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1 Defining the RBP regulome using eCLIP data

1.1 Functional Annotation of RBPs

eCLIP is an enhanced version of the crosslinking and immunoprecipitation (CLIP) assay,
and is used to identify the binding sites of RNA binding proteins (RBPs). We collected all
available eCLIP experiments from the ENCODE data portal (encodeprojects.org). There were
178 experiments from K562 and 140 experiments from HepG2, totaling 318 eCLIP experiments
from all available ENCODE cell lines (released and processed by July 2017).

These experiments targeted 112 unique RBP profiles. eCLIP data was processed by
ENCODE 3 uniform data processing pipeline. The eCLIP peak calling method and processing
pipeline were developed by Gene Yeo’s lab at the University of California, San Diego
(https://github.com/YeoLab/clipper, CLIP-seq cluster-identification algorithm[1]). For each
peak, the enrichment significance was calculated against a paired input, and we filtered those
peaks with a flag of 1000, which are considered to be the statistically significant peaks.

We summarized the list of available RBPs in Table S1 (in separate data package) and
provided detailed annotation as we can. We also summarized different categories of RBPs in
Figure S 1.

Figure S 1 Annotation summary of RBPs
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Below is a table categorizing each RBP by their function, many of which are splicing related.
Table XXX. Specific RBPs and their functions.


https://github.com/YeoLab/clipper

Category RBPs

IDDX3X, DDX59, DGCR8, DROSHA, EWSR1, HNRNPAL, HNRNPC,
HNRNPK, HNRNPM, HNRNPU, HNRNPUL1, IGF2BP3, ILF3,
KHDRBS1, NONO, NPM1, PCBP2, PRPF8, PTBP1, RBFOX2,
RBM15, RBM22, SAFB2, SF3A3, SRSF7, SRSFS, TAF15, TARDBP,
TNRC6A, U2AF1, U2AF2, AARS, AUH, CPSF6, CSTF2, CSTF2T,
RNA Binding IDDX24, DDX42, DDX55, DDX6, DHX30, DKC1, EIFAG2, FAM120A,
FASTKD2, FMR1, FUBP3, FXR1, FXR2, GEMINS, GRSF1, IGF2BP1,
GF2BP2, KHSRP, LARP4, LARP7, LIN28B, LSM11, MTPAP, NOL12,
INSUN2, PPIL4, PUM2, PUS1, QKI, RBM27, RPS11, RPS5, SERBP1,
5F384, SFPQ, SLBP, SLTM, SMNDC1, SRSF1, SUGP2, SUPV3L1,
[TIA1, TRAZA, TROVE2, UPF1, XPOS, ZRANB2

AARS, NSUN2, XPOS

tRNA Binding

tRNA Splicing Ll

IGTF2F1, HNRNPAL, HNRNPC, HNRNPK, HNRNPM, HNRNPU,
HNRNPUL1, NONO, PCBP2, PRPF8, PTBP1, RBM15, RBM22,
Pre mRNA Splicing via Spliceosome [SF3A3, SRSF7, SRSF9, U2AF1, U2AF2, BUD13, CDC40, CSTF2,
EFTUD2, GEMINS, GPKOW, NCBP2, SF3B1, SF3B4, SRSF1, TRAZA

RNA Splicing Regulation RBFOX2

mRNA Polyadenylation CPSF6, CSTF2, GRSF1, MTPAP

FMR1, KHSRP, PUM2, SERBP1
Regulation of mRNA Stability

DKC1, RPS11, RPSS, SBDS, XRN2
rRNA Processing ! ! ! !

RPS11, RPS5
Structural Constituent of Ribosome

DKC1, PUS1

RNA Editing

We also include a downloadable link on our website of eCLIP data annotated by each RBPs
specific function, which can easily be filtered for splicing related RBPs, and found at
http://radar.gersteinlab.org/splicing.zip.

1.2 Functional Annotation of RBP binding sites

From the raw peaks from ENCODE, we further removed the ones overlapped with either
blacklist regions from ENCODE (https://www.encodeproject.org/annotations/ENCSR636HFF/,
select hgl9) or gap regions like Telomere and Centromere from ucsc
(ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/gap.txt.gz). In total, over 99% of the
binding locations are preserved after blacklist removal.

