Tags:

Τ		311 N	Style Deminuon. meaunig 2	J
Tags:			Style Definition: Heading 3	
			Style Definition: Heading 4	
	and the first sector of the		Style Definition: Heading 5	
Jse comma for seper	ration between tags	~ /	Style Definition: Heading 6	
		\neg	Style Definition: Title	
<id></id>	REF 0.0 - title of the comment		Style Definition: Subtitle	
			Formatted: Font color: Red	
<type></type>	\$\$\$BMR \$\$\$Power \$\$\$Presentation \$\$\$Annotation \$\$\$Network \$\$\$Network \$\$\$Hierarchy \$\$\$CellLine \$\$\$CellLine \$\$\$Stemness \$\$\$Validation \$\$\$NoveltyPos \$\$\$NoveltyNeg \$\$\$NoveltyNeg \$\$\$Minor \$\$\$Validation		Formatted Table	
<assign></assign>	@@@ <u>XYZ</u>			
<plan></plan>	&&&AgreeFix - agree and fix &&&DisagreeFix - disagree but we fix, obsequious, and we're safe &&&OOS - out of scope &&&Defer - help me <u>&&&MORE : Go above and beyond the scope of the question and</u> indicates more analyses to be done			
<status></status>	%%%TBC: To Be Continued %%%50DONE: response done (MS+figure to be updated) %%%75DONE: response+calc+figure done (MS to be updated) %%%100DONE: all done. MS+figure+response done		Deleted: DONE : Finished .	([1])

Style Definition: Heading 1 Style Definition: Heading 2

Deleted: For

Deleted: , use ### only

PLEASE NOTE \$\$\$ @@@ &&& %%% are reserved as shown above, above PLEASE USE ### only for all other tags,

Usage example:

<ID>REF 0.0 - Overall comments on the paper <TYPE>\$\$\$BMR <ASSIGN>@@@MG,@@@JZ,@@@DL,@@@JL,@@@WM,@@@PDM,@@@Peng,@@ @TG,@@@XK,@@@STL,@@@MTG <PLAN>&&&AgreeFix

Format:

Referee Comment: Courier New Author Response: Helvetica Neue Excerpt From Revised Manuscript: Times New Roman

Referee expertise:

Referee #1: cancer genetics, mutational processes Referee #2: statistical genetics Referee #3: human genetics Referee #4: gene expression Referee #5: cancer genomics

Editor:

<ID>REF 0.1 - Overall comments on the paper

<TYPE>\$\$\$Presentation <ASSIGN>@@@MG <PLAN> <STATUS>%%%TBC

Referee Comment	The referees have raised a range of technical concerns on the analyses, including for the background mutation rate, the need to include statistical significance to support many of the claims, and the limitations of this data including cell lines used.	Formatted: Justified Formatted Table
Author Response	We have tried to respond to extensively revise our manuscript in the new version. In summary, we have answered most of these comments. We felt many of them were good suggestions, so we expanded them in large while conserving the manuscript, particularly the suggestions related to. - The overall value of this resource to cancer genomics - Network rewirings - Normal-tumor-stem cell comparisons - SVs statistics on networks - Discovery of SUB1 as a potential new oncogene One area that we wish to provide identification. The point of this paper is not to develop a novel method of driver discovery or to find new cancer drivers. The point is to highlight the use of ENCODE3 data in cancer genomics, particularly related to understanding the overall patterns of mutations, network rewiring, and variant prioritization. Obvieusly, the ENCODE data will be useful for people	Deleted: We've Deleted: our Deleted: we've Deleted: suggestion Deleted: comparison to stem cell, SVs statistics on networks, and SUB1.
Y	developing future driver discovery metrics but we believe that's out of scope for this paper. To respond to previous comments, we have shown how in certain contexts, the ENCODE3 date can help with existing driver discovery measures. We also want to emphasize that although some referees mentioned the limitation of cell line data used here, the usage of functional genomics data from tissue of origin is not necessarily a better option, as correctly pointed out by referee 4. The genomic and epigenomic heterogeneity in tumor cells, as well as heterogeneity in the tumor microenvironment are significant factors in tumor growth and development. We tried our best to validate, using external data set, the conclusions we draw from ENCODE call line data and found that our conclusions correlate well with the observations. We added more discussion in the revised manuscript about how technology advances, such as single cell sequencing, can help to provide further insights.	Deleted: ENCODE Deleted: Excerpt From

<ID>REF0.2 – Overall comments on the paper

<TYPE>\$\$\$Presentation <ASSIGN>@@@MG,@@@JZ <PLAN>

STATUS		1	Deleted: >%%%DONE
Referee Comment	The referees also find that the current manuscript provides. limited context with prior studies using similar approaches for use of prior ENCODE and Epigenome Roadmap datasets in cancer genomics. They detail the need for clearer presentation in context of prior studies as well comparisons to demonstrate advance.	Concest Land	Formatted: Justified Formatted Table
Author Response	We thank the referees for this comment, We want to note that many of the prior studies have been cited in our initial submission. Some papers, such as Martincorena et al 2017, came out after we submitted our paper in Aug 2017, so it is impossible us to cite in the initial submission. In the revised paper, we have clarified the unique aspects of our paper and provided clearer text with previous efforts.	1	Deleted: and
TYPE>\$\$\$F ASSIGN>@ PLAN <u>>&&&</u>	0.3 – Overall comments on the paper Presentation @@@MG,@@@JZ DisagreeFix		Deleted: Excerpt From[4] Deleted: Excerpt From[3] Deleted: >
Referee Comment	The referees also recommended that the current manuscript does not represent a distinct advance to the main ENCODE manuscript, as it does not report separate new datasets, methods, or clear novel findings. Some referees also recommended that this may be more suitable as Perspective in a specialized journal that further highlights the use on the current ENCODE datasets for cancer genomic studies.		Deleted: >%%%DONE Formatted Table
Author	We disagree with the reviewers on this point. We want to make it explicit that		

