First, we used the motifs identified from RNA Bind-n-

Seq experiments from ENCODE because it has been reported that many RBP binding events in vivo can be 

captured by binding preferences in vitro. Second, we used the de novo motifs discovered directly from 

binding peaks using the default settings in DREME (see details in methods). For each variant, we quantified 

the nucleotide effect using the highest motif score from these two sources. 

 

Incorporating user-specific features to reweight variant impact 

Variant Prioritization can be improved if informative priors can be appropriately incorporated into the 

scoring system. Therefore, our RADAR framework allows various types of user-inputs to help identify 

disease-relevant variants. Specifically, we adopted a top-down scheme to incorporate regulator and element 

level information to up-weight factors that are possibly associated with disease of interest. 

Highlighting key regulators through expression profiles 

Key regulators are often associated with disease progression, so variants that affect such regulation should 

be prioritized[34]. RADAR finds such key regulators by combining the RBP regulatory network 

information with expression profiles. Specifically, for cancer, we first constructed the RBP network from 

eCLIP binding peaks and used the TCGA data to define the gene differential expression status from disease 

and normal cell types (see Methods). Then for each RBP, we quantified its regulation potential by 
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associating its network connectivity with aggregated disease-to-normal differential expressions from many 

samples using regression. We applied this approach on 19 cancer types from TCGA and the regulation 

potentials are given in Fig. 4. The values of the regulation potential (𝛽#, see Methods) for all cancer types 

and RBPs are provided in supplementary Table S7. We found that among the RBPs with larger regulation 

potential, many have been reported as cancer-associated genes (Supplementary Table S8). Our regression 

approach was also performed on a patient level, and survival analysis based on each patient’s regulatory 

potential was performed (see Figure 4C). Interestingly, the regulatory potential of two key RBPs PPIL4 and 

SUB1 were found to be significantly associated with patient survival (Fig. 4C). In our RADAR framework, 

we further highlight variants that are associated with RBPs with high regulation potential in their 

corresponding cancer types by adding extra score to their disease-specific scores (see more details in 

methods). We can easily extend such analysis for other diseases by incorporating differential expression 

profiles from others cohorts such as GTEx[35, 36]. 

 

Up-weighting key elements from either prior knowledge or mutational profiles 

RADAR reconsiders the functional impact difference among RBP peaks by their associated genes. For 

example, genes that undergo significant expression or epigenetic changes are mostly cell-type-specific and 

can be used to highlight more relevant variants. Currently, our RADAR framework can up-weight all the 

RBP peaks that are close to genes with significant differential expression (DESeq2). 

 

In addition, RADAR can incorporate somatic variant recurrence, which has been widely used to discover 

key disease regions, to reweight different RBP peaks. Peaks with more somatic mutations than expected 

are often considered to be disease-driving[37-39]. Here, we first defined a local background somatic 

mutation rate from a large cohort of cancer patients to evaluate the mutation burden in each RBP peak (see 
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details in methods). Variants that are associated with burdened elements are given higher priority in our 

scoring scheme. 

Prioritizing variants with a RADAR weighted scoring scheme 

By integrating the pre-built and user-specific data context described above, our scoring scheme evaluated 

the functional impacts of variants that are specific to post-transcriptional regulation (Fig. 1 and Table 1). 

We used an entropy-based criterion to up-weight rarer annotations. First, RADAR added up the (universal) 

score of variants for all pre-built features, which include sequence and structure conservation, network 

binding hub, RBP-gene association, and motif information, using the entropy-based weights. Then, 

depending on user inputs, RADAR further up-weighted variants’ score based on tissue specific information 

from mutations in the key RBP binding sites, nearby genes with differential expression, or the RBP 

regulatory potential. 

Table 1. Features used by RADAR 

Category Feature Source Scoring Scheme 

Universal 

Cross-population conservation eCLIP Adjusted-
entropy 

Cross-species conservation Gerp Sigmoid 
Function 

Structural conservation Evofold Fixed Value 

RBP Binding hub eCLIP Adjusted-
entropy 

RBP-gene association shRNA RNA-seq Fixed Value 

Motif disruption Bind-n-Seq Adjusted-
entropy DREME 

User-specific 
RBP regulatory potential Expression Fixed Value 

Differentially expressed Genes Prior knowledge Fixed Value 
Mutation Recurrence Mutation profiles Fixed Value 
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Applying RADAR to pathological germline variants 

