
An integrative ENCODE resource for cancer genomics 
Introduction 

The initial ENCODE release in 2012, along with other targeted functional genomic data, 
have motivated many integrative studies, some of which have focused on cancer genomes1-7. 
Specifically, functional genomics data have been used to investigate cancer in many ways. For 
example, various types of genomic features, such as replication timing and histone modification, 
are broadening our understanding of the underlying mechanisms of single nucleotide variations 
(SNVs) and structural variations (SVs) in cancer progression. Secondly, they enable researchers 
to systematically define regulatory elements, such as enhancers and binding sites for 
transcription factors (TFs) and RNA binding proteins (RBPs), thereby greatly facilitating our 
ability to interpret the functional impacts of variants in non-coding regions6,8-11. Finally, 
ENCODE data and other genomic data sets have been used to link non-coding elements and to 
organize them into regulatory networks, which can be used to gain a systems-level perspective of 
cancer18-20. 

The new release of ENCODE data has been dramatically improved since the last release. 
First, it considerably broadened the number of cell types studied using the original assays. As 
such, the main ENCODE encyclopedia aims to utilize these to provide a general annotation 
resource that is applicable across many cell types. Second, ENCODE deeply enlarged the 
number of advanced assays on several "top-tier" cell types (e.g., STARR-seq, Hi-C, ChIA-PET, 
eCLIP and RAMPAGE). Many of these are associated with cancer, including those of the blood, 
breast, liver, and lung (K562, MCF-7, HepG2, A549, see Fig. 1). Such rich functional assays and 
annotation resources in the new ENCODE release allow us to deeply characterize these non-
coding regions and to construct a customized ENCODE companion resource for Cancer 
genomics (which we call EN-CODEC). This resource consists of a set of annotation files and 
code bundles available online (encodec.encodeproject.org, see suppl.).  

In particular, with comprehensive types of assay on several model cell types, the ENCODE3 
release enables us to provide a comprehensive and tissue-specific annotations on several cell 
types. For example, in several well-known cancer cell types, we first integrate thousands of 
ChIP-seq and eCLIP experiments to define proximal regulatory regions. We then incorporate 
many histone marks with novel assays, such as STARR-seq which directly measures the 
genome-wide enhancer activities, to accurately define core enhancers and use Hi-C and ChIA-
PET data for accurate enhancer-gene linkage prediction. Consequently, the combination of 
proximal and distal regulatory elements and their accurate gene linkages, which we called the 
extended gene, benefit various analysis, such as somatic driver detections, GWAS result 
interpretations, and expression profile stratifications.  

In addition, the significantly expanded ChIP-seq and more recent assays such as eCLIP and 
Hi-C enables us to accurately construct various types of regulatory networks, allowing a 
systematical view of TF and RBP dysregulations. For instance, we can combine ENCODE 
networks with expression profiles from cancer cohorts like TCGA to illustrate how key 
regulators drives tumor-specific gene expression profiles and how they collaborate with other 
regulators. Besides, the ENCODEC networks provide cell-type specific networks in model tumor 
and normal cells, thereby enabling direct evaluation of potential regulatory changes in 
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oncogenesis. Furthermore, we can use expression and network profiles to directly measure the 
degree to which an oncogenic transformation moves towards or away from a stem-cell-like state. 

Finally, we propose a step-wise prioritizing scheme that highlights key regulators, SNVs, 
and SVs associated with cancer progression. We validate the functional impact of these 
prioritized regulatory elements and variants using focused experiments such as TF/RBP 
knockdowns, luciferase assays, and CRISPR-engineered deletions. Such prioritization serves as 
an illustration of how our new EN-CODEC resource can immediately be used to help analyze 
existing cancer mutation data and cancer-associated gene expression. 

The breadth of ENCODE3 data  
ENCODE3 significantly expanded the number of genomic data cross various cell types (see 

suppl.), many of which have been shown to be associated with mutational processes for both SVs 
and SNVs. For example, we found that SVs in K562 are enriched in regions with higher 
[JZ2STL]. In addition, many previous efforts used functional genomics data (such as replication 
timing and histone modification data) to estimate BMR in various cancer types. Hence, we 
demonstrate how the extensive ENCODE data can improve BMR estimation background 
mutation rates in a wide range of cancer types through the commonly used negative regression 
models. We performed forward selection on these features to select the best combination, and 
our results demonstrate that BMR accuracy can be significantly improved. 