(2), the current Encyclopedia <u>package is not meant to be structured like previous</u> <u>packages</u> (i.e. '12 ENCODE). The integrative analysis is meant to be spread over a number of papers and not centered on a single one. (3) note that the ENCODE 3 "data" is not explicitly tied to any paper. Unlike previous roll-outs, ENCODE 3 does not associate particular data sets with

Regarding the novelty of this paper, ENCODEC is unique in its highlighting of a number of ENCODE assays (e.g. replication timing, TF knockdowns, STARR-seq and Hi-C), its deep, integrative annotations combining a wide variety of assays in specific cell types, and its analysis of networks.

specific papers and make use of these data contingent on that paper's publication

(as codified in an agreement with NHGRI.)

Note also that while we do NOT feel ENCODEC is a cancer genomics paper, we feel that cancer is the best application to illustrate certain key aspects of ENCODE data and analysis - particularly deep annotations and network changes. We have listed some more details about novelty of this paper as below.

(1) Networks. These are a core aspect of ENCODE, featured in the '12 roll out. None of the other papers highlight networks in the current package. In ENCODEC, in addition to looking at "universal" ChIP-Seq networks, merged across cell types, we also look at network changes ("rewiring") for specific cell-type comparisons in both proximal and distal networks. We feel that this is best exemplified in oncogenesis.

(2) Deep, integrative annotation – complementary to the Encyclopedia. While the encyclopedia paper considers broad, "universal" annotations across celltypes (currently the centerpiece of ENCODE), it focuses on data common to most cell types (DHS, 2 histone marks and 2 TFs). It does not take advantage of the cell types richer in assays -- the other dimension of ENCODE (diagrammed in ENCODEC's first figure). The ENCODEC paper takes a complementary approach, constructing a more accurate annotation using a large battery of histone marks (>10), next generation assays such as STARR-seq and elements linked by ChIA-PET and Hi-C.

(3) Replication Timing. Although a major feature of ENCODE is replication timing, none of the other papers feature it. Previous work on mutation burden calculation usually selects replication timing data from the HeLa cell line due to the limited data availability. The wealth of the ENCODE replication timing data greatly helps to parametrize somatic mutation rates.

Deleted: .

	 (4) SVs. One unappreciated aspect of ENCODE is that next-generation assays, in addition to characterizing functional elements in the genome, enable one to determine structural variations. (5) Knockdowns. ENCODE has 222 TF knockout/knockdown experiments, which are not explored systematically in other papers.
Excerpt From Revised Manuscript	

Referee #1 (Remarks to the Author):

<ID>REF1.0 – Preamble

<TYPE>\$\$\$Text <ASSIGN>@@@JZ <PLAN>&&&AgreeFix <STATUS>%%%75DONE

We will appreciate the referee's feedback. Overall the reviewer mentioned that this is an interesting resource but the novelty of the paper is lacking. We thank the referee for his/her acknowledgement of the potential popularity of our resource for cancer genomics.

Regarding the novelty point, we think differently <u>about</u> the value of our paper. We want to make it clear that <u>this</u> paper is to be considered as a "resource" paper, not a novel biology paper. We feel that cancer is the best application to illustrate certain key aspects of ENCODE data and analysis - particularly <u>the</u> deep annotations and network changes. We have listed some more details about <u>the resource</u> of this paper as below. Thus, where the referee <u>asks</u> for novely in cancer gene discovery - we strongly feel that this is out of scope. Deleted: Done

Deleted: ,,

Deleted: of

Deleted: his

Deleted: novelty

Deleted: ask

Contribution Subtypes Data types ENCODE experiments Formatted Table Processed raw signal Histone modification Signal matrix in TSV 2015 Histone ChIP-seq tracks format 564 DNase-seq DNase I hypersensitive Signal matrix in TSV site (DHS) format Signal matrix in TSV Replication timing (RT) 51 Repli-seq and Repli-Deleted: 135 format ChIP TF hotspots Signal track in bigWig 1863 TF ChIP-seq format Processed quantification Gene expression FPKM matrix in TSV 329 RNA-seq matrix format quantification TF/RBP knockdowns FPKM matrix in TSV 661 RNAi KD + CRISPRbased KO and knockouts format Enhancer Annotation in BED 2015 Histone ChIP-seq Integrative annotation 564 DNase-seq format STARR-seq 2015 Histone ChIP-seq Enhancer-gene linkage Annotation in BED 329 RNA-seq format

	Extended gene	Annotation in BED format	1863 TF ChIP-seq 167 eCLIP Enhancer-gene linkage
SV and SNV callsets	Cancer cell lines	Variants in VCF format	WGS BioNano Hi-C Repli-seq
Network	RBP proximal network	Network in TSV format	167 eCLIP
	Universal TF-gene proximal network	Network in TSV format	1863 TF ChIP-seq
	Tissue-specific TF-gene proximal network	Network in TSV format	1863 TF ChIP-seq
	Tissue-specific imputed TF-gene proximal network	Network in TSV format	564 DNase-seq
	TF-enhancer-gene network level 1-3	Network in TSV format	2015 Histone ChIP-seq 564 DNase-seq

Specifically for the BMR estimation part, the reviewer mentioned that there had been many existing references focusing on applications like cancer driver detection. First, we thank the referee for pointing out to a lot of related references. On the reference side, we have listed many of the papers as the referee suggested and compared them with our approach. We have acknowledged the efforts of many of these references. However, some of the references was out after our initial submission so we did not have a chance to add them. In the revised version we have further expanded our reference list for some the publications after our initial submission date. We want to emphasize that the richness of the ENCODE data can actually help many of the methods used in these papers. With a larger pool of covariate selection, the estimation accuracy can be significantly improved,

L MAR MENT.

