Gerstein Lab slides for 2018 HGSVC meeting

M Gerstein F Navarro, X Kong S Kumar, S Li

other referenced contributors: A Abyzov, A Harmanci, AE Urban, C Lee, DR Kim, DW Radke, E Khurana, H Lam, J Bedford, J Du, J Korbel, M Snyder, X Mu, Y Fu, Y Zhang, Z Liu, Z Zhang

Overview

- 1. Past lab work on SVs as context
 - a. Breakpoints
 - b. Functional characterization
- 2. Relevance to future large-scale short-read sequencing
- 3. Current work on rapid, "generalized" breakpoint identifier
- 4. Current work on SV functional impact score

Previous work on finding breakpoints

BreakSeq

(Lam et al; '09; Nature Biotech; Abyzov et al; '15;

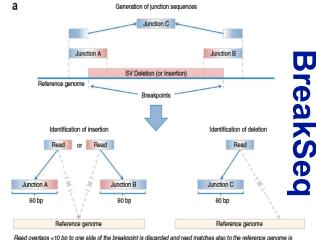
Nature Comm)

-Fast SV detection by alignment against a breakpoint library

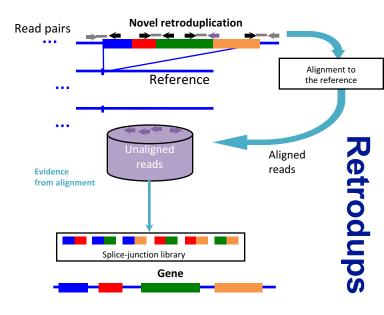
• AGE (Abyzov & Gerstein; '11; Bioinfo)

-Optimal alignment over breakpoints

• SRiC (Zhang et al; '11; BMC Genomics)

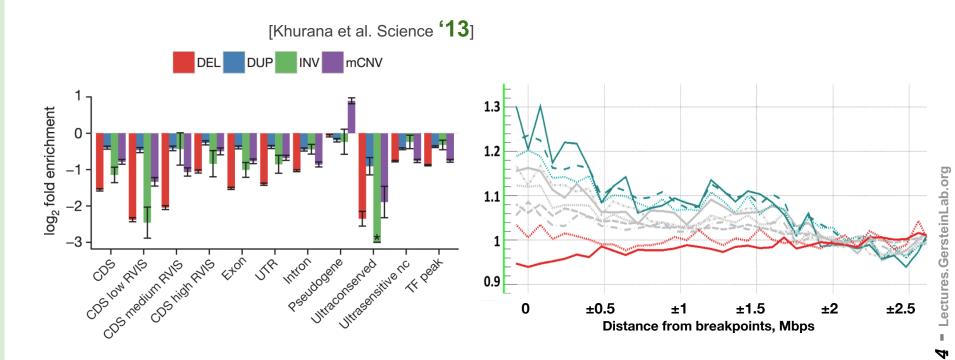

-Split read alignment, parameterized by simulation


Retrodups


(Abyzov at al;'13; Genome Research; Zang at al; '17

Plos CompBio)

-Finding retroduplications & processed pseudogenes via alignment to junction lib.



Previous work on functional characterization of SVs

- Overlaps enrichment of SVs [Sudmant et al. Nature '15. chaisson et al. submitted]
 - against functional annotations (CDS, TFBS, etc.)
 - using an appropriate null
- Mechanism classification of SV breakpoints

-NAHR, NHR, etc. [Lam et al. Nat. Biotech. '10; Abyzov et al. Nat Commum '15]

• Patterns of epigenetic marks at SV breakpoints

Relevance to large-scale short read sequencing

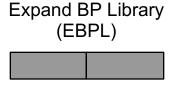
- NHGRI GSP (CCDG+CMG) & TopMed will sequence 1000s of genomes w. short reads
- •Useful to run these against a developed breakpoint library to genotype more SVs
- •Useful to characterize the SVs in terms of functional impact to find those most important to disease -particularly for CMG

AIM A - Rapid Breakpoint Identification

Break point Library / Extended Break Point Library (1, 2)

- Many current and future resources are using short sequencing data
 - We are delopping rapid SV identification pipelines to characterize these samples
 - Genotype previously identified SVs
 - Detect new SVs

• Create an integrated library of Break Points in the Human Genome


- Sources of Break Points
 - BreakSeq
 - Population-wise calls (i.e. 1000G Phase1-3)
 - Break points based on Long Reads
 - HGSVC (3 Trios)
 - PacBio
 - Nanopore
 - GiaB
 - NA12878 + Family
 - Mobile Element Polymorphisms (MEI)
 - Processed Pseudogenes
- Machine Learning to detect Breakpoint (abnormal reads)
- Extend & Generalize known Breakpoints to allow uncataloged gaps near known BPs and other seq.