An extended gene annotation and validations through CRISPR 
deletions 
As noted, a second advantage of leveraging ENCODE data to investigate the function impact of 
mutations by defining more compact and accurate annotations – a smaller, "core" region (which 
is enriched for true functional impact) significantly improves key variant detectability. Hence, 
we tried to restrict our annotation set to high-confidence elements. With a particular focus on 
enhancers, we started by searching for regions supported by multiple lines of evidence in the 
data-rich top-tier cell types. We developed a machine-learning algorithm to combine DNase-seq 
with up to 10 histone modification marks to predict enhancers (see suppl.). Using a second 
algorithm called ESCAPE, we then combined these predictions with our output from processing 
STARR-seq data (see suppl.). This ensemble-based approach enables us to define a minimal list 
of enhancers with fewer false-positives. 

 We also linked the above noncoding annotation to genes, because our current knowledge of 
disease is typically derived by studying protein-coding genes. Most traditional methods rely 
solely on the correlation of individual signals, which may result in inaccurate gene linkages. 
Here, we use a machine learning algorithm that takes the wide variety of histone modification 
marks and gene expression signatures into consideration (thereby delineating accurate enhancer-
target gene linkages) and then combining the results with direct experimental evidence on 
physical interactions from Hi-C and ChIA-PET. We defined our extended gene annotations as 
the combination of proximal and distal regulatory regions with exons and demonstrated their 
value.  
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First, we used the extended gene annotation as a single test unit for recurrence analysis, 
rather than testing all regions separately. Such a unified scheme enables joint evaluation of the 
mutational signals from distributed yet biologically connected genomic regions. Fig. 2A 
illustrates the larger number of known cancer-related genes detected in several cancer cohorts, 
relative to those derived from the traditional approach. For example, in the context of chronic 
lymphocytic leukemia (CLL), our analyses identified well-known highly mutated genes (such as 
TP53 and ATM) that have been reported from previous analyses23,24. More importantly, the joint 
detection approach allows us to detect genes that would otherwise be missed by an exclusively 
focusing on coding regions. An example of this is the well-known cancer gene BCL6, which 
may be associated with patient survival (Fig. 2E and refs. 25-27). 

Secondly, our extended gene definitions include many tissue-specific proximal and distal 
noncoding regulatory elements, which are relevant to interpreting cancer-associated GWAS 
variants. To illustrate this, we downloaded all the GWAS SNPs for breast cancer and leukemia in 
the GWAS Catalog with European ancestry and performed SNP enrichment analysis. As 
expected, we observed increasing enrichment by adding more annotation categories (defined 
above) to the conventional CDS and TSS regions in both cancer types. It is worth noting that, 
unlike gene definitions, which are fixed across different cell types, the comprehensive ENCODE 
data allow us to build a highly dynamic extended gene definition that is unique to a particular 
tissue. We can only see the best enrichment of GWAS SNPs in a tissue-matched manner. 

Thirdly, it has been shown that mutation status in a specific annotation category, such as 
enhancers, can be used to differentiate expression profiles of cancer patients. If our noncoding 
elements are precise and their gene linkages are accurate, we hypothesize that greater power is 
provided for such analyses. Hence, we tried to stratify gene expressions based on various types 
of annotations in liver cancer. As expected, combining mutational profiles from large cohorts, 
our tissue-matched extended gene definition can explain the expression differences of a larger 
number of genes. One example is the splicing factor SRSF3, which has been proven to affect 
liver cancer progression. Its extended gene annotation in HepG2 exhibits greater significance 
relative to any single annotation category.  