Deleted: have

Deleted: and in

Formatted: Font color: Red

Reference	Initial	Revised	Main point	Comments
Lawrence et al, 2013	Cited	Cited	Introduce replication timing and gene expression as covariates for BMR correction	Replication timing in one cell type
Weinhold et al, 2014	Cited	Cited	One of the first WGS driver detection over large scale cohorts.	Local and global binomial model
Araya et al, 2015	No	Cited	Sub-gene resolution burden analysis on regulatory elements	Fixed annotation on all cancer types
Polak et al (2015)	Cited	cited	Use epigenetic features to predict cell of origin from mutation patterns	Use SVM for cell of origin prediction, not specifically for BMR
Martincorena et al (2017)	No (out after our submission)	Cited	Use 169 epigenetic features to predict gene level BMR	No replication timing data is used
Imielinski (2017)	No	Yes	Use ENCODE A549 Histone and DHS signal for BMR correction	Limited data type used from ENCODE
<u>Tomokova</u> et al. (2017)	No	Yes	8 features (5 from ENCODE) for BMR prediction and mutation/indel hotspot discovery	Expand covariate options from ENCODE data
huster-Böckler and Lehner (2012)	Yes	Yes	Relationship of genomic features with somatic and germline mutation profiles	NOT specifically for BMR
Frigola et al. (2017)	No	Yes	Reduced mutation rate in exons due to differential mismatch repair	NOT specifically for BMR
<u>Sabarinathan</u> et al. (2016)	No	Yes	Nucleotide excision repair is impaired by binding of transcription factors to DNA	NOT specifically for BMR
Morganella et al. (2016)	No	Yes	Different mutation exhibit distinct relationships with genomic features	NOT specifically for BMR
Supek and Lehner (2015)	No	Yes	Differential DNA mismatch repair underlies mutation rate variation across the human genome.	NOT specifically for BMR

Deleted: [JZ2MG: I am a little bit confused, since this preamble actually contains some of the question. Then do we delete the questions that are mentioned here? I currently feel we should delete them, have some local version and can revert if this is not appropriate.] - [...[5]

<ID>REF1.1 – Comments on the resource releases

<TYPE>\$\$\$NoveltyPos <ASSIGN> <PLAN>&&&AgreeFix <STATUS>%%%75DONE

Deleted: DONE

Referee This manuscript describes how the ENCODE project data could Comment be utilized to derive insights for cancer genome analysis. It has several examples to illustrate this point, e.g., how to