We calculated the universal RADAR scores on all pathological variants from HGMD (version 2015) and 

compared them with variant scores from 1,000 Genomes variants as a background. As expected, the HGMD 

variants are scored significantly higher (Supplementary Fig. S10). For example, the mean RADAR score 

for HGMD variants is 0.589, while it is only 0.025 for 1,000 genomes variants (P-value <2.2×10-16 for one-

sided Wilcoxon test). We further compared the universal RADAR scores of HGMD and 1,000 genomes 

variants within the RBP regulome to remove potential bias since HGMD variants may be more likely to be 

within or nearby to exons. We still observed significantly higher universal RADAR score in the HGMD 

ones (1.871 vs. 1.337, P-value <2.2×10-16 for one-sided Wilcoxon test, Supplementary Fig. S10). 

 

We further compared RADAR scores of HGMD variants with other methods. In total, 720 HGMD variants 

were explained by our methods but could not be highlighted by other methods (see details in methods, 

Supplementary Table S9). Many of these variants are located nearby the splice junctions. An example is 

shown in Fig. 6A. This variant is located 4 base pairs away from splice junction in BRCA1. eCLIP 

experiments showed strong binding evidence in 5 RBPs (Fig. 6A). Specifically, the T to C mutation strongly 

disrupts the binding motif of PRPF8, increasing the possibility of splicing alteration effects. Our finding is 

not highlighted in previous methods for variant prioritization, such as FunSeq, CADD, and FATHMM-

MKL. 

 

Applying RADAR universal score to somatic variants in cancer 

We next aimed to leverage our universal RADAR scheme to evaluate the deleteriousness of somatic 

variants from public datasets. Due to the lack of a gold standard, we evaluated our results from two 

perspectives. First, we reasoned that since hundreds of cancer-associated genes are known to play essential 
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roles through various pathways[40, 41], variants associated with these genes are likely to have the higher 

functional impact[23]. To test this hypothesis, we first selected variants within the 1kb region of the 

COSMIC[42] genes and compared them with other variants. We tested four cancer types, breast, liver, lung, 

and prostate cancer, and found in all cases that variants associated with COSMIC genes showed significant 

enrichment, with a larger RNA level functional impact (Fig. 5 and Supplementary Fig. S11). For example, 

we found a 4.58- and 8.75-fold increase in high-impact variants at a threshold level of 3 and 4, respectively, 

in breast cancer patients (P < 2.2×10-16, one-sided Wilcoxon test). 

 

In our second approach, we hypothesized that variant recurrence could be a sign of functionality and may 

indicate an association with cancer[19, 23, 24]. Thus, we compared the variants’ scores from RBP binding 

peaks with or without recurrence. Specifically, we separated the RBP peaks with variants mutated in more 

than one sample from those that were mutated in only one sample, and then compared the universal RADAR 

scores. We found that in most cancer types, peaks with recurrent variants were associated with a larger 

fraction of high-impact mutations. For example, in breast cancer recurrent elements demonstrated a 1.67-, 

and 2.57-fold more high-impact variants with RADAR greater than 3.0 and 4.0, respectively, resulting in a 

P value of 2.2×10-16 in one-sided Wilcoxon test. We observed a similar trend in most of the other cancer 

types (Supplementary Fig. S11). 

 

A case study on breast cancer patients using disease-specific features 

We applied our method to a set of breast cancer somatic variants from 963 patients released by Alexandrov 

et al. [43]. We used COSMIC gene list, expression and mutational profiles as additional features. In total, 

we found that around 3% of the 687,517 variants could alter post-transcriptional regulation to some degree. 

We incorporated the above disease-specific features and demonstrated how they could help to reweight the 
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variant scoring process on a coding variant in Fig. 6B. This variant is located within an RBP binding ultra-

hot region and showed high sequence conservations (7% more rare variants for its binding RBP). It also 

demonstrated strong motif disruption effect (PPIG in Fig 6B). All such features resulted in a universal 

RADAR score of 3.67, which is ranked 296 out of all variants. However, we found that it is located in the 

exon region of the well-known tumor suppressor TP53 (orange track in Fig.6B), and its binding peaks 

demonstrated more than expected somatic mutations (purple in Fig. 6). Besides, 3 out of the 6 RBPs binding 

there showed high regulation potential in breast cancer (green in Fig. 6). Hence, these additional features 

boost its overall RADAR score to 6.67, which is ranked 38 out of all variants). In comparison, this variant 

only shows moderate scores for FunSeq2 (3) and CADD (7.46), and while it is scored in the top but showed 

much lower rank than RADAR. 