Key regulator prioritization using ENCODE networks and 
validations through knockdown experiments 

We also provide comprehensive tissue-specific proximal regulatory networks directly from 
ChIP-Seq and eCLIP experiments, and we reconciled all our cell-type specific networks to form 
a generalized pan-cancer network. Compared to imputed networks derived from gene expression 
or motif analyses, our ENCODE TF and RBP networks are built using experimentally-defined 
regulatory linkages between functional elements (see supplements). We analyzed the overall TF 
and RBP regulatory network by systematically arranging it into a hierarchy (Fig. 3A). Here, TFs 
are placed at different levels such that those in the middle tend to regulate TFs below; in turn, 
they are more regulated by TFs above33 (see suppl.). We found that the top-level TFs are not 
only enriched in cancer-associated genes but also more significantly drive differential expression 
in model cell types. 

Our networks provide valuable means of interpreting gene-expression data from tumor 
samples. Along these lines, we used a regression-based approach to integrate 8,202 tumor 
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expression profiles from TCGA and systematically search for TFs and RBPs that most strongly 
drive tumor-specific expression (see suppl.). For each patient, we tested the degree to which a 
regulators’ activities correlate with tumor-to-normal expression changes their respective targets. 
We then calculated the percentage of patients with these relationships in each cancer type shown 
in Fig. 3B. These metrics can be used to prioritize key TFs and RBPs in cancer. 

As expected, we found that many previously reported cancer-associated TFs show high 
regulatory potential and are associated with patient survival. For example, we found that MYC 
targets are significantly up-regulated in numerous cancer types. We therefore validated MYC's 
regulatory effects using knockdown experiments in breast cancer (Fig. 3). Consistent with our 
predictions, the expression of MYC targets are significantly reduced after MYC knockdown in 
MCF-7 (Fig. 3C). Similarly, in the RBP network, we found that SUB1 peaks are enriched on the 
3'UTR regions of genes, and the predicted targets of SUB1 were significantly up-regulated in 
many cancer types (Fig. 3D). SUB1 has not previously been associated with cancer as an RBP, 
so we sought to validate its role. Knocking down SUB1 in HepG2 cells significantly down-
regulated its targets (Fig. 3D), and the decay rate of SUB1 targets is significantly lower than 
those of non-targets (see suppl.). Moreover, we found that up-regulation of SUB1 targets may 
indicate a poorer patient survival in some cancer types (Fig. 3D).  

We further investigated how key regulators can interact with each other during regulatory 
processes tumors. For TFs, we found that, with the exception of well-known co-regulators MAX 
and MXL1, NRF1 is the most frequent co-regulator of MYC that forms a forward-feedback loop 
(FFL). Upon further examination, we found that the MYC-NRF1 FFLs were mostly coherent 
(i.e., "amplifying" in nature; in supplement). We further studied these FFLs by organizing them 
into logic gates, in which two TFs act as inputs and the target gene expression represents the 
output32 (see suppl.). We show that most of these gates follow either an OR or MYC-always-
dominant logic gate. Similarly, with respect to RBPs, MYC is the top co-regulator with MYC 
after correcting for many potential confounding factors, such as GC content and expression level 
(see supplements). Interestingly, we found that SUB1 is a direct target of MYC in many cell 
types (see supplements), forming many FFLs in the regulatory network. We hypothesize that 
MYC can bind to the promoter region of key oncogenes to initiate their transcription and SUB1, 
and it binds to the 3UTRs to stabilize such genes on the level  of RNA transcripts. This 
collaboration between MYC and SUB1 results in overexpression of several key oncogenes and 
leads to proliferation of cancer cells. To validate this hypothesis, we knocked down MYC and 
SUB1 separately in HepG2 and used qPCR to quantify gene expression changes. As expected, 
the expression of oncogenes (such as MCM7, BIRC5, and ATAD3A) are significantly reduced. 

Cell-type specific regulatory networks highlight extensive rewiring 
events during oncogenesis 