	better estimate background mutation rate in a cancer genome, how to modify gene annotation for finding mutation-enriched regions (e.g., by bundling enhancer regions to target genes using Hi-C/ChIA-PET), and describing the changes in regulatory networks in cancer. Obviously, the ENCODE project involves a great deal of planning and a lot of experimental work by many groups, and the overall aim of re-highlighting the ENCODE as a resource to cancer research seems worthwhile in general, perhaps even in a high-profile journal.	
Author Response	We thank the referee for the positive feedback.	
		Deleted: Excerpt From .
TYPE>\$\$\$BI \SSIGN>@@ PLAN>&&&C		Deleted: DONE
TYPE>\$\$\$BI ASSIGN>@@ PLAN>&&&C STATUS>%?	MR,\$\$\$Text @@JZ,@@@WM,@@@PDM DOS %% <u>75DONE</u>	
TYPE>\$\$\$BI ASSIGN>@@ PLAN>&&&C	MR,\$\$\$Text @@JZ,@@@WM,@@@PDM OOS %%75DONE Just to take the first application as an example, the problem of estimating background somatic mutation rate accurately in	Deleted: [JZ2MG: I feel there is some overlapping with the preample. It talks about reference, but I don't want to put it into the preamble since it is too long and no need to re-amphasize this point from our side]
TYPE>\$\$\$B ASSIGN>@(PLAN>&&&C STATUS>% Referee	MR,\$\$\$Text @@JZ,@@@WM,@@@PDM OOS %%75DONE Just to take the first application as an example, the problem of estimating background somatic mutation rate accurately in order to better identify cancer drivers has been studied extensively in the literature. One paper, "Mutational	Deleted: [JZ2MG: I feel there is some overlapping with the preample. It talks about reference, but I don't want to put it into the preamble since it is too long and no
TYPE>\$\$\$B ASSIGN>@(PLAN>&&&C STATUS>% Referee	MR,\$\$\$Text @@JZ,@@@WM,@@@PDM DOS %%75DONE Just to take he first application as an example, the problem of estimating background somatic mutation rate accurately in order to better identify cancer drivers has been studied extensively in the literature. One paper, "Mutational heterogeneity in cancer and the search for new cancer- associated genes" (Nature 2013), is cited in the current manuscript, but there are many others. For instance, Weinhold	Deleted: [JZ2MG: I feel there is some overlapping with the preample. It talks about reference, but I don't want to put it into the preamble since it is too long and no need to re-amphasize this point from our side]
TYPE>\$\$\$B ASSIGN>@(PLAN>&&&C STATUS>% Referee	MR,\$\$\$Text @@JZ,@@@WM,@@@PDM DOS %%75DONE Just to take the first application as an example, the problem- of estimating background somatic mutation rate accurately in order to better identify cancer drivers has been studied extensively in the literature. One paper, "Mutational heterogeneity in cancer and the search for new cancer- associated genes" (Nature 2013), is cited in the current manuscript, but there are many others. For instance, Weinhold et al, 2014 (Genome-wide analysis of noncoding regulatory mutations in cancer, Nat Genetics), Araya et al, 2015	Deleted: [JZ2MG: I feel there is some overlapping with the preample. It talks about reference, but I don't want to put it into the preamble since it is too long and no need to re-amphasize this point from our side]
TYPE>\$\$\$B ASSIGN>@(PLAN>&&&C STATUS>% Referee	MR,\$\$\$Text @@JZ,@@@WM,@@@PDM DOS %%75DONE Just to take he first application as an example, the problem of estimating background somatic mutation rate accurately in order to better identify cancer drivers has been studied extensively in the literature. One paper, "Mutational heterogeneity in cancer and the search for new cancer- associated genes" (Nature 2013), is cited in the current manuscript, but there are many others. For instance, Weinhold et al, 2014 (Genome-wide analysis of noncoding regulatory	Deleted: [JZ2MG: I feel there is some overlapping with the preample. It talks about reference, but I don't want to put it into the preamble since it is too long and no need to re-amphasize this point from our side]
TYPE>\$\$\$B ASSIGN>@(PLAN>&&&C STATUS>% Referee	MR,\$\$\$Text @@JZ,@@@WM,@@@PDM DOS %%75DONE Just to take the first application as an example, the problem of estimating background somatic mutation rate accurately in order to better identify cancer drivers has been studied extensively in the literature. One paper, "Mutational heterogeneity in cancer and the search for new cancer- associated genes" (Nature 2013), is cited in the current manuscript, but there are many others. For instance, Weinhold et al, 2014 (Genome-wide analysis of noncoding regulatory mutations in cancer, Nat Genetics), Araya et al, 2015 (Identification of significantly mutated regions across cancer types highlights a rich landscape of functional	Deleted: [JZ2MG: I feel there is some overlapping with the preample. It talks about reference, but I don't want to put it into the preamble since it is too long and no need to re-amphasize this point from our side]
TYPE>\$\$\$BI ASSIGN>@@ PLAN>&&&C STATUS>% Referee Comment	MR,\$\$\$Text @@JZ,@@@WM,@@@PDM DOS %%75DONE Just to take the first application as an example, the problem- of estimating background somatic mutation rate accurately in order to better identify cancer drivers has been studied extensively in the literature. One paper, "Mutational heterogeneity in cancer and the search for new cancer- associated genes" (Nature 2013), is cited in the current manuscript, but there are many others. For instance, Weinhold et al, 2014 (Genome-wide analysis of noncoding regulatory mutations in cancer, Nat Genetics), Araya et al, 2015 (Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations, Nat Genetics), and similar non-coding mutation identification papers all include steps to account for epigenetic features in their background rate calculation. We thank the reviewer for identifying these references. We recognize that genomic	Deleted: [JZ2MG: I feel there is some overlapping with the preample. It talks about reference, but I don't want to put it into the preamble since it is too long and no need to re-amphasize this point from our side]
TYPE>\$\$\$BI ASSIGN>@@ PLAN>&&&C STATUS>% Referee Comment	MR,\$\$\$Text @@JZ,@@@WM,@@@PDM DOS %%75DONE Just to take the first application as an example, the problem- of estimating background somatic mutation rate accurately in order to better identify cancer drivers has been studied extensively in the literature. One paper, "Mutational heterogeneity in cancer and the search for new cancer- associated genes" (Nature 2013), is cited in the current manuscript, but there are many others. For instance, Weinhold et al, 2014 (Genome-wide analysis of noncoding regulatory mutations in cancer, Nat Genetics), Araya et al, 2015 (Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations, Nat Genetics), and similar non-coding mutation identification papers all include steps to account for epigenetic features in their background rate calculation.	Deleted: [JZ2MG: I feel there is some overlapping with the preample. It talks about reference, but I don't want to put it into the preamble since it is too long and no need to re-amphasize this point from our side] Formatted Table

	With the wealth data available thro		a had a much larger paol	
	of features to choose from to per thousands of histones modificatio format (see details in table below) In addition, we have provided oth have been proven to be affect BMF that such data, when released int through many existing models.	n marks that are rele ner data types, such a but have not been wid	R estimation. <u>There are</u> ased into a ready to use as replication timing, that lely by others. We believe	Deleted: It is worth to mention that ENCODE data is r just cell line data, in fact XXX of this histone modification data is actually from real tissues. I Indeed we found that application of some additional features from the this expansive set, especially the replication timing data, significantly improved BMR estimation in many cancer types (see Supplement Section S7). Formatted: Justified Deleted: For example, many prior efforts to model BM have been limited by the availability of genomic assar or by the availability of assays matched by cell-type.
Excerpt From	Сеіі Туре	# histone marks]	For example, Lawrence et al., 2013, used HeLa replication timing data and K562 chromatin state via I C. Martincorena et al., 2017, included histone modification features, but not replication timing. The
Revised Manuscript	tissue	818		genomic signals we used from ENCODE have been processed uniformly and are provided in a ready-to-u format for the community.
	primary-cell	521		
	cell-line	339		
	in-vitro-differentiated-cells	179		
	stem-cell	114		
			-	

Deleted: improve the performance of such

clearer in our revised manuscript that our purpose is to showcase how ENCODE

data can help <u>BMR estimation in many</u> models.