 

RADAR aims to prioritize variants relevant to the post-transcriptional regulome, while FunSeq2, 

FATHMM-MKL, and CADD focus on those that affect the transcriptional regulome. Therefore, we do find 

many variants that demonstrate a high overall RADAR score, but only show moderate FunSeq2, CADD, 

and FATHMM-MKL scores. For example, 13 coding and 41 noncoding variants that are ranked within the 

top 1% of overall RADAR scores are not in the top 10% of CADD, FunSeq2, or FATHMM-MKL scores 

(Supplementary Table S10 and Table S11). Many of such variants are located in RBP binding hubs, and 

undergo strong purifying selection, demonstrated strong motif disruptiveness, and are regulated by key 

RBPs that are associated with breast cancer from multiple sources of evidence. We believe the discovery 

of such events demonstrates the value of RADAR as an important and necessary complement to the existing 

transcriptional-level function annotation and prioritization tools. 

 

Discussion 
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In this study, we integrated the full catalog of eCLIP, Bind-n-Seq, and shRNA RNA-Seq experiments from 

ENCODE to build an RNA regulome for post-transcriptional regulation. Our defined RBP regulome is 

remarkably larger than one may think. It covers up to 52.6 Mbp of the genome (Fig. 2A) and the majority 

of it is not covered by previous annotations focusing on transcriptional-level regulation, such as DHS, TFBS, 

and enhancers. We found that the RBP regulome demonstrated noticeably higher conservation in two 

aspects: higher cross-species conservation in almost all annotation categories (Fig. 2C) and higher across-

population conservation by showing significant enrichment in rare variants (Fig. 3). These two sources of 

evidence support the notion that the RBP regulome is under strong purifying selection and carries out 

essential biological functions. Also, these results signify the necessity of computational tools to annotate 

and prioritize variants in the RBP regulome. 

 

By integrating a variety of regulator-, element-, and nucleotide-level features, we propose an entropy-based 

scoring frame, RADAR, to investigate the impact of somatic and germline variants. The variant 

prioritization framework of RADAR contains two parts. First, by incorporating eCLIP, Bind-n-Seq, shRNA 

RNA-seq experiments with conservation and structural features, we built a pre-defined data context to 

quantify the universal variant impact score. This approach is suitable for multiple-disease analysis or cases 

where no other prior information can be used. We applied this RADAR universal score to HGMD 

pathological variants and highlighted many candidates that cannot be highlighted by other methods. Besides, 

our RADAR framework provided detailed explanations of the underlying disease-causing mechanism (Fig. 

6A). In addition to the universal score, RADAR also allows user-specific inputs such as prior gene 

knowledge, patient expression and mutation profiles for a re-weighting process to highlight relevant 

variants in a disease-specific manner. As an example, we applied the RADAR disease-specific scores to 

variants from several cancer types and showed that RADAR could identify relevant variants in key cancer-

associated genes (Fig. 6B). 



 

15 

 

 

 

It is important to note that as compared to ChIP-Seq experiments which generate peaks with up to kbp 

resolution, eCLIP experiments provide higher resolution functional site annotation (even single nucleotide 

resolution). Such accurate and compact annotation can greatly improve our variant function interpretations. 

We also want to mention that most of the current eCLIP peak calling approaches call peaks on the annotated 

transcribed regions. With the development of computational approached for eCLIP peak calling, we hope 

that the size of our annotated RBP regulome can be further expanded.  

Conclusions 

In summary, we have shown that RADAR is a useful tool for annotating and prioritizing post-transcriptional 

regulome for RBPs, which has not been covered by most of the current variant impact interpretation tools. 

Our method provides additional layers of information to the current gene regulome. Importantly, the 

RADAR scoring scheme can be used in conjunction with existing transcriptional-level variant impact 

evaluation tools, such as FunSeq [23, 24], to quantify variant impacts. Given the fast-expanding collection 

of RBP binding profiles from additional cell types, we envision that our RADAR framework can better 

tackle the functional consequence of mutations from both somatic and germline genomes. 

