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Abstract:  
Identification and prioritization of function-associated variants become an increasing demand as 
next-generation sequencing data rapidly grows and accumulated. Current computational 
methods are developed to predict deleterious and disease-associated variants, not designed to 
predict specific molecular phenotypes of these variants (i.e., their effects on gene expression 
regulation). High throughput reporter assays, like massively parallel reporter assay (MPRA) are 
successful in identifying functional elements in the whole genome. These MPRA datasets can 
be integrated with other next generation sequencing (NGS) data like ChIP-Seq to learn a 
knowledge model and predict molecular effect of variants. However, due to the heterogeneity of 
data sources and unbalanced data availability, most of TFs have ChIP-Seq experiments in only 
one or few cell lines, which make it difficult to build a model to estimate the molecular effect of 
variants within a functional element by considering these cell-line specific features. 
 
In this paper, we proposed GRAM, a generalized model to study the biological significance of 
molecular effect in a cell-specific manner. We defined TF binding waiting-time features (TFT), 
which can reflect not only cell-type specific but loci specific information and is also easily 
calculated from RNA-Seq data. We first found that TF binding features are the most predictive 
features, evolutionary conservation doesn’t show indispensable contribution to molecular effect 
employing comprehensive feature selection framework. Using in vitro SELEX TF binding 
features along can achieve similar prediction power as using the TF binding features from ChIP-
Seq. We then integrate with in-vitro TF binding features instead of those inferred from spotty 
covered ChIP-Seq data, and TFT features extracted from RNA-Seq to generalize our model to 
all other cell lines. In the multi-phase classification model, the AUROC reaches 0.728 and 
outperforms all the state-of-the-art tools. Finally, GRAM has been assessed in MCF7 and K562 
cell lines, resulting in high predictive performance. 

Introduction  
Next-generation sequencing technologies enable high-throughput whole genome sequencing 
and exomes sequencing[1]. Many disease-associated mutations[2] the vast majority of common 
single nucleotide variants have been identified in the human population  [3, 4]. Genome-wide 
association studies(GWAS) have characterized many disease-associated variants, but these 
variants mostly lie outside protein-coding regions, [5], emphasizing the importance of the 
understanding of regulatory elements in the human genome. This also drives an urgent need to 
develop high-throughput methods to sift through this deluge of sequence data to quickly 
determine the functional relevance of each noncoding variant[6]. 
 
It has been shown that only a fraction of noncoding variants is functional, and among the 
functional variants, the majority show only modest effects[7]. Therefore, highly quantitative 



assays are needed to be developed to examine a large number of variants. Luciferase assay is 
originally used to measure the regulatory effects of functional elements [8]. By comparing the 
difference of the assay readout of the elements with and without the mutation, we can estimate 
the experimental molecular effect of non-coding variants lie in a functional element. By means of 
high throughput microarray and NGS methods, massively parallel reporter assay (MPRA) has 
extended the scales to the genome-wide level [9-14]. Recent, In Ryan’s cell paper, they have 
demonstrated the capability of MPRA to identify the causal variants that directly modulate gene 
expression. This study reports 842 variants (emVARs) showing significantly different expression 
modulation effect and also provides a high-quality data source has been providing for 
computational modeling [15, 16]. 
 
There is also an increasing need for computational methods to effectively predict the molecular 
effect of variants and provide a better understanding of the underlying biology of these results. A 
host of approaches have been developed to address the problem of variant prioritization from 
different perspectives. According to the target of their predictions, there are mainly two 
categories: 1) disease-causing effect predictions: like Deepsea [17], GWAVA [18] and 
CADD[19], try to prioritize causal disease variants and distinguish them from benign ones; 2) 
Fitness consequence prioritization. fitCons and LINSIGHT \cite Huang, Gulko et al.) attempt to 
identify the variants on evolutionary fitness. Some tools, like Funseq2, may not belong to one 
particular category because of the integration of a comprehensive data context and 
unsupervised scoring system [6]. These computational methods are developed to predict and 
prioritize deleterious and disease-associated variants, not designed to predict specific molecular 
phenotypes of these variants (i.e., their effects on activities of functional elements). Most of 
important, none of the above tools, are considering tissue specificity in their models. Although 
they may incorporate some cell line specific features or build a cell line specific model, it is very 
limited because the feature it replys on is only available in a few cell lines. 
 