We further tried to annotate these peak regions by dividing them into different annotation
categories from Gencode V19. Specifically, we extracted 7 different annotation categories,
including coding exons, 3’UTR, 5’UTR, 3’UTR extended (1000bp downstream), 5’UTR
extended (1000bp upstream), nearby intron (up to 100bp to the exon/intron junctions), and deep
introns. For any region that might overlap two annotation categories, we only preserve one in the
order mentioned above. The raw number of nucleotides in each annotation category is given in
Table S2.

Table S2. RBP binding peaks within annotated regions


https://www.encodeproject.org/annotations/ENCSR636HFF/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/gap.txt.gz

Coding Exon 156069
3’ UTR 65447

5° UTR 28339

3’ UTR extended 39985
5> UTR extended 45036
Nearby Intron 102892
Deep Intron 312424

1.3 Inference of cross-population conservation of RBP binding sites

We tried to infer the cross-population conservation level of the RBP binding sites from
polymorphism data in large sequencing cohorts like the 1,000 Genomes Project. Specifically, for
each RBP we divided all the binding peaks into coding and noncoding regions separately and
then calculated the number of common (n.) and rare variants (n,) in these two categories. Then a
one-sided binomial test of n., n,, vs. the genome background f was calculated to evaluate the
enrichment of rare variants.

However, in our analysis we found that GC content might be a potential bias in such
calculation. As in Figure S 2, the background rare variant percentage f demonstrates noticeable
changes with GC percentage. One possible explanation is that GC content usually affects read
coverage in high-throughput sequencing experiments, which is a sensitive parameter in the
downstream variant calling process. Therefore, to remove such bias, we calculated the GC
adjusted background rare variant percentage by dividing the coding/noncoding regions into
500bp bins, and grouping these bins at GC resolution of 0.02. For each RBP, when calculating
the background, we only select the bins with closest GC percentage. The comparison of
foreground and background rare variant percentage for every RBP in coding and noncoding
regions are given in Figure S 3.

Figure S 2. Background Rare variant percentage vs. GC
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For some RBPs, if there are no coding/noncoding rare/common variants in their binding
sites, the f value for binomial test will be missing. We provided the full raw calculation of GC
corrected rare variant enrichment for each RBP in Table S3.

Figure S 3. Rare variant enrichment after GC correction in coding and noncoding regions respectively. The dashed
blue/red line is the genome average without GC correction for coding and noncoding regions, and the solid blue/red
line is the background after GC correction. Blue/Red star on top of each bar indicate significantly enriched in rare
variants after GC correction in one-sided binominal test against the coding/noncoding average.
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Inference of cross-species conservation of RBP binding sites

PhastCons conservation scores were downloaded from UCSC genome browser. For each
annotation category ( coding exons, 3’UTR, 5’UTR, nearby introns), we separate the annotation
into regions covered by RBP peak and those not covered. After deduplication and merging of the
bed files, we then -calculated the average PhastCons score in each region using
bigWigAverageOverBed (downloaded from UCSC genome browser). Then the boxplots of peak
vs. nonpeak regions were given in Figure S 2 in the main manuscript.

In addition the GERP score sigmoid transformation is given as the equation below:

1
1+e—40(GERP—1.85) (5)

SGERP = 0.62 X

1.4 Inference of structure conservations

We downloaded the Evofold bed files for hg19 from UCSC Genome Browser and used it as
a feature for our analysis. Specifically, we found that after requiring that any RBP peaks should
also be with conserved structure in Evofold, these binding sites significantly increases its
population-level conservations (as shown in Figure S 4).



Figure S 4. Increased cross-population conservation after added Evofold feature to RBP peaks
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2 RBP binding network analysis

We also investigated the RBP binding events interactions from two aspects: co-binding
analysis and RBP binding hub analysis. Details are given in the following sections.