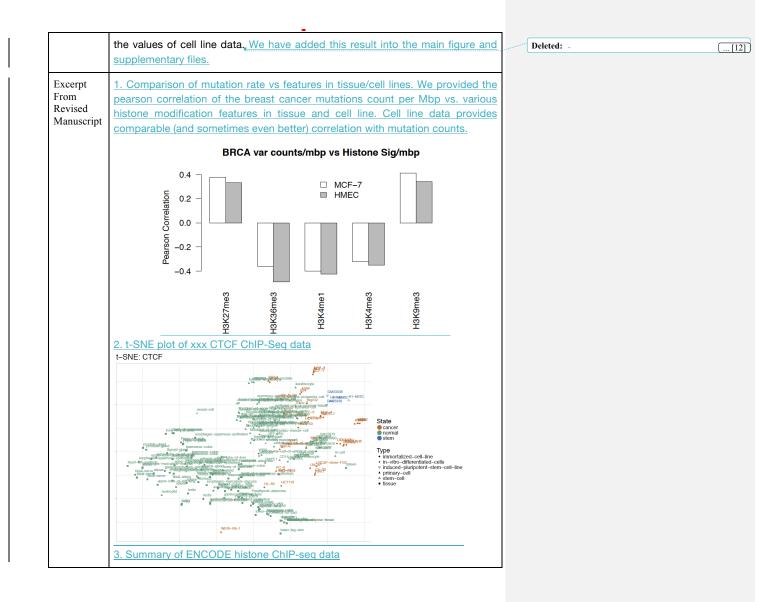
<type>\$\$\$B</type>		Deleted: of Deleted: method
<status>%</status>	%% <u>7500NE</u>	Deleted: DONE
Referee Comment	Most large-scale cancer genome sequencing papers also have- models at various levels sophistication, most of them including the issue of proper tissue-type matching. "matched" cell lines are better than unmatched or addition of more epigenetic features results in some improvement is almost trivial at this point. Which marks contribute to this is also not new.	Formatted Table

Author Response	We thank the referee for pointing out the Polak 2015 paper. This is an important reference to relate various genomic features to cancer mutational landscape, and we did cite this paper in our initial submission.		Deleted: also cited
	It is worth mentioning that we are not trying to reproduce the <u>and coveries</u> in that paper, but rather to show how the lichnese of ENCODE data can help BMR estimation. We also want to emphasize that two points here.		Deleted: discovery
	First, To select a perfect "matching" feature (no matter from matter tissue or cell-		Deleted: not
	line) is a non-trivial problem due to the heterogeneity of cancer. Even in the Polak 2015 paper, H3K9me3 from Breast luminal epithelial cells is a significant feature		Formatted: Add space between paragraphs of the same style, No bullets or numbering
	in 5 out of cancer types they investigated (Fig. 2a). The noticeably larger pool of		Deleted:
	functional characterization data from ENCODE3 can actually help to find a	1	Deleted: cancer
	matching issue, especially for cancers types that <u>cannot</u> find an obvious "matching"	H/g	Deleted: way
	feature from the Roadmap, such as prostate cancer.	////	Formatted: Underline
	v		Formatted: Underline
	Second, the goal of the Polak 2015 paper is to predict the cell of origin, while we		Deleted: ENCODE
	are aiming to improve the BMR estimation accuracy. The fact that "matched" cell		Formatted: Underline
	type features performs better in predicting BMR does not exclude that other "non-		Formatted: Underline
	matched" features from being useful to improve the BMR prediction accuracy.	1111	Deleted: on this
	Actually some of the recent papers, such Martincorena et al (2017), also used the		Formatted: Underline
	top 20 PCs of 169 histone features in their model. On this point, we uniformly		Deleted: can not
	processed thousands of features in a ready-to-use format. Many of them are not		Deleted: data
	mentioned in other literature, such as replication time from 51 tissue/cell lines.		Deleted: The
	They have proven useful but are less frequently matched probably due to the lack		Formatted: Underline
	of data incorporated into previous BMR models.		Deleted: prediction
			Formatted: Underline
Excerpt			Deleted: mean
From			Formatted: Underline
Revised			Deleted: are not
Manuscript			Formatted: Underline
			Deleted: improved
			Deleted: 932 histone modification

<ID>REF1.4 – BMR: Tissues vs. Cell lines

<TYPE>\$\$\$BMR,\$\$\$Calc <ASSIGN>@@@JZ,@@@JL <PLAN>&&&DisagreeFix<u>,&&&More</u> <STATUS>%%%

[JZ2DS: would you please add xx xx? Also add some text on the CTCF plot]