In this paper, we approach data mining methods from a new perspective to bridge the gap 
between the genotype and molecular phenotype. We developed GRAM: a generalized model 
predict the cell-specific molecular effect of non-coding variants. We define a TF waiting time 
(TFT) feature by taking advantage of widely available RNA-Seq data. Besides the basic 
regression model, the core of GRAM is a multi-stage classifier to account for various kinds of 
output from different experimental assay platforms, which includes a novel set of cell-specific 
effect TFT features and in vitro transcription factor binding features. GRAM can achieve the 
highest performance compared with the state-of-the-art models according to the performance 
on the dataset from Ryan’s cell paper. Finally, we assess our model using two sets of 
independent data in different cell lines: MPRA data in K562 and luciferase assay in MCF7, 
resulting in high predictive performance. 

 
 



Results 
 
Flowchart  
In this study, as described in Fig1a, we firstly collected dataset from paper[15], which is the 
largest dataset so far for estimation of expression modulation differences between wild-type and 
mutants in GM12878 cell line. In his paper, he performed a large scale MPRA experiment, and 
provide a high-quality dataset contains 4xxx SNVs (3222 after filtered) with logSkew value, 
which measures the log fold change of the expression modulating differences between wild-type 
and mutant alleles. Since the logSkew value is continuous and supposed to contain more 
information than discretized classes, it is very straightforward to build a regression model. The 
model uses the logSkew value as target and features extracted according to Ryan’s cell paper, 
such as cell-specific ChIP-Seq peaks and CAGE peaks, along with the knowledge from the 
other variants prioritization studies including evolutionary features and motif binding features, as 
predictors. We then employ a comprehensive feature selection framework to identify the top 
impacting factors that affect the regulatory activity of element. Based on feature selection, we 
found the in vitro TF binding preferences that don’t rely on cell line ChIP-Seq data is highly 
predictive in the model, which can repel the limitations from the spotty available ChIP-Seq data. 
We further define a TF binding waiting-time features (TFT) using RNA-Seq data and combine 
with TF binding preference feature to build a multi-stage classification model. In the end, 
independent datasets from luciferase experiments and MPRA are then used to evaluate the 
model. 
 
 
Exploration of conservation and transcription factor binding features 
 
Evolutionary conservation is associated with deleterious fitness consequence and widely used 
in non-coding variant’s prioritization algorithms, such as phyloP[20] and Phastcons [21] in 
LINSIGHT[22] and CADD, GERP in Funseq2. However, because the difference in the assay-
based experiment is that chromatin context was diminished or randomized (Lenti-virus 
integration), we then questioned whether the experimental effect of these assays is still 
associated with the evolutionary conservation features. We performed comparative analyses for 
these three conservation features across different datasets. (Fig 1b), PhastCons and PhyloP 
pattern of emVar and non-emVar are less conserved than HGMD variants and similar to non-
HGMD variants, which was thought to be a benign variant. GERP score show similar pattern but 
more centered in emVAR and non-EmVar compared to other datasets, with slightly larger 
values for emVAR. Since no different patterns found between emVar and non-emVAR, we 
further found the correlation between logskew and conservation scores is low and the explained 
variance very close to 0 for all three features, which indicate these conservation scores 
standalone have no or minor contributions to molecular effect.   
 
Transcription factor binding can link the molecular effect of noncoding variants to a cascade 
regulatory network, which is thought to be an important factor for regulatory effect (cadd, funseq, 
deepsea and deepbind). In Ryan’s paper, they found the log skew positively associate with TF 
binding scores. To thoroughly look into the effect of TF binding, we tested all xxx TF motif break 



events and peaks overlap with the SNVs in the dataset. Two set variants: emVAR and non-
emVAR, were annotated and analyzed by Funseq2 [6]. The enrichment of transcription factors’ 
motifs in both sets, with ones with lowest p-values according to the hypergeometric distribution 
test are shown in a bottom-up increasing order in Figures 1c, respectively. emVAR set has more 
TF binding events compared with non-emVAR set. The top highly enriched TF in emVAR are: 
xxxxx, . Besides the TF binding enrichment, we also further look at the motif break scores for 
these TFs, especially top enriched TFs. The largest differential scores correspond to AP1 and 
EP300 motifs. In addition, for a smaller subset of motifs with lowest p-values, the distribution of 
the binding differences between alternative and reference genotypes in emVar is larger than 
that in the Non-emVar dataset for almost all motifs (Figure 1d), with the largest difference 
observed for AP1 and smallest for SMARC. According to the comparison, the emVAR set not 
only tend to have more TF binding events, but also have larger binding alteration compared with 
non-emVAR set. 
 
To learn the underlying patterns of variant modulated expression, we trained a host of machine 
learning models using a combination of epigenetic and evolutionary features. We firstly build a 
regression model to predict the log-skew difference in expression modulation fold change 
between wild-type and mutant alleles and then formulate a generalized model which classifies 
the variant effect as two experimental effect class: expression modulating (emVar, label 1) or 
non-modulating (nonEmVar, label 0).  
 