For the top-tier cell types with numerous TF ChIP-seq experiments, our resource contains 
cell-type specific regulatory networks, which enable direct comparisons with networks built from 
their paired normal cell types. To achieve the best pairing given the existing data, we construct a 
"composite normal" by reconciling multiple related normal cell types (see suppl.). Although the 
pairings are only approximate, many of them have previously been widely used in the literature 
(see suppl.). Furthermore, they leverage the extensive functional characterization assays in 
ENCODE to provide us with a unique opportunity to study the regulatory alterations in cancer on 
a large scale. 
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In particular, we measured the signed, fractional number of edge changing (which we call 
the "rewiring index") in "tumor-normal pairs" to evaluate how TF targets may change over the 
course of oncogenic transformation. In Fig. 5A, we ranked TFs according to the index used to 
quantify such changes. In leukemia, well-known oncogenes (such as MYC and NRF1) were 
among the top edge gainers, while the well-known tumor suppressor IKZF1 is the most 
significant edge loser (Fig. 5A). Mutations in IKZF1 serve as a hallmark of various forms of 
high-risk leukemia34,35. We observed a similar rewiring trend using distal, proximal, and 
combined networks (details in suppl.). This trend was also consistent across a number of cancers: 
highly rewired TFs (such as BHLHE40, JUND, and MYC) behaved similarly in lung, liver, and 
breast cancers (Fig. 5). 

In addition to direct TF-to-gene connections, we also measured rewiring using a more 
complex gene-community model. Here, the targets within the regulatory network were 
characterized in terms of heterogeneous modules (so called "gene communities"), which come 
from multiple genes. Instead of directly measuring the tumor-to-normal changes in a TF's targets, 
we measured the changes in its gene communities using a mixed-membership model (see suppl.). 
Similar patterns to the direct rewiring were observed using this model (Fig. 5A) and also in terms 
of a simpler co-binding approach (see suppl.). 

We found that the majority of rewiring events were associated with noticeable gene-
expression and chromatin-status changes, but not necessarily with mutation-induced motif loss or 
gain events (Fig. 5A). For example, JUND is a top gainer in K562. Many of its gained targets in 
tumor cells exhibit higher gene expression (as well as stronger active and weaker repressive 
histone modification mark signals), yet few of its binding sites are mutated or affected by 
structural variations. This is consistent with previous work that most non-coding risk variants are 
not well-explained by the current model36. With a few notable exceptions (see suppl.), we found 
a similar trend for the rewiring events associated with JUND in liver cancer and, largely, for 
other factors in a variety of cancers.  

 
Stemness measurement during oncogenic transformation through 
ENCODE regulatory networks  
 
A prevailing decades-old paradigm has held that at least a subpopulation of tumor cells has the 
ability to self-renew, differentiate, and regenerate in a manner similar to that in stem cells. 
Hence, we can use expression and network profiles to directly measure the degree to which an 
oncogenic transformation moves towards or away from a stem-cell-like state. We first collected 
xxx RNA-seq profiles from ENCODE and used RCA to project it to a lower dimension space. 
We found that a variety of different stem cells tend to cluster together. Tumor cells move toward 
these stem cells and away from the normal ones. We further extended our analysis from RNA-
seq to both proximal and distal networks and observed a consistent pattern.  
 
It is also well-known that dysregulation of key oncogene TFs are hallmarks of tumor 
progression. Key genes, such as MYC, initiate overexpression of other oncogenes in tumor cells. 
To test our hypotheses that tumor cells are more similar to stem cells, we used shRNA RNA-seq 
experiments to measure the perturbations introduced by oncogene TFs. Interestingly, by 
knocking down such TFs, the expression profiles revert slightly back toward normal state. 
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Step-wise prioritization scheme pinpoints deleterious SNVs in 
cancer and validations using luciferase assay 

In sum, our companion resource consists of the annotations in Figs. 1 and 6: (1) a BMR 
model with a matching procedure for the relevant functional genomics data and a list of regions 
with higher-than-expected mutational burdens in a diverse selection of cancers; (2) accurate and 
compactly defined enhancer and promotor annotation that are based on integrating many 
functional assays, including those STARR-seq experiments; (3) enhancer-target-gene linkages 
and extended gene neighborhoods that are obtained by integrating Hi-C and multi-histone-mark 
experiments; (4) tumor-normal differential expression, chromatin, and regulatory changes; (5) 
TF regulatory networks, both merged and cell-type specific, based on both distal and proximal 
regulation; (6) for each TF, its position in the network hierarchy and its rewiring status; and (7) 
an analogous but less-developed network for RBPs. Together, these resources are made available 
online through the ENCODE website as flat text files and code bundles (see suppl.).  