 

Methods 
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eCLIP Data Processing and Quality Control 

We collected 318 eCLIP experiments of 112 unique RBPs from the ENCODE data portal 

(encodeprojects.org, released and processed by July 2017). eCLIP data was processed through the 

ENCODE 3 uniform data processing pipeline and peaks with score 1,000 were used in our analysis. We 

then removed peaks overlapped with blacklisted regions. We further separated the peaks into coding regions 

and the noncoding regions in our analysis to infer the selection pressure. We also provide versions of the 

eCLIP peaks that are annotated by RBP’s function, such as splicing – which is the most common function 

aside from RNA binding (see radar.gersteinlab.org).  

 

Universal RADAR Score 

Cross-population conservation inference 

The cross-population conservation score consists of two components. The Shannon entropy considers the 

length effect of the RBPs while the selection pressure inference aims to determine the conservation of 

regions. For the Shannon entropy, for each RBP, we define 𝑓 to be 

𝑓 = &'(
&)*)+,

                                                                     (1) 

where 𝑛.& represents the number of 1,000 Genomes variants falling in that RBP peaks, and 𝑛/0/12 to be the 

total number of 1,000 Genomes variants (fixed number). In this way, 𝑓 considers the binding site coverage 

of an RBP, since a larger coverage is more likely to have a larger value of 𝑛.&. The Shannon entropy is 

therefore equal to 

𝑆4 = 1 + 𝑓× log: 𝑓 + (1 − 𝑓)× log:(1 − 𝑓)                               (2) 
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We then calculate the selection pressure from the enrichment of rare germline variants from the 1,000 

Genomes Project. Our analysis at each step is separated into coding and noncoding parts. For a given RBP, 

we suppose its binding peaks contain 𝑛>  rare variants (𝐷𝐴𝐹 ≤ 0.005) and 𝑛F  common variants. The 

percentage of rare variants in that RBP’s binding peaks is defined as 

ρ = &H
&HI&J

                                                                    (3) 

 

The value of ρ is often confounded by factors such as GC content. To correct for potential GC content bias, 

we bin the genome into 500 base pair bins and group them according to their GC percentage. Then we 

compute the background rare variant percentage using the same rare and common variants from 1,000 

Genomes Project for each group (See Supplement). For a given RBP with GC percentage 𝑔, we select the 

background group with closest GC, to obtain a background rare variant percentage 𝜌M
N. Therefore, after 

adjusting for GC bias, the enrichment of rare variants is defined to be 

𝜌1OP = 𝜌 𝜌M
N                                                                         (4) 

RBPs with a 𝜌1OP larger than 1 suggests a higher than expected selection pressure. We then adjust the 

species conservation entropy score as follows 

𝑆Q0QR21/.0&_F0&TU>V1/.0& = 𝜌1OP×𝑆4                                 (5) 

Given a variant falling in the RBP regulome that intersects a set of RBP eCLIP peaks, set P, the cross-

species conservation score of that variant is equal to the maximum 𝑆Q0QR21/.0&_F0&TU>V1/.0& for all RBPs in 

set P.  

 

Cross-species conservation using GERP 

We use GERP score to measure the cross-species conservation. For each position, a GERP of greater than 

2 is often used to define bases that are conserved. The transformation of GERP to a RADAR component 
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score, is adapted from Fu et al. Therefore, a sigmoidal transformation is used to fit the GERP scores between 

0 and 1, and the parameters used force the curve to be sharp at GERP equal to 2 (see Supplement). 

 

Structural Conservation 

We use the output of Evofold as an indicator of cross species RNA structure. A variant falling in a region 

given by Evofold as conservative receives a score of 1 while a variant that does not fall in such region 

receives a score of 0. 

 

RBP Binding Hubs and Networks 

We define the number of RBPs binding at a position to as H. We first separated the RBP peaks into coding 

and noncoding regions and then grouped regions on the genome based on H. For each group of regions with 

hub number H, we calculated the GC-corrected enrichment of rare variants 𝜌1OP	|	Y for each group in coding 

and noncoding regions by equation (3, 4). We determine the hub numbers, 𝐻&0>[12,	𝐻\0/, and 𝐻R2/>1]\0/ 

associated with normal, hot, and ultra-hot regions, respectively. 𝐻\0/ and 𝐻R2/>1]\0/ are associated with 

the top 5% and 1% of binding RBPs (Figure 3) to represent rare and ultra-rare events. Our values of 𝜌1OP	|	Y 

are altered in such a way to reflect this phenomenon. The 𝜌1OP	|	Y^Y_*) associated with hub scores less than 

that of the hot regions are converted to 0. The 𝜌1OP	|Y_*)`Y^Ya,)H+b_*)  associated with hot regions 

demonstrate a mostly increasing trend and are smoothed using a kernel smoother. The 𝜌1OP	|	YcY_*) of the 

ultra-hot region is kept constant, equal to the max 𝜌1OP	|	Y⊂_*) of the hot region. 