Directly predict the expression modulating changes-logSkew 
 
In Ryan’s paper, they found histone mark and CAGE highly enriched in emVAR regions, which 
indicates these features are potentially useful to predict the expression modulating effect. In 
addition, we also combine evolutionary feature and motif binding changes in our regression 
models. We collected 1678 training records from GM12878 cell line by removing variants 
without overlapping with any ChIP-seq peaks and incorporating features related to the CAGE, 
TFs, histone marks, and DNase I hypersensitivity sites. A schematic representation of the 
regression task is shown in Fig 2a.  
 
We firstly learned a Lasso regression model with 10-fold cross-validation. The fine-tuning of ƛ, 
the penalty parameter in the cost function of this model, is determined according to the mean-
squared error (MSE) values are shown in Fig 2b, with the best performance log(ƛ) ≅ -5. The R-
square for prediction is 0.29 and 0.39 with TF binding features and with all features respectively. 
The most important features according to Lasso regression are TF binding features, and GERP 
scores just show very insignificant contributions. But it is still not clear how the ChIP-Seq and 
CAGE peaks contribute on the model since there indeed no epigenomic context on the plasmid. 
The only possible explanation may be these features can retain some cell-specific information 
because histone modifications shape cell-specificity by chromatin structure perturbation and 
transcription factor binding regulations [23].So the contribution of epigenomic features in the 
model may be an indirect reflection of TF binding specificity.  
 



Since TF-based binding features are top-ranked and more biologically relevant, we then 
prioritized these features across models with different feature selection methods: Lasso, ridge, 
linear regression, stability selection [24](with five ƛstability values), random forest, mutual 
information, and Pearson correlation with the target variable. The 20 most important features 
(out of 515) w.r.t. mean importance across all methods is shown in decreasing order in Fig 2c. 
Expectedly, applying various methods on data with multiple dimensions leads to relatively varied 
results with regards to the importance of each feature across the method spectrum. Both ChIP-
Seq and SELEX deepbind features show higher importance, with the top two being GM12878 
ChIP-Seq features (SP1 And BCL3), which is cell line specific, then followed by some SELEX 
features starting with ETV1 and ETP63.  
 
After considering feature importance values as per different criteria, we assess the performance 
difference of cell line specific TF binding features (ChIP-Seq based) and non-specific ones 
(SELEX based) using SVR (support vector repressor), Lasso, and Random forest regression 
models. Interestingly, the incorporation of DeepBind ChIP-Seq derived features, which are cell-
specific, does not boost the accuracy significantly for all three models. MSE values of both 
models, with and without DeepBind ChIP-Seq features, are shown in Fig 2d. Results suggest 
that we can reliably deploy the model trained on cell-line-independent Deepbind SELEX derived 
features to predict the logSkew of modulation value on samples from cell lines different from 
GM12878 used in training. Deepbind ChIP-Seq derived feature model are cell line-specific, and 
adding them to the model shows no dramatic improvement. Thus, we can rely on cell line 
independent features only to build a generalized model since not all the cell lines have TF ChIP-
Seq experiment that can be used to infer ChIP-Seq Deepbind binding model. 
 
We then compare the performances of models using SVR and randomForest on different 
features sets, including all DeepBind features, DeepBind SELEX features, and the feature 
values generated by each of CADD, Funseq2, DeepSEA, GWAVA, LINSIGHT, Eigen 
decomposition, PCA, and Eigen.PC.phr. As shown in Fig 2e, the model with DeepBind features 
lead to best models with the lowest mean squared error. In confirmation of the previous findings, 
the removal of ChIP-Seq Deepbind features does not cause a significant deterioration in models’ 
predictive quality. As for other methods, results show that DeepSEA features result from the 
third best set of models (SVR and RF). This comparison does not intend to rank this entire list of 
tools, but to show the molecular effect prediction is a different context compare with disease-
association prediction. It may also have the effect of over-fitting since these different models 
may be trained using different dataset. 
 
Build a generalized model by multi-phase learning 
 
The regression model illustrates the capability of prediction of the experimental molecular effect 
of variants by the comprehensive integration of useful features. However, instead of estimating 
the log skew value based on reads count as in MPRA, other different types of assay, such as  
Luciferase assay, GFP assay, and Lenti-virus based platforms, use fluorescence readouts and 
different statistical methods or cutoff to decide the effects of the variants. Thus, although these 
different platforms may have consistent result [25, 26] , translation of MPRA between the 



outputs of these assays would be difficult. In order to build a generalized model, we need tackle 
two challenges: firstly, define a unified target that can be used for comparison cross these 
different assay types, and a classification model will be a good choice for different assay 
platform use different statistics to distinguish the experimental effect variants; secondly, 
considering the cell-specific information that are more easily obtained compared with ChIP-Seq 
experiments which is not available in many cell lines and tissue. Gene expression profile of 
transcription factor is suitable to represent cell-specific context. As a result, we developed a 
three-phase model to predict SNP effects. 
 