2.1 RBP co-binding analysis

We defined the co-binding percent of each RBP pair by the ratio of overlapping nucleotides
over the union of nucleotides in their binding peaks. Then we constructed a co-binding
percentage matrix for all RBPs to measure their co-binding status. Then, we performed a
hierarchical clustering of this matrix by the “pvrect” package in R with an alpha value of 0.02 to
identify the co-binding pairs. The resulting clusters of RBPs with significance were found to
follow patterns of functional co-binding found in literature and results are given in Figure S 5.



Figure S 5. Co-binding analysis of RBPs

| ‘- T o [ ! . I
ﬁﬁm‘ﬁ; yeo5Bzebs EEazl:sa §.8E9 ga'IJ; ua;gmmiégl ; Sornzil
Ei E;E FLH TR £ BERE ggk an’gggaggaﬂﬁgg’ i

P U2 sARNP
licing Regulator HNRNPU - - Splicing
-_ | branch point -
HNRNPUL1
on— S i I TR o
Ribosome Interaction
. - C——)
605 Ribosome ’ I L I g
- Splicing R Cleavage csTEaT

Using a significance level threshold of 0.05, we found several pairs of well-known
regulatory partners with different binding preferences. For example, the famous heterogeneous
nuclear ribonucleoprotein (hnRNP) family protein HNRNPU and its paralog HNRNPUL1 were
found to bind together in the nearby intron region, probably regulating the pre-mRNA splicing
process[2]. F3A3 and SF3B4, which encode two units of splicing factor 3a protein, were also
found to co-bind in the nearby intron region in our data[3, 4]. The SR family protein U2AF1 and
U2AF2 are found to co-bind near the intron/exon junctions to jointly control splicing events[4,
5]. Two cleavage stimulation factor (CSTF) complex proteins, CSTF2 and CSTF2T, were found
to bind near the 3° UTR, and were reported to be associated with 3' end cleavage and
polyadenylation of pre-mRNAs. Consistent with previous report, three functional similar genes
FMR1, FXR1, and FXR2 were found to co-express, and shuttle between the nucleus and
cytoplasm and associate with polyribosomes, predominantly with the 60S ribosomal subunit[6,
7]. The discovery of the co-binding of such functional relevant proteins at various regions
indicates the high quality of our regulome.

2.2  RBP network hub analysis

We also inferred the RBP binding hubs and hypothesized that they are under higher negative
selection since once mutated, there is a higher chance to alter RBP regulations. Specifically, we
calculated the number of RBPs that bind to each nucleotide and the distribution is given in
Figure S 6. As expected, due to the specificity of RBP binding events, the majority (over 60%) of
the RBP regulome was surrounded by only one RBP.
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Figure S 6. Distribution of binding RBP numbers.
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We then calculated the enrichment of rare variants for regions with at least 1, 2, 3, ..., 112

RBPs. We corrected the GC bias in a similar way to section 1.3. As expected, as the number of
RBPs increased, we observed an obvious trend of enrichment of rare variants (Figure S 7 and
Figure S 8 ). For instance, in the noncoding region, around 5% of the regulome is surrounded
with at least 5 RBPs, and they exhibited 3% more rare variants compared to the whole genome.
For regions that are surrounded by at least 10 RBPs, which are around 1% of the whole
regulome, we observed up to 12% more rare variants (Figure S 8). This observation significantly
supports our hypothesis that the RNA regulome hubs are under stronger purifying selection, and
should be given higher priority when evaluating the functional impacts of mutations.

Figure S 7. Adjusted rare variant percentage vs. number of RBPs binding in coding regions. Regions with top 5% and

1% of RBPs binding are defined as the hot and ultra-hot regions.

Rare DAF Ratio

1.125-

1.100 -

1.075-

1.050 -

1.025 -

1.000 -

>1

>2

>3

5% 1%

>4 >5 >6 >7 >8 >9 >l10
Hotness



Figure S 8. Adjusted rare variant percentage vs. number of RBPs binding in noncoding regions. Regions with top 5%

and 1% of RBPs binding are defined as the hot and ultra-hot regions.
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3 Motif analysis

In our RADAR framework, we incorporated two sources of motifs: (1) motifs from RNA
Bind-n-Seq experiments[8]; (2) de novo discoveries from RBP peaks by DREME [9]. For each
variant, we used the changes of PWM scores to quantify the binding affinity alterations. If one
variant breaks more than one PWM, RADAR will choose the maximum score for it.

