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Abstract (Word count: 249) 
Multiple mutational processes fuel carcinogenesis. These processes leave 

characteristic signatures in cancer genomes. Deciphering the signatures of 

mutational processes operative in cancer can help elucidate the mechanisms 

underlying cancer initiation and development. This process involves 

decomposing cancer mutations by nucleotide context into a linear combination of 

mutational signatures. Previously published methods use forward selection or 

iterate all combinations by brute force (REF). Other approaches use linear 

programming (REF), which is not efficient in optimization. Here, we formulated 

the task as a likelihood based optimization problem with L1 regularization and 

developed a software tool, LIBRA. First, by explicitly formulating multinomial 

sampling into likelihood function and jointly optimizing a multinomial sampling 

process and signature fitting, LIBRA is aware of the sampling uncertainty. It is 

especially pivotal in high sampling variance settings, for example, when we only 

observe low mutation counts in whole exome sequencing (WES). Moreover, 

LIBRA uses L1 regularization to parsimoniously assign signatures to cancer 

genome mutation profiles, leading to sparse and more biologically interpretable 

solutions. Additionally, LIBRA integrates prior biological knowledge harmoniously 

into the solution by fine-tuning penalties on coefficients. Compared with hard 

thresholding signatures, our method leaves leeway for noise and rare signatures. 

Last, the model complexity is informed by the size and complexity of the data 

through empirical parameterizing based on performance. In sum, LIBRA fits a 

signature attribution jointly with a multinomial sampling process, while using 

regularization to promote sparsity and interpretability. Meanwhile, this framework 

Shantao� 5/6/2018 9:44 PM
Deleted: with an empirically derived 
stopping criterion 
Shantao� 5/6/2018 9:48 PM
Deleted: adding a
Shantao� 5/6/2018 9:48 PM
Deleted:  step
Shantao� 5/6/2018 9:44 PM
Deleted: uncertainty 
Shantao� 5/7/2018 12:10 AM
Deleted: mixture 
Shantao� 5/6/2018 9:49 PM
Deleted: critical 
Shantao� 5/6/2018 9:52 PM
Deleted: By 
Shantao� 5/6/2018 9:52 PM
Deleted: assigning 
Shantao� 5/6/2018 9:53 PM
Deleted: the solution becomes 
Shantao� 5/6/2018 9:55 PM
Deleted: sigLASSO 
Shantao� 5/6/2018 9:54 PM
Deleted: subsetting 
Shantao� 5/6/2018 9:55 PM
Deleted:  before fitting
Shantao� 5/6/2018 9:54 PM
Deleted: unknown 
Shantao� 5/7/2018 7:54 PM
Formatted: Highlight

Shantao� 5/6/2018 9:55 PM
Deleted: T
Shantao� 5/7/2018 7:54 PM
Deleted:  using cross-validation and 
subsampling
Shantao� 5/6/2018 9:55 PM
Deleted: sigLASSO 
Shantao� 5/6/2018 11:57 PM
Deleted: offers a framework that



empowers researchers to use and integrate their biological knowledge and 

expertise into the model. 

Introduction 
Mutagenesis is a fundamental process underlying cancer development. 

Examples include spontaneous deamination of cytosines, the formation of 

pyrimidine dimers by ultraviolet (UV) light, and the crosslinking of guanines by 

alkylating agents [REF]. Multiple endogenous and exogenous mutational 

processes drive cancer mutagenesis and leave distinct fingerprints [REF]. 

Notably, these processes have characteristic mutational nucleotide context 

biases. Mutation profiling of cancer samples at manifestation has revealed that 

mutations accumulate over a lifetime; this includes somatic alterations that occur 

both before cancer initiation and during cancer development. In a generative 

model, multiple latent processes generate mutations over time, drawing from 

their corresponding nucleotide context distributions (“mutation signature”). In 

cancer samples, mutations from various mutational processes are mixed and 

observable by sequencing.  