Deleted: DONE

Deleted: And also listed many Deleted: features, especially the 51

Deleted: data, that

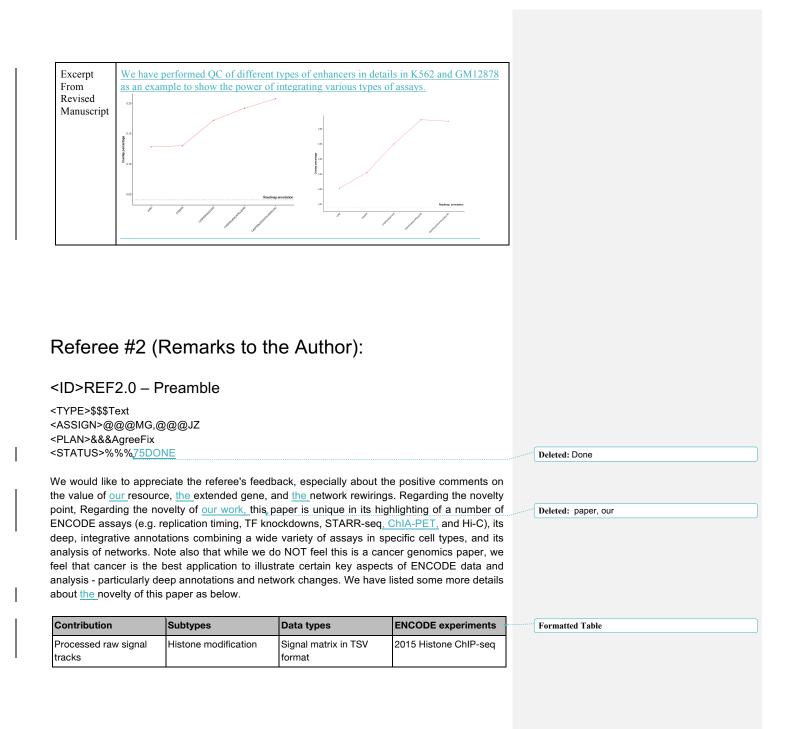
cal la

		1	
Referee	Importantly, Polak et al, 2015 (Cell-of-origin chromatin		Formatted Table
Comment	organization shapes the mutational landscape of cancer,		
	Nature) in fact show that cell-of-origin chromatin features		
	are much stronger determinants of cancer mutations profiles		
	than chromatin feature of matched cancer cell lines, and that		Deleted: (see updated Figure 5).
	cell type origin can be predicted from the mutational profile.		Deleted:
	Stepping back, it is not obvious to me that using the ENCODE		Deleted: .
	cell lines, despite the availability of more epigenetic data, is the best approach to calculating the background rate in		Formatted: Don't add space between paragraphs of the same style, Outline numbered + Level: 1 + Numbering Style Bullet + Aligned at: 0.25" + Indent at: 0.5"
	the first place-they briefly mention that using cell lines (rather than tissues) can be problematic, but do not explore this further. If this were a regular research paper, the		Deleted: , it is not always the case that cell-of-origin can be predicted perfectly using the epigenetic features (Fig. 4 b).
	authors would have to shown how the proposed approach is		Deleted:
	different and how it is better than methods already available.		
Author Response	We thank the referee for pointing out <u>the</u> comparison of cell line vs. tissue. We further investigated this comparison and extended this point more to the RNA-seq and ChIP-Seq data. We think slightly differently with the referee on this point.		Deleted: types. Here we used breast cancer as an example. We calculated the correlation of breast cancer mutation counts (from a patient cohort) per mbp with histone signals from both Breast tissue (the roadmap) and MCF-7 (an ENCODE cell line).
	seq and one-seq data, we think signify direferity with the referee on this point.		Deleted: MCF-7
		W 7.	Deleted: (and
	- On a large scale (up to mbp)	1//	Deleted:).
	 First, the Polak 2015 paper did not perform large scale comparison across various cancer <u>cell lines</u>. As seen from the following figure, <u>cell line data</u> 		Deleted: also found that histones from tissue and matched cell lines are actually quite correlated in
	provides comparable, sometimes even better, correlation with mutation	$\langle \rangle$	Deleted: larger scale (see heatmap below).
	counts, We have added a new section in the supplementary file to discuss	Ê.	Deleted:
	this.		Deleted: such data. On the contrary, the cell line
	• As compared to cell line data, there are way less functional		Deleted: has lots of advantage in terms of assay
	characterization data in tissues (such as prostate tissue). We have		richness. For example, there is no data for
	updated supplementary table 1 for a comparison of data richness in		Deleted: from the roadmap, but
	ENCODE3. ENCODE is not just about cell lines, and there are many ENCODE tissue		Formatted: Don't add space between paragraphs of the same style, Outline numbered + Level: 1 + Numbering Style Bullet + Aligned at: 0.25" + Indent at: 0.5"
	data for histones (339 cell line vs 818 tissue). We have added a supplementary table on this point.		Deleted: like LNCap might further help under such condition
		1	Deleted: 3. Some genomic features
	<u>- On a small scale (less than kbp)</u>	1 - I	Deleted: proven
			Deleted: We
	Features, like expression levels and TF binding events, have been used widely to		Deleted: scanned all
	affect somatic mutation rates. As suggested by the referee, we systematically		Deleted: cancerous
	investigated the RNA-seq and TF ChIP-Seq data and found that many of the	L_	Deleted: non-cancerous cell types from ENCODE
	cancer transcriptome/TF binding landscape are quite similar to each other, as	1	Deleted: Our observation is consistent
	compared to the initial of primary cells. This has also been mentioned by previous		Formatted: Font:Helvetica Neue
	reports, such as Lotem et al. 2005 and Hoadley et al. 2014. The fact that cancer cells lose diversity and showed a distinct pattern from the primary cells highlights		Deleted: For example, here is the projection of CTCF binding sites from all ChIP-Seq experiments.
			Deleted: loose

Cell Type	# histor marks
tissue	818
primary-cell	521
cell-line	339
in-vitro-differentiated-cells	179
stem-cell	114
induced-pluripotent-stem-cell-line	46

<ID>REF1.5 – Difference between ENCODEC and Prev.

prioritization methods


<TYPE>\$\$\$BMR,\$\$\$Text <ASSIGN>@@@JZ <PLAN>&&&DisagreeFix <STATUS>%%%100DONE

STATUS>%	%% <u>100DONE</u>	 Deleted: DONE
Referee Comment	The rest of the sections (and their corresponding supplement. sections) are variable in significance and quality. That ENCODE data helps in prioritization of non-coding variants	Deleted: ####Dictation . ([13] Formatted: Justified Formatted Table
	has been well demonstrated already (including by some of the authors on this paper), and so the value of the described analysis less clear.	
Author Response	The referee pointed out that others have tried to prioritize non-coding elements before. This is definitely true and we are not claiming to be the first.	Deleted: other people Deleted:
	However, we believe that the method that we used here is new and novel. The important aspect is that it takes advantage of many new ENCODE data and integrates over many different aspects. In particular, it takes into account the STARR-seq data, the connections from Hi-C, the better background mutation rates, and the network wiring data, which is only possible in the context of the highly integrated and their data available on certain cell lines. We are showing this	 Deleted: Seq