3.1 Motifs from RNA Bind-n-Seq experiments

It has been reported that many of the RBPs’ binding events in vivo can be captured by
binding preferences in vitro. Hence, we utilized an in vitro RNA binding assay, RNA Bind-N-
Seq[8] to characterize sequence and structural specificities of RBPs. We used RBNS motifs from
78 human RBPs to prioritize germline and somatic variants that could potentially disrupt an
RNA-binding domain.

Briefly, we called on RBNS motifs based on an enrichment Z-score cutoff of 3. Some RBPs
had up to four motifs, which ranged from 5-mer to 9-mers. In total, there are 17 RBPs
overlapped with eCLIP RBPs, which are listed in Table S4 below. We treated all RBNS motifs
independently from eCLIP-based de novo motifs.

Table S4 List of RBPs that have both eCLIP and Bind-n-Seq experiments

RBP Name RBNS motif
1 EIF4G2 " 20 20
£10 U F10 gro

10




2 EWSR1 20
3 FUBP3 20
2o
0.0
5
4 HNRNPC
5 HNRNPK
6 IGF2BP1
7 IGF2BP2 &
210 c
8 KHSRP 2%“ H “ 20
210 A 210 U
0.0 0.0
5 5
9 PCBP2 20 20
”1& 210 U 210
00 Qg.c.. S 0.0 0.0
T 5 5
10 RBFOX2
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11 RBM22
12 SFPQ

13 SRSF9
14 TAF15
15 TARDBP
16 TIAL

17 TRA2A

3.2 Motifs from de novo discovery

We collected the binding peaks for each RBP after blacklist removal. For any peak that is
less than 150 bp in length, we extended it to 150 bp from both sides. For those longer than
150bp, we kept the original peak length. We then extracted sequence information from hg19 and
performed de novo motif discovery DREME[9] with default settings (Version 4.12.0,
http://meme-suite.org/tools/dreme).

12
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3.3 Motif disruption calculation using MotifTools

We used D-score defined in MotifTools (https://github.com/hoondy/MotifTools) to evaluate
the binding affinity alterations introduced by a variant. We only considered positive D-scores,
which denote a variant that decreases the likelihood that a protein will bind the motif (motif-
break). For variants that affect multiple RBP binding profiles, we used the max score over all D-
SCOres.

4 RBP-gene association by RBP KD experiments

RNA-seq expression profiling before and after shRNA mediated RBP depletion from
ENCODE can help infer the gene expression changes introduced by RBP knockdown. Variants
with disruptive effect on RBP binding may affect or even completely remove RBP binding and
hence affect gene expressions in a similar way. A schematic of our procedure is given in Figure
S9.

Specifically, we first collected 472 shRNA RNA-seq experiments (Table S5) and extracted
the differentially expressed genes (Table S6) from such experiments. For example, in Figure S 9,
we define the G1-RBP2 association from the RBP knockdown experiment. Then within the
extended G1 region, we extracted all motif breaking variant effect for all possible RBPs (within
peaks). If any variant breaks RBPs that has an association with G1, we give it an extra credit in
our baseline score.

Figure S 9. Schematic of highlighting variants that breaks gene-RBP association from RBP knockdown experiments.

[ Transcript 1 |

[ Transcript 2 |

Transcripts [ Transcript 3

Gene I G1 |
. 1kb 1kb
Extension | —
_mep1 (J\;zl:'
o
—| |—

“ w1 > G1 no differential expression after RBP1 KD
72  G1 with differential expression after RBP1 KD

Motif breaking but not highlighting

Y

Motif breaking and highlighting since G1-RBP2 association

13


https://github.com/hoondy/MotifTools)

5. Highlighting key regulators through expression
profiles

In order to detect the key RBP regulators that drive the disease-specific gene expression
patterns, we constructed RBP regulatory networks and incorporated gene expression profiles to
find RBPs that are associated with expression changes in patient cohorts.