 

By applying unsupervised methods such as non-negative matrix factorization 

(NMF) and clustering to large-scale cancer studies, researchers have identified 

at least 30 mutational processes [REF]. Many processes have been recognized 

and linked with known etiologies, such as aging, smoking, or ApoBEC activity. 

Investigating the fundamental processes underlying mutagenesis can help 

elucidate cancer initiation and development.  

 

One major task in cancer research is to leverage signature studies on large-scale 

cancer cohorts and efficiently attribute active signatures to new cancer samples 

[REF]. Although we do not fully know the latent mutational processes in cancer 

samples, we can make reasonable and logical assumptions about the solutions 

of such studies. Here, we aimed to design a computational framework that could 

meet these expectations. For example, we believe a solution should be sparse 

as past studies indicate that not all signatures can be active in a single sample or 
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even a given cancer type. An apparent example is, we should not observe UV-

associated signatures in tissues that are not exposed to UV. Likewise, we only 

expect to observe activation-induced cytidine deaminase (AID) mutational 

processes, which are biologically involved in antibody diversification, in B cell 

lymphomas. We also prefer a sparser solution as it explains an observation in a 

simpler fashion, consistent with Occam’s principle. 

 

Previously published methods use forward selection with a post hoc empirical 

pruning to achieve sparsity or iterate all combinations by brute force (REF) with a 

pre-fixed, small number of signatures. Other approaches use linear programming 

(REF), which is not efficient in optimization. None of the approaches explicitly 

formulates the multinomial sampling process into the model.  Here, we 

formulated the task as a likelihood based optimization problem with L1 

regularization. First, by jointly fitting signatures with a multinomial sampling 

process, LIBRA is aware of the sampling uncertainty. This property is especially 

critical in high sampling variance settings, for example, when we only observe 

low mutation counts in whole exome sequencing (WES). Second, LIBRA 

penalizes the model complexity by regularization. The most straightforward way 

to do this would be to use the L0 norm (cardinality of active signatures), but this 

approach cannot be effectively optimized. Conversely, using the L2 norm 

flattened out at small values leads to many tiny, non-zero coefficients, which are 

hard to interpret biologically. LIBRA uses L1 norm, which promotes sparsity. 

Meanwhile, L1 norm is a convex map, thus allows efficient optimization. 

Additionally, this approach is able to harmoniously integrate prior biological 

knowledge into the solution by fine-tuning penalties on the coefficients. 

Compared with the current approach of hardly subsetting signatures before fitting, 

our soft thresholding method leaves leeway for noise and unidentified signatures. 

Finally, unlike previous methods, LIBRA is aware of data complexity such as 

mutational number and patterns in the observation. Our method is automatically 

parameterized empirically on performance, allowing data complexity to inform 
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model complexity. This approach promotes result reproducibility and fair 

comparison of datasets. 

 

 

Material and Methods 
Signature identification problem 
Mutational processes leave mutations in the genome with distinct nucleotide 

contexts. Specifically, we considered the mutant nucleotide context and looked 

one nucleotide ahead and behind. This divides mutations into 96 trinucleotide 

contexts. Each mutational process carries a unique signature, which is 

represented by a mutational trinucleotide context distribution (Fig. 1A). 

Thirty signatures were identified by NMF (with Frobenius norm penalty) and 

clustering from large-scale pan-cancer analysis (REF). Here, our objective was to 

leverage the pan-cancer analysis and decompose mutations from new samples 

into a linear combination of signatures. Mathematically, the problem is formulated 

as the following non-negative regression problem. It maintains the original 

Frobenius norm: 

 𝑊 = argmin
!∈!!

𝑀 − 𝑆𝑊 !
!  

The mutation matrix, M, contains mutations of each sample cataloged into 96 

trinucleotide contexts. S is a 96×30 signature matrix, containing the mutation 

probability in 96 trinucleotide contexts of the 30 signatures. W is the weights 

matrix, representing the contributions of 30 signatures in each sample. 