Collectively, these resources allow us to prioritize key genomic features associated with 
oncogenesis. Our prioritization scheme is schematized as a workflow shown in Fig. 6A. We first 
search for key regulators that are frequently rewired, located in network hubs, sit at the top of the 
network hierarchy, or significantly drive expression changes in cancer. We then prioritize 
functional elements associated with these regulators, are highly mutated in tumors, or undergo 
large changes in gene expression, TF binding, or chromatin status. Finally, on a single nucleotide 
level, by estimating their ability to disrupt or introduce specific binding sites, we pinpoint 
impactful SNVs. 

To demonstrate the utility of this ENCODE resource, we instantiated our workflow in a few 
select cancers and experimentally validated the results. In particular, as described above, we 
subjected some key regulators (such as MYC and SUB1) to knockdown experiments to validate 
their regulatory effects (Fig. 3B and 3D). We also identified several candidate enhancers in 
noncoding regions associated with breast cancer and validated their ability to influence 
transcription using luciferase assays in MCF-7. Finally, we selected key SNVs, based on 
mutation recurrence in breast-cancer cohorts and motif disruption scores within these enhancers 
that are important for controlling gene expression. Of the eight motif-disrupting SNVs that we 
tested, six exhibited consistent up- or down-regulation relative to the wild-type in multiple 
biological replicates.  

CDH26 (an intronic region in chromosome 20) serves as an in interesting example to 
illustrate the value of ENCODE data integration (Fig. 6C). The signal shapes for both histone 
modification and chromatin accessibility (DNase-seq) data indicate its active regulatory role as 
an enhancer in MCF-7. This was further validated using STARR-seq assays (Fig. 6C). Hi-C and 
ChIA-PET linkages indicated that the region is within a topologically associated domain (i.e., a 
“TAD”) and validated a regulatory connection to the breast-cancer-associated gene SYCP237. 
We further observed strong binding of many TFs in this region in MCF-7. Motif analysis 
predicts that the particular mutation from a breast cancer patient significantly disrupts the 
binding affinity of several TFs, such as FOSL2, in this region (Fig. 6C). Luciferase assays 
demonstrated that this mutation introduces a 3.6-fold reduction in expression relative to that in 
wild-type cells, thereby indicating a strong repressive effect on enhancer functionality. 
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Conclusion 
This study highlights the value of ENCODE data as an aid to interpreting cancer genomes. 

We present the EN-CODEC companion resource, which tailors the ENCODE resource to cancer, 
including accurate tissue-specific extended gene annotations and comprehensive regulatory 
networks extracted from thousands of ChIP-seq and eCLIP experiments. 

A key caveat related to part of our resource, such as rewiring in cell-type specific networks, 
is based on associating a particular cancer type with a composite normal. Such 
"correspondences" may be approximate. Another limitation is that most of the current release is 
performed over many cells. However, heterogeneity in tumor cells and their microenvironments 
(e.g., immune cell infiltrates, hormonal factors, normal cell populations, etc.) significantly affect 
tumor growth and development. We therefore believe that the development of single-cell 
sequencing technologies may better capture tumor biology at a higher resolution and provide 
new insights in cancer. 

Nevertheless, we feel that the EN-CODEC resources currently provide the most 
comprehensive view of oncogenic regulatory landscapes available. No other system has this 
scale of functional characterization data. Moreover, the heterogeneous nature of cancer means 
that even tumor cells from a given patient usually show distinct molecular, morphological, and 
genetic profiles38. It will be difficult to obtain a "perfect" match even from real tumor and normal 
tissues taken from a single patient. 