For the Phase one, we will predict whether an element has regulatory activity. An element with 
or without mutation that inserted into plasmid is tested as an functional element if the fold 
change between the element with the control is large than a statistically significant cutoff. For 
example, for MPRA study, the statistical test based on DESeq2 will indicate which it is 
significantly changed; while for Luciferase assay, a testing element that has the fold change with 
control (eGFP) is greater than 1.5 or 2 will be thought as enhancer-like. Using the Deepbind TF 
binding features as predictors, whether is a functional element (emVAR) as the target, a 
randomForest classifier was trained to predict enhance-likeness. The 10-fold cross validation 
demonstrate an exemplary performance with AUROC =0.938 and AUPRC = 0.924. The log 
odds based on the probabilities are highly correlated with actual logskew (with Pearson 
cor=0.5581, figure not shown)..  
     
For phase two, we want to consider the cell-specific effect in the study. The effect can reflect 
two types of biological meaning: cell type specificity for the same loci between different cell lines 
and tissues, which can be naturally reflected by gene expression; and loci specificity among 
different genomic positions in the same cell line or tissue which is denoted by TF binding 
preference and TF’s expression. We found the variance or standard deviation of log odds 
(Vodds) to be a suitable indicator. By comparing the Vodds from three cell lines: GM12878, 
GM19239, and HepG2, we found two GM cell lines are closer with each other than with HepG2 
(fig 3d), which indicate the cell-type specificity of Vodds. Comparing the emVAR with non-
emVAR variants, the higher variance group tends to have more non-emVar. (Chi-square test p-
value: 0.0002021), which indicates the emVAR class tends to have lower variances. We use TF 
binding score and expression ranking matrix to predict high and low Vodds classes defined by 
top and bottom quartile value (fig3e). TF binding score can predict the high and low classes with 
high AUC 0.80, and expression ranking have an AUC (0.65) is higher than a random effect (fig 
3g-h).  
 
The final phase is to predict whether the variants have significant expression modulating effect. 
The output from phase one and two are fed into a Lasso model, the emVar and non-emVar 
labels are used as the target. The AUROC of 10-fold cross-validation for the optimal model is 
0.728 and AUPRC is 0.505, which is higher than the state-of-the-art for the study using the 
same dataset (AUROC: 0.684, AUPRC: 0.478) [27]. For a generalized model, we redo phase 
one and two on the same dataset by excluding Deepbind features that from ChIP-Seq model, 
which is not available for many other cell type or tissues, and keep all the other features as the 
optimal model, we get the model with AUROC = 0.674 and AUPRC = 0.452.  



 
The generalized model has been trained on Gm12878 MPRA dataset. To evaluate the 
performance of the model on the other cell lines at different platforms. We collect nano 
luciferase assay data from MCF7 and MPRA assay data from K562[10]. We select 8 potential 
regulatory elements from MCF7 cell line, each one with a mutation as described in our study 
cite[ENCODEC]. We predict the regulatory activity for both wild-type and mutant alleles, and 
expression modulating differences between wide-type and mutant. For regulatory activity, the 
predicted probability to be an active regulator is positively correlated with luciferase assay fold 
change. The results are perfectly predicted (AUROC=1) for different luciferase fold change 
cutoffs from 1.2 – 2 that is used to define an active enhancer (fig5a). For the prediction of effect, 
the significant differences between mutant and wild-type is defined by using absolute log2(fold 
change) cutoff. The predicted probability also showed a positive correlation with absolute log2 
fold change. The AUROC value range from 0.7 to 0.9 given the absolute log2 cutoff from 0.5 to 
1.5, which corresponding the fold change cut off from [1.414, 4] or [-4, -1.414]. For MPRA data 
in K562 cell line, we tested 2400 element which is centered in the inserted fragment. The AUC 
for regulatory activity is up to 0.68 as we decrease the cutoff of qvalue to 10^-9 and the 
molecular effect prediction also reach up to more than 0.8 if using a more stringent qvalue 
cutoff(10^-5).  This indicates our model performs very well on the testing luciferase assay and 
MPRA dataset from a different cell lines even they use different measurements.  
 