We also compute f for the set of regions associated with a fixed H (From equation 1). For each value of f, 

we compute the Shannon entropy from equation (2) to be 𝑆Y. Finally, we multiply the values of the 𝜌1OP 

by its respective Shannon entropy, S. A variant falling in the regulome with hub score H would have a score 

equal to the 𝜌1OP	|	Y ∗ 𝑆Y. 
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Motif Analysis and Disruption 

We used the changes of PWMs introduced by a variant to quantify the motif disruptiveness effect through 

motiftools (https://github.com/gersteinlab/MotifTools). Specifically, we defined the disruption score, 

𝐷TF0>U ,	 as in equation (6) to represent the difference between sequence specificities to an alternative 

sequence.  

𝐷TF0>U = 	𝑀>U4 − 𝑀12/ = −10× log#g
hHij
h+,)

                             (6) 

where 𝑃>U4 and 𝑃12/ are the PWM scores from the reference and alternative allele. Here, the motif scores 

for reference and alternate sequences are given as 

𝑀>U4 = −10× log#g 𝑃>U4 , 	𝑀12/ = −10× log#g 𝑃12/  

To quantify a motif breaking event, we require that the p-value for the reference allele is at least 5×10]m. 

There are two motif sources in our analysis. First, we identified RBP motifs using DREME software 

(Version 4.12.0) directly from RBP peaks. Then, we also incorporated motifs from RNA Bind-N-Seq 

(RBNS) [18] to characterize sequence and structural specificities of RBPs. For each variant that affected 

multiple RBP binding profiles, we used the max score. A threshold of 𝐷TF0>U > 3 is used to describe a 

disruption event that is significant, and a variant having a 𝐷TF0>U less than this threshold receives a score of 

0. For variants receiving a 𝐷TF0>U larger than the threshold, we additionally compute the Shannon entropy 

given for a variant with 𝐷TF0>U = 𝐷 as 

   𝑆[0/.4 = 1 + 𝑓(𝑣, 𝐷)× log: 𝑓 𝑣, 𝐷 + (1 − 𝑓(𝑣, 𝐷))× log:(1 − 𝑓(𝑣, 𝐷))         (7) 

where f(v, 𝐷) represents the number of 1,000 Genomes Project variants, v, that have a 𝐷TF0>U	greater than 

D divided by the total number of 1,000 Genomes Project variants. 
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RBP-gene association using shRNA RNA-Seq 

To determine if an RBP, R, is associated with a gene, g, we intersect the peaks of R, with the transcript 

annotation of g. If an intersect exists, we form a linkage between the intersected peak of R and g. If some 

variant falls in that specific peak of R, the variant significantly disrupts the motif of RBP R, and gene g 

demonstrates at least a 2.5-fold change in its expression after KD of RBP R, we give the variant an 

additional score of 1. 

 

Tissue Specific Score 

RBP Regulatory Potential 

RADAR allows inputs in addition to the pre-built context to calculate the disease-specific variant score. In 

this paper, we used the TCGA expression profiles as an example on the cancer variant prioritization. 

Specifically, we downloaded expression profiles of 19 cancer patients of 24 types from TCGA. In order to 

get a robust differential expression analysis, we excluded several cancer types that have less than 10 normal 

expression profiles and used DESeq2 [44] to find tumor-to-normal differentially expressed genes (corrected 

P from DESeq2 <0.05). Let 𝑦.r represent the differential expression status of gene 𝑖 of the 𝑘/\ cancer type. 