In general, our study underscores the value of large-scale data integration, and we note that 
expanding the scale of our approach in a number of dimensions is straightforward. For example, 
we observed increased accuracy in BMR estimation with additional genomic features; we expect 
that this accuracy will increase further still with more features. We successfully formed extended 
gene annotations and regulatory networks for model systems that are already replete with 
advanced functional assays like eCLIP and STARR-seq; our methods can be readily extended to 
further model systems when they are similarly assayed in the future. Given the rewiring 
formalism presented here, it should be straightforward to expand the analysis to a greater number 
of TFs. (In fact, we note that the re-wiring formalism actually provides a way of selecting 
candidate TFs and cell types) . We anticipate that this will provide a more accurate sense of 
which regulators are affected by extensive chromatin changes, and thus help prioritize research 
efforts in cancer. Finally, we demonstrated the utility of our resource for assisting in the 
detection of potential cancer drivers in limited publically available cohorts; we anticipate that 
linking it with the large cohorts currently being assembled (e.g., PCAWG, pancaner.info) will 
more fully utilize EN-CODEC and provide even greater value. 
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Figure Legend 
Figure 1 
Schematic of the EN-CODEC resource. Columns list cell types and rows list assays. Pink box: 
“Top-tier” cancer-associated resources in ENCODE highlighting the depth of the resource. 
Yellow box: Cell types with several assays in the main ENCODE Encyclopedia highlighting the 
breadth of the resource. Green box: Cell-type specific analyses based on deep annotations of 
top-tier cell lines. Blue box: Merged analyses based on wide-coverage of many cell types. The 
actual content of our resources (annotations, background mutation rate, networks) are shown in 
the dotted black box. 
 
Figure 2 
BMR modeling and mutation burden analysis. (A) Improvement of BMR estimation by 
accumulation of principal components of multiple genomic features. (B) In breast cancer, 
regression coefficients of remaining features after incorporating MCF-7 replication timing. (C) 
Schematic of extended gene definition. (D) Significantly burdened genes using noncoding 
elements (TSS), coding regions (CDS) and extended genes, alongside germline mutational status 
in liver cancer. (E) Expression of BCL6, which is only identified as recurrently mutated using 
extended genes, is correlated with patient survival. 
 
Figure 3 
Integration of ENCODE networks with expression profiles. (A) Heatmap of regulatory 
potentials of TFs/RBPs to drive tumor-to-normal expression changes; red and blue indicate up- 
and down- regulation. (B) Elevated MYC regulation activity is associated with reduced disease 
specific survival (DSS) in breast cancer (top); MYC knockdown in MCF-7 leads to significantly 
larger expression reduction in MYC target genes (bottom). (C) (i) MYC expression is more 
positively correlated with its target genes as compared to other TFs; (ii) MYC frequently form 
FFLs with NRF1, and these are mostly coherent; (iii) In the MYC-NRF1 FFLs, OR-gate logic 
predominates. (D) Elevated SUB1 regulation activity is associated with reduced overall survival 
(OS) in lung cancer (top); SUB1 knockdown in HepG2 leads to reduced target gene expressions 
(bottom). 
 
Figure 4 
Regulatory network hierarchies. TFs are organized into layers such that top layer TFs tend to 
regulate others, while bottom layer TFs tend to be regulated by others. (A) Generalized network: 
top layer TFs are enriched with cancer associated genes and demonstrate larger regulation 
potentials to drive tumor-to-normal gene expression changes. (B) Cell-type specific network 
using K562 and GM12878: top layer TFs significantly drive tumor-normal differential 
expression; bottom layer TFs are more often associated with burdened binding sites. 
  
Figure 5 
TF-Gene network rewiring. Green and red arrows designate edge gain and loss, respectively. 
(A) Rewiring index in a model for CML by direct edge counts using both proximal and distal 
networks (top) and by gene community analysis (bottom). TFs that gain edges tend to rewire 
away from stem cell-like state while TFs that lose edges tend to rewire toward stem cell-like 
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state. (B) Examples of network rewiring for specific TFs in multiple cancer types. (C) 
Conceptual schematic for rewiring towards or away from a stem cell-like state. (D) Genomic 
features associated with gained or lost edges. 
  
Figure 6 
Variant prioritization and validation. (A) Stepwise variant prioritization scheme utilizing EN-
CODEC resources. We prioritize large-scale regulators based on network and expression 
analysis; regulatory elements based on mutation burden; then single nucleotide by motif 
gain/loss and conservation score. (B) Small-scale validation of prioritized variants using 
luciferase reporter assay. (C) Multiscale integrative analysis on Sample 5 with assorted 
functional genomics data. We start from large-scale Hi-C linkages, and then zoom into element 
level by highlighting signal tracks of histone modification marks and DNase hypersensitivity 
together with various TF binding events. At the nucleotide level, FOSL2 motif is disrupted. 
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