۷

	as an example of the best we can do with this level of integration. The fact that we coupled this with quite successful validation that we believe points to the great value of the integrated incurred data.	 Deleted:
Excerpt From Revised Manuscript		
TYPE>\$\$\$P ASSIGN>@(PLAN>&&&# STATUS>%</th><th>AgreeFix %%DONE Id u pls update the figure? The legend is too small to see and would you please</th><th> Deleted: .</th></tr><tr><td>Referee Comment</td><td>Some newer assays such as STARR-seq are helpful, obviously, in better predicting enhancers, but, again, while the analysis done serves as illustrations how ENCODE data can be used, the supplement does not seem to give a convincing evidence of how the results found are novel.</td><td>Formatted Table Formatted: Justified</td></tr><tr><td>Author Response</td><td>We thank the referee for praising the new STARR-seq assays, and we have in fact tried to illustrate the value of novel assays such as STARR-Seq. We have modified both the main manuscript and the supplement to further highlight this,</td><td></td></tr></tbody></table>		

accurate annotation and pin-point to sequences where transcription factors would actually bind to. To estimate the false positive rate would not be very practical at this stage as there is no gold-standard experiment that could assert an predicted enhancer is definitely negative. Here we took the FANTOM enhancer data set and assess the overlap percentage of our enhancer annotation in each ensemble step. We show that each ensemble step indeed increases the percentage of overlap between our annotation and the FANTOM enhancer set. The overlap percentage for our annotation is much higher than that of the Roadmap annotation, and is also higher than the main encyclopedia enhancer annotation annotation (ccRE).

	DNase I hypersensitive site (DHS)	Signal matrix in TSV format	564 DNase-seq
	Replication timing (RT)	Signal matrix in TSV format	135 Repli-seq and Repli- ChIP
	TF hotspots	Signal track in bigWig format	1863 TF ChIP-seq
Processed quantification matrix	Gene expression quantification	FPKM matrix in TSV format	329 RNA-seq
	TF/RBP knockdowns and knockouts	FPKM matrix in TSV format	661 RNAi KD + CRISPR- based KO
Integrative annotation	Enhancer	Annotation in BED format	2015 Histone ChIP-seq 564 DNase-seq STARR-seq
	Enhancer-gene linkage	Annotation in BED format	2015 Histone ChIP-seq 329 RNA-seq
	Extended gene	Annotation in BED format	1863 TF ChIP-seq 167 eCLIP Enhancer-gene linkage
SV and SNV callsets	Cancer cell lines	Variants in VCF format	WGS BioNano Hi-C Repli-seq
Network	RBP proximal network	Network in TSV format	167 eCLIP
	Universal TF-gene proximal network	Network in TSV format	1863 TF ChIP-seq
	Tissue-specific TF-gene proximal network	Network in TSV format	1863 TF ChIP-seq
	Tissue-specific imputed TF-gene proximal network	Network in TSV format	564 DNase-seq
	TF-enhancer-gene network level 1-3	Network in TSV format	2015 Histone ChIP-seq 564 DNase-seq

<ID>REF2.1 – Comment on utility of the resource

<TYPE>\$\$\$NoveltyPos <ASSIGN>

STATUS>%	%% <u>100DONE</u>		Deleted: DONE
Referee Comment	However, there is a possibility that the resource would be- very popular among cancer genomics researchers. Also, results on extended genes and rewiring are of interest.		Formatted Table Formatted: Justified
Author Response	We thank the referee for the positive comment.		
			Deleted: Excerpt From .
			Deleted: Excerpt From . [1:
Referee Comment	1) The negative binomial regression (Gamma-Poisson mixture model) was introduced in Nik-Zainal et al. Nature 2016 and Marticorera et al., Cell 2017. Why was not this available method applied, and what is the benefit for the procedure used by the authors?	000	Forgusted Judge
Author Response	The referee is pointing out that negative binomial regression has been used before. This is a standard statistical technique <u>that has been</u> used in many contexts. <u>The</u>	\langle	Deleted: In relation to the negative binomial regression the
	fact that the recent Martincorena et al 2017 paper uses this, we think only bolsters		Deleted: the use of
	the underlying technical validity of our argument. While we admit it does slightly		Deleted: that's be Moved (insertion) [1]
	undercut a claim of novelty in this regard, that's not central to our work.		Moved (insertion) [1]
K)	ENCODE3 provides noticeably more covariate data, which is uniformly processed and less explored in the references mentioned by the referees. There is new data		Deleted: The fact that it was earlier used in relation to background mutational rate shows that it
V	type, such as replication timing, that is well-known confounders but not included in		Deleted: an appropriate approach
-	those papers. Our paper is not aiming to make a new method for predicting		
	background mutation rate, but rather to use a robust regression method that really		
	takes into account the very large amount of data and is able to leverage that to		
	more successfully predict background mutation. Therefore, we did not directly use		Deleted:
	more successfully predict background mutation. <u>Interefore, we did not directly use</u>	100	
	their approach.		Excerpt From

Moved up [2]: While we admit it does slightly undercut a claim of novelty in this regard, that's not central to our work.

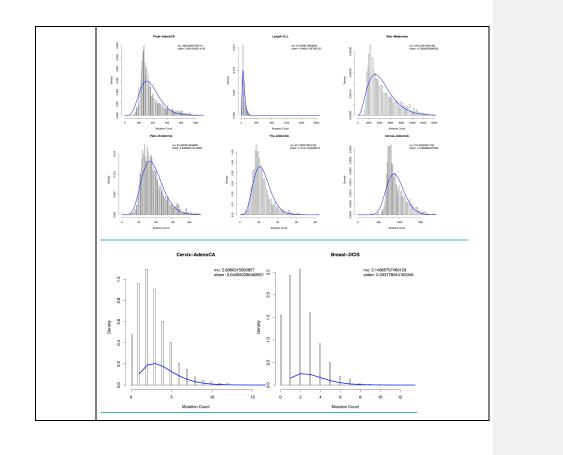
[... [18]]

... [17]

Deleted: Excerpt From .