Sampling variance  

In practice, this problem is optimized on R+ instead of integers for efficiency and 

simplicity (REF), ignoring the discrete nature of mutation counts. This approach 

essentially transforms observed mutations into a multinomial probability 

distribution, making model insensitive to the total mutation count. Yet the total 

mutation count plays a critical role in inference. Assuming mutations are drawn 

from an underlying probability distribution (which is the mixture of several 
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mutational signatures), the mutations follow a multinomial distribution. The total 

mutation count is the sample size of the distribution, and affects the variance. 

For instance, 20 mutations of 96 categories give us very little confidence in 

inferring the underlying mutation distribution. If we observed 2,000 mutations, we 

would have much higher confidence. Methods undiscriminating these two 

scenarios are clearly defective. Here, we aim to use a likelihood-based approach 

to acknowledge the sampling variance and design a tool sensitive to the total 

mutation count. 

 
LIBRA model (I still need to fix the notations…want to check if the journal 
accept LaTeX or not first) 
We break data generation process into two parts: first, multiple mutational 

signatures mix together to form an underlying mutation distribution. Second, we 

observe a set of categorical data (mutations), which is a realization of the 

underlying mutation distribution. We use yi (i = 1…n) to denote the mutation 

count of the ith category. 𝑚 is the underlying mutation probability distribution with 

mj denote the probability of the jth category. 

𝐿 = 𝑃 𝑦 𝑆𝑊 = 𝑃 𝑦 𝑚 𝑃 𝑚 𝑆𝑊  

To promote sparsity and interpretability of the solution, LIBRA uses adds an L1 

norm regularizer on the weights (i.e., coefficients) of the signatures. LASSO is 

mathematically justified and can be computationally efficiently solved (REF). Now 

the log-likelihood looks like: 

 

 

 

Here, α = 1/σ2. We will infer α from the residual errors from linear regression. 𝜆 is 

parameterized empirically (see below). 𝑐  is a vector of 30 penalty weights (c_1, 
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c_2, …, c_k), each indicating whether a certain signature should be fully 

penalized (i.e., 1), partially penalized (e.g., 0.5), or not penalized (i.e., 0). We can 

also use C to perform adaptive LASSO where C is of the form 1/βOLS. The aim is 

to get less biased estimator by applying smaller penalties on larger values. This 

value should be tuned to reflect the level of confidence in prior knowledge. 

 

Optimizing LIBRA 

The log likelihood is concave in respect to both 𝑚 and . Hence the loss 

function, the negative log likelihood, is biconvex. We optimize the function by 

iteratively updating these two variables.  

 

Initialization:  

 

 

-step: 

 

 

𝑚 -step: 

 

 

To begin the iteration, we initialize 𝑚 using its maximum likelihood estimator and 

start with the -step. -step is a nonnegative linear LASSO regression that can 
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be efficiently solved by glmnet (REF). 𝜆 is parameterized empirically by 

repeatedly splitting the nucleotide contexts into training set and testing set. At 

every step, we split the data set into eight subsets.  Each subset contains two of 

every single nucleotide substitutions. We then hold off one subset as the testing 

dataset and only fit the signatures on the remaining ones. After circling all eight 

subsets and repeating the process for ten times, we used the largest 𝜆 (which 

leads to a sparser solution) that gives mean square error (MSE) within one 

standard deviations (SD) of the minimum.  

 

Then we use the LASSO error variance estimator to estimate \alpha (REF). We 

solve the  with a Lagrange multiplier to maintain the linear summation 

constrain . The nonnegative constrain of m_i is satisfied in only retain a 

nonnegative root of the solution (see Appendix?). This process is iterated until 

convergence.  

 

The key step is the 𝑚 –step. In this step, we try to estimate 𝑚 that optimizes the 

multinomial likelihood while is not too far away from the fitted \hat{m}, as 

measured by the L2 norm. The trade-off between the multinomial likelihood and 

the L2 loss reflects the sampling error. The sampling size (sum of m_i), 

thegoodness of signature fit (as reflected in \alpha) and the overall shapes of Y 

and \hat{m} all controls this trade-off tension. 
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