Build BP Library

6

AIM A - Rapid Breakpoint Identification

Indexing BPs and EBPs and "Fish" reads from FASTq pool (3, 4)

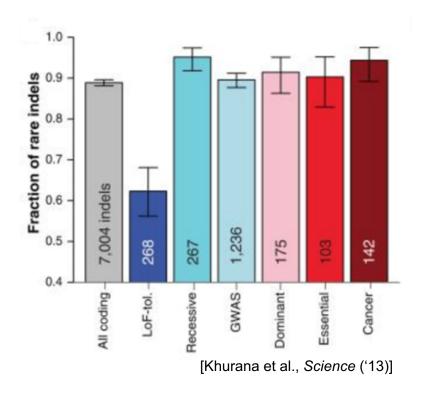
- Exhaustively index the human genome and BP/EBPs sequences
 - Compare and exclude BP/EBPs indexes already represented in the Ref Genome.
 - Hash from unique BP/EBPs sequences
 - Alternatively, we could create k-mers from sequences
 - Multiple and Incremental BP library indexes releases
- Pool FastQ files and quickly run through the BP hash
 - Selecting only reads that are evidence for SVs

7 = Lectures.GersteinLab.org

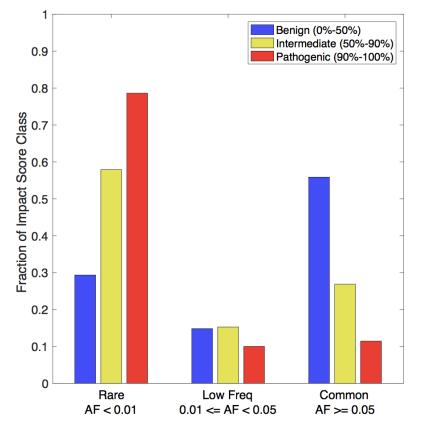
Efficiently Map reads to iEBPL

Index EBPL

AIM A - Rapid Breakpoint Identification

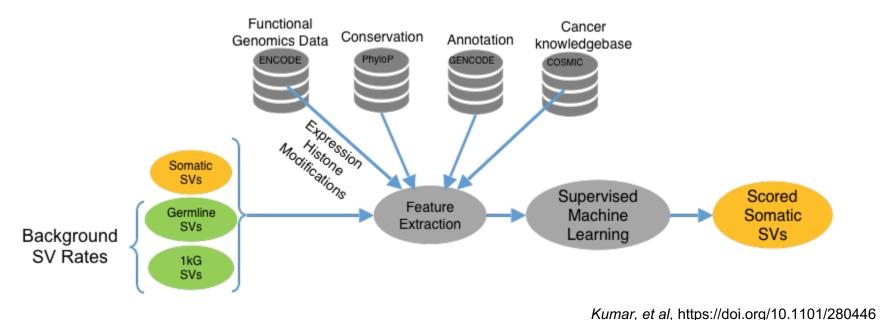

Software engineer features

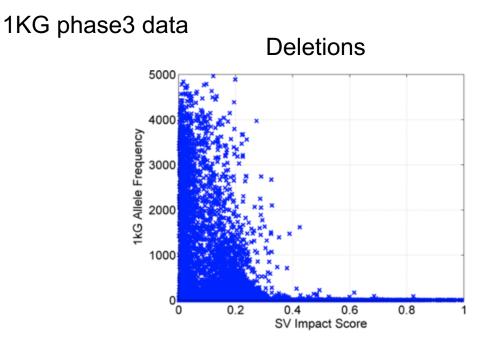
- At scale / Fast
 - Able to quickly genotype/call SVs from thousands of genomes
- Cloud Aware (Docker, Spark, Hive)
- Biased (sensitive) calling in fragile(?) regions of the genome
 - Make up breakpoints
 - Homolog regions prone to recomb
 - TEs facilitating recomb

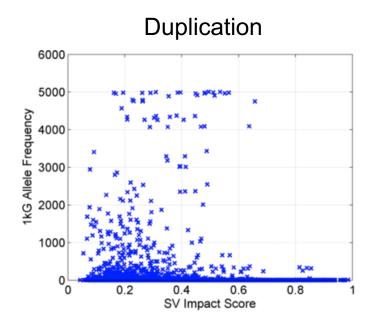


5

Prioritizing SV by functional impact


Fraction of Rare indels in coding-gene categories in 7 prostate cancer samples.


Ganel, et al. https://www.biorxiv.org/content/early/2016/09/06/073833


Prioritization of SVs

- How do we prioritize SVs (somatic & germline)?
- SVs lengths vary widely: 50 base pairs 100 megabase pairs
- Machine learning based scoring (Random Forest)

Prioritization of SVs

1KG + Somatic

	Somatic	1kG
Somatic	566	113
1kG	243	458

	Somatic	1kG
Somatic	644	356
1kG	350	650

Overview

- 1. Past lab work on SVs as context
 - a. Breakpoints
 - b. Functional characterization
- 2. Relevance to future large-scale short-read sequencing
- 3. Current work on rapid, "generalized" breakpoint identifier
- 4. Current work on SV functional impact score

Gerstein Lab slides for 2018 HGSVC meeting

M Gerstein F Navarro, X Kong S Kumar, S Li

other referenced contributors: A Abyzov, A Harmanci, AE Urban, C Lee, DR Kim, DW Radke, E Khurana, H Lam, J Bedford, J Du, J Korbel, M Snyder, X Mu, Y Fu, Y Zhang, Z Liu, Z Zhang