Specifically, we first downloaded the full set of TCGA expression profiles for 24 cancer
types. In order to get a robust differential expression analysis, we excluded 6 cancer types that
have less than 10 normal expression profiles. For each cancer type, both tumor and normal
expression were given to DESeq2[10] to identify tumor-specific gene differential expression
status.

Then we tried to set up RBP regulatory network directly from the RBP peaks. We used the
full set of protein coding genes in Gencode v19, and then extracted their 3’UTR regions. For any
protein coding gene, a RBP is supposed to regulate this gene if this RBP has a binding peak
intersecting the 3’UTR region.

We inferred the regulation power of each RBP by through a regression approach of the
above differential expression status and RBP network connectivity. We used the absolute value
of regression coefficient as the aggregated RBP regulation power. The full table of regulation
powers in all 19 cancer types were given in Table S7. Interestingly, we found that for the RBPs
with larger regulation power are those tends to be known to associated with cancer, as listed in
Table S8.

For RBPs with high regulation powers, we also performed a patient-wise regulation power
inference, where the differential expression is determined as the individual expression fold
change. Then, we tried to use such individual regulatory power to predict disease prognosis. We
downloaded the patient survival data from TCGA and performed survival analysis using the
survival package in R (version 2.4.1-3).

6. Applying RADAR to pathological germline variants

HGMD variants (version 2015) were used in our analysis. For Figure 5, the signal tracks for
the eCLIP experiments were directly downloaded from ENCODE. Funseq2 and CADD scores
were directly calculated from their website. The list of highly prioritized variants discovered only
by RADAR were provided in Table S9. The comparison of RADAR baseline scores of HGMD
vs 1kg variants were given in Figure S 10. Since the majority of 1kG variants are located far
away from the exon regions, we further extracted variants that are only inside the RBP regulome
for both HGMD and 1kG variants and compared their RADAR baseline scores.

14



Figure S 10. Baseline RADAR scores of HGMD vs. all 1kG variants
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7. Applying RADAR to somatic variants in cancer

The breast, liver, lung, and prostate cancer variants were downloaded from the paper by
Alexandrov et al[11]. We first calculated the baseline RADAR scores on these four cancer types.
We found that in most cancer types, COSMIC genes and recurrent RBP peaks are associated
with more high impact variants. Results are shown in Figure S 11.

Figure S 11. Baseline RADAR score in somatic variants
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We also used expression profiles were downloaded from TCGA and the mutational variants
as disease-specific features to prioritize breast cancer variants. Several more interesting examples

from breast cancer were given in the following figures. We have listed the somatic variants that
are only highlighted by RADAR in Table S10 and Table S11.

Figure S 12. Highlighted breast cancer somatic variants in 3'UTR region
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8. Comparison of RADAR to other methods

Below we show the comparison of RADAR to FunSeg2 and also describe the relevance of each feature to
variant prioritization on the RBP regulome.

. L Conservation of post-transcriptional
Cross-Population Conservation in eCLIP N P P

regulome
Cross-Species Conservation y Importa nt‘ for considering cross-species
conservation.
Structural Conservation (Evofold) N RNA secondary structure
RBP Binding Hubs N Binding hubs are more conserved
G i h d b
RBP-gene associations N eng .e’(prE?S'o” changes cause ¥
motif disruption
Motif Disruption N Disrupts binding of RBPs
Tissue Specific Features Same as FunSeq2? Relevance to RADAR
RBP Regulatory Potential N RBPs regulate gene networks
Differential Expression of Key Genes N DE is a hallmark of regulation
Mutational Recurrence N Recurrence in specific tissues

demonstrate unique hotspots

9. Using cell type specific information as validation

We used HepG2 and K562 specific data to build the RADAR model independently. Below are
two examples illustrating the effect of cell type specific data on the RADAR score.

Example 1: Comparison of full RADAR scores on variants in common and differentially expressed
genes in HepG2 and K562.