Discussion 
 
There is an increasing number of computational methods that can prioritize non-coding variants, 
as well as high-throughput whole-genome sequencing data that become the primary technique 
for identifying disease-associated variants. But it still lack a tool that can estimate the molecular 
effect of variant in a cell-specific manner. In this paper, we performed a thorough analysis of 
effect modeling on molecular effect of an SNV, trained both regression and classification models 
using MPRA data from Gm12878 cell lines. By taking advantage of the non-cell-specific SELEX 
TF binding feature, and easily obtained cell-specific TF expression data, we built a generalized 
model that can be potentially applied to any cell lines and tissues, and predict the significant 
expression modulation changes for different types of experiment assay. Experimental validation 
using luciferase assay on MCF7 cell lines, and MPRA assay on K562 to further verified the 
generality and robustness of the model.  
 
In the regression model, we tested features that may be associated with the experimental effect. 
In spite of the biological insight evolutionary features provide, Lasso regression indicates that 
they do not rank high in significance when predicting the molecular effect.  The Histone Mark 
and CAGE features are chosen because of enrichment analysis between emVAR and non-
emVAR, however, how these features work still unknown because no-chromatin context will be 
retained once the elements are inserted into a plasmid. The dataset of Histone Mark and CAGE 
is not always available for other cell lines, which will limit the application of the model. While the 
transcription factor binding is more biologically relevant, and the availability of in vitro SELEX 
model can help to expand the model to other cell type and tissues. Cell-specific ChIP-Seq-



based TF binding features might help improve predictions but only to a limited extent, our 
models show that generalizability can be obtained using non-cell-specific SELEX TF binding 
features without a significant reduction in predictive performance.  
 
In the cell-specific effect prediction, TF binding is still the most important factor, but TF waiting-
time feature (TFT) also associate with cell-specific effect. however, features from a re-ordered 
TF expression matrix can also be problematic for some worse cases. The idea to re-order TF 
expression according to its binding strength or rank in its binding preference is inspired by the 
study of TF binding waiting time[28]. The waiting time of TF binding is thought to be related to 
TF binding free energy, which is further related to the binding scores. In our study, we just 
simply use the quantile of binding preference in each TF’s binding distribution to re-order the 
expression level and make the expression vector represent the binding order of TF. However, 
our results indeed showed that the re-ordered expression matrix has an association with the 
cell-specificity effect.  
 
Though our model achieves so far the best performance, we recognize that dataset selection 
may introduce systematic bias because the SNVs we used in our model are only very small 
fraction of all non-coding variants but the regulatory effect of SNVs is very diverse,  which will 
result in the overfitting of our model. However, our experimental validation has been performed 
on both small scale luciferase assay and high throughput MPRA data, our model shows high 
predictive performance in these blinded dataset. We will release our code publically, hope the 
community can help us improve and refine our model.  
 
We aim to better understand the underlying patterns of variant modulation expression and 
considered cell specificity issues closely, having additional dataset generated from multiple cell 
line experiments would be quite helpful to derive more comprehensive conclusions. We will 
further expand this analysis contingent on the availability of data. In addition, continuous work 
on re-defining expression modulation remains an open question with large room for 
investigation  

Methods  
 
Dataset 
 
The data was downloaded from Ryan cell paper. From about 79K tested elements, we only 
keep xxx variants that have  at least either wild type or mutant elements show regulatory activity. 
We only keep the SNV with its logskew value and the logskew with maximum absolute value will 
be used if a SNV has been tested in two insertion directions in plasmid. Finally, we have 3222 
SNVs tested in GM cell line in the our dataset. Each SNVs region is extended to both direction 
by 74bp, in total in 149bp. Another dataset from Ulirsch 2016 [10], there are 2756 variants 
tested in K562 cell line.  
 
Feature extraction: 
 



GERP feature was extracted using Funseq2 annotation pipeline, which search the region of 
element over the whole genome GERP score file and get average score. 
 
The Histone modification, CAGE and ChIP-Seq peaks were overlapped to SNV element regions. 
It will be set as 1 if overlap with any peaks or set as 0. The motif break and motif gain score was 
calculated using Funseq2. We also calculated the motif score using Deepbind [29] with both the 
SELEX and ChIP-Seq motif model. The SELEX motif model are based on in vitro binding assay: 
systematic evolution of ligands by exponential enrichment, but ChIP-Seq models are 
inferred using sequence from the transcription factor binding site from different cell lines. There 
are total 515 motif models  were calculated (table s1: tbls1.deepbind.list.txt) . 
 
Regression 
 
the log skew of the SNV are used as target (y) and the GERP, histone modification ChIP-Seq 
feature group (11), transcription factor ChIP-seq feature group(16), CAGE feature group(5) and 
motif feature, a linear regression model was trained, the L1-norm was used as regularization 
term to avoid overfitting. The 10-fold cross-validation was used to select suitable scale factor 
(lambda) for L1-norm.  

 
we also compare SVR and random Forest regressor on the same dataset. 
 