 

We inferred the regulatory power of each RBP, R, through a regression approach of the above differential 

expression and RBP network connectivity as 

 𝒚r,v = 𝛽g
r,v + 𝛽#

r,v𝒙v +𝜀r,v       (8) 

where 𝒙v is the binary connectivity vector for all genes and 𝑅 (1 if the gene is a target, else 0). We used the 

absolute value of 𝛽#
r,v to indicate the regulation potential of RBP 𝑅 in cancer type 𝑘. If a variant falls in a 

region with at least one RBP binding, and at least one of the p-values associated with 𝛽#
r,v is significant, 

then we consider variants falling in that particular RBP to have an additional score of 1. 
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Recurrence in Somatic Mutations 

We prioritized variants in RBP binding sites are with more-than-expected somatic mutations. To evaluate 

the somatic mutation burden, we first separated the genome into 1Mbp bins and calculated a local 

background mutation rate in each window. Then for each eCLIP peak, we counted the number of somatic 

mutations, and compared it to the nearest local 1Mbp context using a one-sided binomial test. If a specific 

RBP binding site was enriched for somatic mutations, the variant falling in that site was given a higher 

priority. 

 

Differentially Expressed Key Genes 

For each peak of each RBP, we find the associated gene of that peak by intersecting with the Gencode gene 

definitions. Using the DESeq2 results, we consider genes with q-values that are less than 0.05 to be 

differentially expressed. If an RBP peak is associated with a gene that is significantly differentially 

expressed in a tissue type, we increase the score of the variant falling in such peak by 1. 

 

List of abbreviations 

RBP: RNA binding Protein; ENCODE: the Encyclopedia of DNA Elements; PWM: position weight matrix; 

eCLIP: enhanced crosslinking and immunoprecipitation; RADAR: RNA BinDing Protein regulome 

Annotation and pRioritization; UTR: untranslated regions; DAF: derived allele frequency; RBNS: RNA 

Bind-N-Seq. 
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Figure Legends and Tables 

Figure 1. RADAR workflow 

There are two RADAR score components: (1) a universal score derived from a pre-built data context 

including sequence and structural conservation, network centrality, motif, and knockdown information; (2) 

a tissue-specific (user-defined) score consisting of expression, gene, and mutation information to further 

highlight tissue-specific variants. The universal and tissue-specific score sum together to form the full 

RADAR score. 

Figure 2. RBP regulome and cross-species conservation. 

(A) Intersection of eCLIP peaks versus transcriptional level annotations, with 25Mbp unique to the RBP 

regulome; (B) Average length of binding peak for RBP eCLIP data versus TF ChIP-Seq and the similar 

distribution of RBP coverage between K562 and HepG2 cell lines; (C) Fraction of RBPs falling into each 

annotation category as well as boxplots of PhastCons scores of annotations intersecting peaks (blue) versus 

annotations with no intersections (white). 

Figure 3. Cross-population conservation of RBP peaks and binding hubs. 

(A-B) Rare variant percentage in coding/noncoding regions. The green dot represents RBP peaks, and 

yellow dot represents the genome average after GC correction. Shaded lines are the 95% confidence interval 

of the rare variant percentage of the RBP peaks; (C) an example of RBP binding hubs. Red and orange 

shadings denote regions with the top 1% (ultra-hot) and 5% (hot) RBPs binding; (D) corrected rare variant 

percentage at positions with different cumulative hub numbers. 
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Figure 4. Regulation potential inference of RBPs  

(A) Schematic of RBP regulation potential calculation; (B) Heatmap of RBP regulation potential in 19 

cancer types; (C) RBPs associated with patient survival. Patient survival data from TCGA, survival analysis 

performed using R package survival (2.42-3). Differential expression within a patient is calculated as the 

difference between tumor and normal expression, converted to a Z-score. 

Figure 5. Performance of universal RADAR score on somatic variants 

(A) Enrichment of high RADAR universal score variants associated with COSMIC genes in breast cancer; 

(B) Enrichment of high RADAR universal score variants within RBP peaks with recurrent variants in breast 

cancer. 

Figure 6. Example of breast cancer somatic variant with high overall RADAR 

score 

(A) An example of a top scoring BRCA1 intron HGMD variant highlighted by the universal RADAR score. 

This variant is in an RBP binding hotspot, shows high GERP score, and breaks the motif of the splicing 

factor PRPF8 (red); (B) We selected an exonic variant with high RADAR score on chromosome 17 as an 

example. It was inside an RBP binding hub with a high GERP score and breaks the motif of PPIG. It also 

has several tissue-specific features, like within the well-known cancer-associated gene TP53 (orange track) 

and its associated binding peaks were significantly burdened (dark green). Also, adding expression profiles 

from TCGA shows that 3 out of the 6 RBPs binding there demonstrated high regulation potentials in driving 

tumor-specific expression pattern. All these external pieces of evidence further boost this variant’s tissue-

specific score. 

 

 