Here we show that somatic Liver cancer variants \cite{23945592} falling in genes with both high
expression in K562 and HepG2 (top 10% expression from total RNA-seq) demonstrate comparable scores
when using matched cell type scoring schemes. Those variants falling in genes with high expression in
HepG2 (top 10%) but low in K562 (FPKM<1) demonstrate scores that are much lower when using the
K562 scoring scheme.
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Example 2: scoring on somatic variants from tumor-specific and pancan driver genes

We compare the HepG2 and K562 scores for a set of Liver cancer variants available publicly from the
Alexandrov et al paper \cite{23945592}.

Here we observed that variants that fall in CTNNB1, a well known cancer driver gene unique to liver
cancer are scored much higher when using the HepG2 version of the score compared to the K562 version.
As a control, we look at the scores of variants falling in TP53, a well known cancer driver, but not
specific to liver cancer. The results are shown in Figure R.XXX below.

Figure R.XXX. Difference in RADAR cell type specific score (HepG2 and K562) when scoring liver
cancer variants in CTNNBL1, a known driver gene unique to liver cancer, and in TP53, considered to be a
driver in multiple cancer types.
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10. Downloading and Using the RADAR software

We have included a downloadable ZIP file at radar.gersteinlab.org which contains the RADAR source
code (radar.py) and a directory containing all data files needed by RADAR (resources/). This website also
provides software documentation, usage information, an example. We also provided a web version of the
software that can be used to run RADAR directly through the site: simply upload a variant file, select any
tissue-specific scores, and provide a cancer type and the website will print the a list of scored variants.

RADAR can be run from the command line after unzipping radar.zip and downloading the necessary
dependencies (Python, BEDTools and pybedtools). Users can run the software by

python radar.py -b [BED file containing variants to be scored] -o
[output directory] -c [cancer type] [-kg -mr -rp]

After a few minutes (RADAR takes around 2-3 minutes to score ~1 million variants), there will be a file
in the provided output directory called [input BED file name].radar_out.bed with all of the requested
scores. -kg, -mr and -rp are optional parameters that are used to indicate whether these tissue-specific
scores (key genes, mutation recurrence, and RBP regulation power) are requested. Cancer type
information is required if any tissue-specific scores are requested.

The RADAR source code can be found at https://github.com/gersteinlab/RADAR.
Here is an step-by-step walkthrough of using RADAR to score Alexandrov breast cancer variants.

First, we must download the required software: BEDTools (which can be found at
http://bedtools.readthedocs.io/en/latest/content/installation.html), Python (which can be found at
https://www.python.org/downloads/, our tests were conducted with version 2.7), and pybedtools
(http://daler.github.io/pybedtools/main.html). Follow the installation instructions for each one. You can
confirm you have successfully installed each piece of software by attempting to run “bedtools™ on the
command line, which should print out documentation (screenshot below is curtailed).

[yfos@farnaml ~]$ bedtools
bedtools is a powerful toolset for genome arithmetic.

Version: v2.27.1

About: developed in the quinlanlab.org and by many contributors worldwide.
Docs: http://bedtools. readthedocs.io/

Code: https://github.com/arq5x/bedtools2

Mail: https://groups.google.com/forum/#!forum/bedtools—-discuss

Usage: bedtools <subcommand> [options]

User can confirm that they have Python and pybedtools installed by running the Python shell using the
“python™ command and attempting to import the pybedtools module with “import pybedtools’. If there are
no errors, the prerequisite software was installed successfully. Note the Python version number on the
first line after running the “python™ command.
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[yf95@farnaml ~]$ python
Python 2.7.13 (default, Jun 1 2017, 16:52:45)

[GCC 5.4.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.

>>> import pybedtools
>>>

Next, download the RADAR package in ZIP format from the RADAR website Downloads page
(http://radar.gersteinlab.org/#!page-downloads)

Download RADAR and all necessary resource files in a ZIP format here.
Prerequisite Software

The following software are required to run RADAR.

1) BEDTools

2) Python (tested on Python 2.7.11)

3) pybedtools

Unzip the file at the command line. The resulting radar/ directory contains a .py file (the executable script)
and a resources/ directory that contains all data files needed by the RADAR script to produce scores.