To compare the importance of features, we compared different metrics, which including stability 
selection [24], LASSO 10-fold cross-validation, pearson correlation, linear regression, 
randomForest regression,  feature elimination, Ridge, normalized mutual information. The 
features importance for each selection methods are scaled to [0, 1] and take the mean of all the 
selection methods to represent the overall ranking. 
 
The logskew shows large kurtosis than expected normal distribution,  the model was biased by 
the large amount centered data, the extreme logskew value will not be learned. we then applied 
adaboost with 10-fold cross-validation to enable the extreme-value sensitive classification.  
Meanwhile the adaboost model with in vitro motif (SELEX) feature and chip-seq motif binding 
feature are compared. 
 
We compare our models’ MSE with CADD, Eigen, LINSIGHT, Funseq2, GAWVA, DeepSea. 
The GM12878 specific model and generalized non-cell specific model was tested using both 
support vector regression and random forest regression, which consider all deepbind feature 
and SELEX-based features respectively. For the other variants prioritization tools, we take the 
output of these methods, and then use the same SVR and RandomForest to train and predict 
logskew value.   
 
 
Classification: 



 
We first define the “emVar” as positive and “non-emVar” as negative classes following cell 
paper standard.  There has 3222 data records, including  xxx positive and xxx negative dataset.  
 
We build a three phase model. Firstly, we will predict the element regulatory (enhancer) activity 
for wild type and mutant respectively and then predict cell specific  effect model. The features  
include deepbind TF binding score from above and cell specific TF binding waiting time (TFT) 
feature.  
 
The regulatory activity class are defined based on the fold change of either wild-type or mutant  
readout compared with the control. The element with at least 2 fold changes will be defined as 
positive regulator, while the elements with at most xxx fold change is the negative set. 
 
The cell specific effect model is approximated by the standard deviation of log(odds) given 2x2 
categorical table (n1,n2,n3,n4 for the average reads count) for the association between the SNV 
type (“wild type”, and “mutant”) and assay type(“experimental” and “control”).  The standard 
deviation of log(odds) is calculated by sqrt(1/n1 + 1/n2 +1/n3 + 1/n4).  The Transcription factor 
binding and its expression level is biologically associated with the effect. We define the two 
classes using the top and bottom quartile standard deviation. 
 
The quantile of distribution for each deepbind model was calculated based on the TF scores of 
3222 SNVs. The order of TF expression is defined by the order of TF score’s quantile in each 
model, then the expression rank matrix was generated by this new order. 
 
Given 258 Deepbind SELEX model score S for 3222 SNV, Sm,n is the score for nth model of m-
th SNV. Then we generate a ranking matrix R using column-based rank, R’m,n denote the rank 
for nth model of m-th SNV in the nth model score of all 3222 SNV, For TF with multiple binding 
models, we take top-rank for each TF to generate a TF-based mxn’ R’  matrix, where n’ is the 
number of unique TF in SELEX model.   
 
For each SNV, the R’m: {1,.., n’} (n’ is the number of unique TFs) is then used to generate a 
new ranked TF vector TR{1_r,…, n’_r} , which is ordered by the R’m. TFexpression value E 
{1,…,n’}   is re-ordered according to new TF E’m{1,.., n’}. This E’ vector indicate the relationship 
between expression level and binding preference on each SNV.  
 
The predict probability to be active element from the first step is then used to calculate: 
log2(P_mut/(1-P_mut) /(P_ref/(1-P_ref))). 
 
The last step is to predict whether there is significant change of regulatory activity between  
wild-type and mutant element using predicted prob odds and cell-specific effect by.  
 
 
Experiment validation on MCF7 cell line  
 



We introduced mutations into cloned non-coding elements by site-directed mutagenesis, 
following published procedures (Wei et al., 2014) in general. Briefly, a pair of mutagenesis 
primers was designed for each mutation with a webtool, PrimerDIY (primer.yulab.org). We set 
up mutagenesis PCR reactions with the entry clone plasmids carrying wild-type non-coding 
elements and their corresponding mutagenesis primer pairs. The PCR products were then 
digested with DpnI (New England BioLabs) and transformed into TOP10 chemically competent 
E. coli (Invitrogen) by heatshock. The transformed bacteria were recovered in SOC medium for 
1h at 37°C, spread on LB agar plates supplemented with spectinomycin, and incubated at 37°C 
overnight. We randomly picked colonies yielded from the transformation and confirmed the 
success of mutagenesis by Sanger sequencing. 
 