20


http://radar.gersteinlab.org/#!page-downloads

[yf95@farnaml examplel$ unzip radar.zip
Archive: radar.zip

creating:
inflating:

creating:
inflating:
inflating:

creating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:
inflating:

radar/
radar/radar.py
radar/resources/

radar/resources/all_RBP_peaks_unmerged_labeled_sorted.bed

radar/resources/significant_peaks
radar/resources/main_scores/
radar/resources/main_scores/chrl3_scored
radar/resources/main_scores/chr20_scored
radar/resources/main_scores/chr22_scored
radar/resources/main_scores/chr21_scored
radar/resources/main_scores/chrl4_scored
radar/resources/main_scores/chr9_scored
radar/resources/main_scores/chrll_scored
radar/resources/main_scores/chr4_scored
radar/resources/main_scores/chr8_scored
radar/resources/main_scores/chrl6_scored
radar/resources/main_scores/chrY_scored
radar/resources/main_scores/chrl8_scored
radar/resources/main_scores/chr5_scored
radar/resources/main_scores/chr7_scored
radar/resources/main_scores/chrl9_scored
radar/resources/main_scores/chr2_scored
radar/resources/main_scores/chrl5_scored
radar/resources/main_scores/chrl2_scored
radar/resources/main_scores/chré_scored
radar/resources/main_scores/chrl7_scored
radar/resources/main_scores/chrX_scored
radar/resources/main_scores/chrl@_scored
radar/resources/main_scores/chr3_scored
radar/resources/main_scores/chrl_scored
radar/resources/regulator_pval. txt
radar/resources/rbp_peak_significance

[yfo5@farnaml examplel$ 1s

radar radar.zip

Here is a head of the example input file we will be using (publicly accessible data from Alexandrov et al
breast  cancer  variants). This  file (called
http://radar.gersteinlab.org/#!page-example.

[yf95@farnaml example]$ head Breast.bed

chrl 13506 13507
chrl 14841 14842
chrl 16995 16996
chrl 17764 17765
chrl 17764 17765
chrl 28587 28588
chrl 30527 30528
chrl 61396 61397
chrl 69522 69523
chrl 83442 83443

PD5935a
PD7201a
PD5935a
PD7216a
PD4962a
PD5935a
PD4967a

oo nooooHo o
A4 AA4A>>0->

PD4072a

Breast.bed)

is

TCGA-EW-A10Z-01A-11D-A142-09

TCGA-BH-A@BP-01A-11D-A10Y-09

downloadable

at

Now we are ready to run the software and score our variants. Move into the recently unzipped radar/
directory, where the radar.py file exists (using “cd radar/"). Locate the path to the Breast.bed file (in the
example command below, we will assume it exists in the directory above radar.py). Also identify a

directory into which you would like the output file to be written (in this example, we will write the output
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to the same directory that contains Breast.bed). Here, we will produce all of the tissue-specific scores for
BRCA. At the command line, we can run the following command to score these variants.

python radar.py -b ../Breast.bed -o .. -c BRCA -kg -mr -rp

[yf95@farnaml radar]$ python radar.py -b ../Breast.bed -0 .. —c BRCA -kg -mr -rp
[yf9s@farnaml radarl$ 1s ..
Breast.bed Breast.radgr_out.bed radar radar.zip

RADAR has generated the output file, Breast.radar_out.bed, which contains the list of scored variants. A
head of the output file is shown below (note that the header takes up one line in the file, but is broken
onto two lines in this screenshot):

[yfosefarnaml radar]s head ../Breast.radar_out.bed

start

13506
14841
16995
17764
28587
30527
61396
69522
83442

stop ref alt cross_species_conservation RBP_binding_hub GERP Evofold motif_disruption RBP_gene_association

_universal key_genes mutation_recurrence RBP_regulation_power total_tissue_specific total_score

13587 G A e L)
14842
16996
17765
28588
30528
61397
69523
83443 _

) o L] 0 e 0 [

foonoo-a
44> AA> O
soccssss
csosccsses
sococcees
socscsses
sscsssss
coccsces
sosossse
cecccsee
sosccsces
sesosses
csoccscsss
cocossses
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