 
 
 
References: 
 
 
 
1. Snyder M, Du J, Gerstein M. Personal genome sequencing: current approaches and 
challenges. Genes Dev. 2010;24(5):423-31. Epub 2010/03/03. doi: 10.1101/gad.1864110. 
PubMed PMID: 20194435; PubMed Central PMCID: PMCPMC2827837. 
2. Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS, et al. The Human 
Gene Mutation Database: 2008 update. Genome Med. 2009;1(1):13. Epub 2009/04/08. doi: 
gm13 [pii] 
10.1186/gm13. PubMed PMID: 19348700; PubMed Central PMCID: PMC2651586. 
3. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 
1,092 human genomes. Nature. 2012;491(7422):56-65. Epub 2012/11/07. doi: nature11632 [pii] 
10.1038/nature11632. PubMed PMID: 23128226; PubMed Central PMCID: PMC3498066. 
4. Fu W, O'Connor TD, Jun G, Kang HM, Abecasis G, Leal SM, et al. Analysis of 6,515 
exomes reveals the recent origin of most human protein-coding variants. Nature. 
2013;493(7431):216-20. Epub 2012/12/04. doi: nature11690 [pii] 
10.1038/nature11690. PubMed PMID: 23201682; PubMed Central PMCID: PMC3676746. 
5. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic 
localization of common disease-associated variation in regulatory DNA. Science. 
2012;337(6099):1190-5. doi: 10.1126/science.1222794. PubMed PMID: 22955828; PubMed 
Central PMCID: PMCPMC3771521. 
6. Fu Y, Liu Z, Lou S, Bedford J, Mu X, Yip KY, et al. FunSeq2: A framework for prioritizing 
noncoding regulatory variants in cancer. Genome Biol. 2014;15:480. doi: 10.1186/s13059-014-
0480-5. PubMed PMID: 25273974. 
7. Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, Smith RP, May D, et al. Massively 
parallel functional dissection of mammalian enhancers in vivo. Nat Biotechnol. 2012;30(3):265-
70. doi: 10.1038/nbt.2136. PubMed PMID: 22371081; PubMed Central PMCID: 
PMCPMC3402344. 
8. Smale ST. Luciferase assay. Cold Spring Harb Protoc. 2010;2010(5):pdb prot5421. 
Epub 2010/05/05. doi: 10.1101/pdb.prot5421. PubMed PMID: 20439408. 
9. Grossman SR, Zhang X, Wang L, Engreitz J, Melnikov A, Rogov P, et al. Systematic 
dissection of genomic features determining transcription factor binding and enhancer function. 
doi: 10.1073/pnas.1621150114. 



10. Ulirsch JC, Nandakumar SK, Wang L, Giani FC, Zhang X, Rogov P, et al. Systematic 
functional dissection of common genetic variation affecting red blood cell traits. Cell. 
2016;165:1530-45. doi: 10.1016/j.cell.2016.04.048. PubMed PMID: 27259154. 
11. Kheradpour P, Ernst J, Melnikov A, Rogov P, Wang L, Zhang X, et al. Systematic 
dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel 
reporter assay. Genome research. 2013;23:800-11. doi: 10.1101/gr.144899.112. PubMed PMID: 
23512712. 
12. Inoue F, Ahituv N. Decoding enhancers using massively parallel reporter assays. 
Genomics. 2015;106:159-64. doi: 10.1016/j.ygeno.2015.06.005. 
13. Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, Rogov P, et al. Systematic 
dissection and optimization of inducible enhancers in human cells using a massively parallel 
reporter assay. Nature Biotechnology. 2012;30:271-7. doi: 10.1038/nbt.2137. 
14. Ernst J, Melnikov A, Zhang X, Wang L, Rogov P, Mikkelsen TS, et al. Genome-scale 
high-resolution mapping of activating and repressive nucleotides in regulatory regions. Nature 
Biotechnology. 2016;34:1180-90. doi: 10.1038/nbt.3678. 
15. Tewhey R, Kotliar D, Park DS, Lander ES, Schaffner SF, Sabeti PC. Direct Identification 
of Hundreds of Expression- Modulating Variants using a Multiplexed Reporter Assay. Cell. 
2016;165:1519-29. doi: 10.1016/j.cell.2016.04.027. 
16. Zeng H, Edwards MD, Guo Y, Gifford DK. Accurate eQTL prioritization with an 
ensemble-based framework. doi: 10.1101/069757. 
17. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-
based sequence model. Nature methods. 2015;12:931-4. doi: 10.1038/nmeth.3547. PubMed 
PMID: 26301843. 
18. Ritchie GRS, Dunham I, Zeggini E, Flicek P. functional annotation of noncoding 
sequence variants. Nature methods. 2014;11:294-6. doi: 10.1038/nmeth.2832. 
19. Kircher M, Witten DM, Jain P, O'roak BJ, Cooper GM, Shendure J. A general framework 
for estimating the relative pathogenicity of human genetic variants. Nature Genetics. 
2014;46:310-5. doi: 10.1038/ng.2892. PubMed PMID: 24487276. 
20. Cooper GM, Stone EA, Asimenos G, Program NCS, Green ED, Batzoglou S, et al. 
Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 
2005;15(7):901-13. Epub 2005/06/21. doi: 10.1101/gr.3577405. PubMed PMID: 15965027; 
PubMed Central PMCID: PMCPMC1172034. 
21. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. 
Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome 
Res. 2005;15(8):1034-50. Epub 2005/07/19. doi: 10.1101/gr.3715005. PubMed PMID: 
16024819; PubMed Central PMCID: PMCPMC1182216. 
22. Huang Y-F, Gulko B, Siepel A. Fast, scalable prediction of deleterious noncoding 
variants from functional and population genomic data. Nature Genetics. 2017. doi: 
10.1038/ng.3810. 
23. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell 
research. 2011;21:381-95. doi: 10.1038/cr.2011.22. PubMed PMID: 21321607. 
24. Meinshausen N, Bühlmann P. Stability selection. Journal of the Royal Statistical Society: 
Series B (Statistical Methodology). 2010;72(4):417-73. doi: doi:10.1111/j.1467-
9868.2010.00740.x. 
25. Vesuna F, Winnard P, Raman V, Raman V. Enhanced green fluorescent protein as an 
alternative control reporter to Renilla luciferase. Analytical biochemistry. 2005;342:345-7. doi: 
10.1016/j.ab.2005.04.047. PubMed PMID: 15950916. 
26. Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, et al. Engineered 
Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate. 
ACS Chemical Biology. 2012;7:1848-57. doi: 10.1021/cb3002478. PubMed PMID: 22894855. 



27. Guo Y, Tian K, Zeng H, Guo X, Gifford DK. A novel k-mer set memory (KSM) motif 
representation improves regulatory variant prediction. 2017. doi: 10.1101/130815. 
28. Zabet NR, Adryan B. A comprehensive computational model of facilitated diffusion in 
prokaryotes. Bioinformatics. 2012;28(11):1517-24. Epub 2012/04/12. doi: 
10.1093/bioinformatics/bts178. PubMed PMID: 22492644; PubMed Central PMCID: 
PMCPMC3356843. 
29. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of 
DNA- and RNA-binding proteins by deep learning. Nat Biotechnol. 2015;33(8):831-8. Epub 
2015/07/28. doi: 10.1038/nbt.3300. PubMed PMID: 26213851. 
 
 
 
Figures: 
 
Figure 1 (a) flowchart of our study. (b) Conservation scores (c) MOTIFBR - motif-based - P-
value (bottom- sorted up increasing order) (d) motif score changes between wild-type and 
mutant allele. 
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Fig2. Regression model to predict logSkew. (a): diagram of features in regression model (b) 
Lasso regression with 10-fold cross-validation (c) feature selection for Deepbind motif scores, 
identify cell-line specific feature from top ranking list. (d) comparison the performance of cell-line 
specific ChIP-Seq TF binding scores with SELEX TF binding scores. (e):Compare with the the-
state-of-the art, we use their direct output as features, then train 10-fold cross-validation model 
using svr and random forest to compare with our model.  
  
 



 
 
 
 
 
 



Fig3 multi-stage classification model. (a) the diagram of multi-phase model: before predict the 
molecular effect, the regulatory activity and cell specificity is predicted. (b) ROC curve for 
regulatory activity prediction. (c) PRC curve for regulatory activity prediction, (d) the principal 
component analysis for Vodds, the loadings for PC1 and PC2 are shown. (e) The high and low 
variable cell specificity class are defined by the top and bottom quantile. (f) The prediction of cell 
specificity variation prediction using TF binding feature and TFT features. 
 



 
 
 



Fig4. Performance of classification model. A,B ROC and PRC for model including tissue-specific 
ChIP-Seq Deepbind scores, C, D ROC and PRC for generalized model 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



Fig5 (a) enhancer-likeness prediction. x-axis: fold change from experiment, the vertical dot lines 
represent the cut off (1.5, or 2) to determine positive (enhancer) and negative, the horizontal dot 
line is predicted probability cutoff (0.5). (b): predicted probability for emVar and non-emVAR 
versus absolute log2 odds from luciferase assay. (c): the AUROC value versus the different 
absolute log2 odds cutoff [0.5, 2.0]; (d) testing on a independent dataset K562 MPRA dataset 
 
 

 