Deleted: Excerpt From

<ID>REF2.3 – Questions about the Goodness of fit of the


Gamma-Poisson Model

<TYPE>\$\$\$BMR,\$\$\$Calc <ASSIGN>@@@JZ <PLAN>&&&AgreeFix,<u>&&&OOS</u> <STATUS>%%%100DONE

	/ 1/_						
Referee	Also, does Gamma	-Poisson model f	its data for most	cancers•	~	Formatted Table	
Comment			n? One can use non-c		1000	Formatted: Justified	
	priors but this i	is probably beyon	d the scope of this	work.			
Author			odness of fit <u>of the Gamm</u>			Deleted: pointing out	
Response	model. As suggested,	, we provided more f	igures in our supplement	tary <u>file to</u>		Deleted: problem and he/she	is right that
			es, the fitting of Gamma- Also, we point out the fact			Deleted: didn't' provide enoug the referee's suggestion, we	
	been used in other life	terature provides furth	er technical support for	this using.		Deleted: figures as requested	. In
	However, we agree that	at <u>it is interesting</u> to inv	vestigate, other non-conjug	gate priors.		Deleted: .	
	As the referee mention	ed, this is out of scope	, but we have made a mer	ntion of this		Deleted: that Inigo uses that a	and justifies andthis
	in the text.					Deleted: we choose Gamma-	Poisson conjust it might
						Deleted: .	
Excerpt From	Breast-AdenoCo	CNS-GBM	Lung-AdenoCA			Deleted:	[[19]
Revised Manuscript							
	King-CHCE						

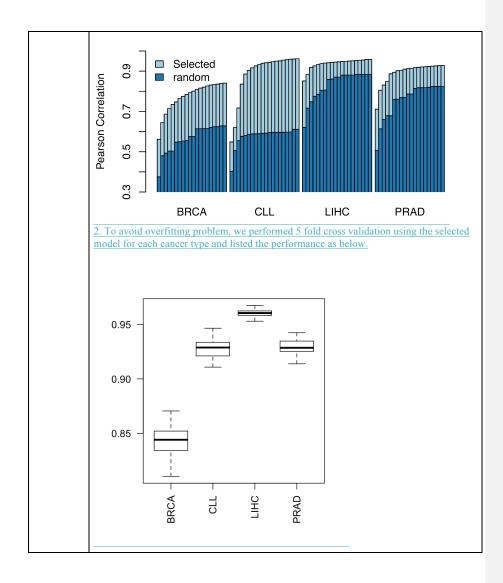
Deleted: DONE

[... [19]]

<ID>REF2.4 – Was the Poisson Model used for low mutation

<TYPE>\$\$\$BMR,\$\$\$Text,\$\$\$Cale <ASSIGN>@@@JZ,@@@JL <PLAN>&&&AgreeFix <STATUS>%%%10/DONE

Referee	2) It seems that the Poisson model was not rejected for*
Comment	cancers with very low mutation counts (liquid tumors). Is
	this a power issue rather than the property of the mutation
	process?


Deleted: DONE

Formatted Table

Author We thank the reviewer for mentioning this, and we do feel this is a good point. To Response answer this question, we plotted the overall mutation count under different 3mer context vs. the estimated overdispersion parameter (using the AER package) in R in the following figure. On one side, it is obvious that for those 3mers with more Deleted: higher humber of variants, there is a tendency to introduce overdispersion and accept the Gamma-Deleted: of larg Poisson model. It could be either the power issue, or the level of heterogeneity Deleted: among samples, or even both. We have put more in supplementary file. Deleted: iight Deleted: . A larger variation usually accepts the Negative binomial distribution. We've We also want to point out that the overdispersion problem on count data is also confounded by omitting related covariates. That is the main reason why we want to introduce more feature candidates from ENCODE and at the same time avoid overfitting. Many other methods (such as Marticorena, 2017) directly use Negative Binomial regression without checking whether it is necessary. It is simpler to not introduce additional parameters. However, we think it is better to check how Deleted: But heterogeneous the count data is even after correcting enough covariate effects, Deleted: [... [20]] MIRE Excerpt From 800 Revised Manuscript 800 Autation Count 2000 8 2 5 Dispersio <ID>REF2.5 - Cross validation analysis to do model selection <TYPE>\$\$\$BMR,\$\$<mark>\$Ca</mark> <ASSIGN>@@@JZ

<PLAN>&&&AgreeFix <STATUS>%%%50DONE

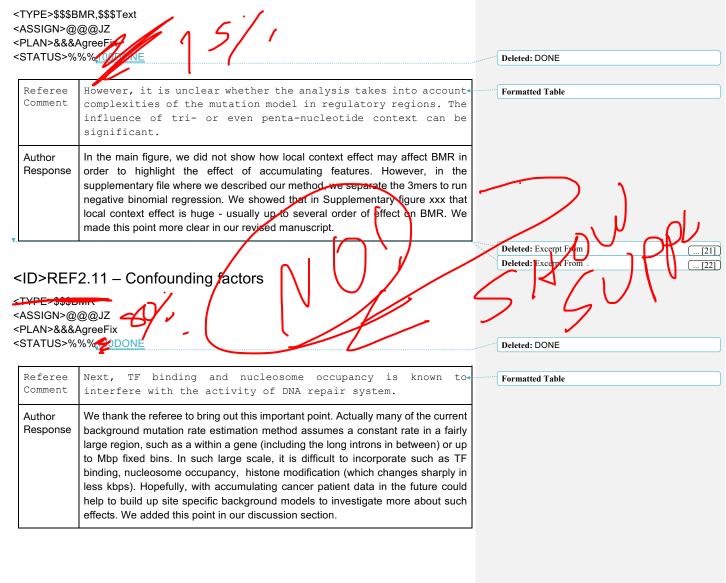
STATUS>%	%% <u>50DONE</u>	 Deleted: DONE
Referee Comment	3) The approach with principal components used for the BMR* estimation does not seem to work well. Starting with the second PC most components have roughly the same prediction power. One possibility is that higher principle components do not capture the additional signal and reflect noise in the data, and the correlation with mutation rate is due to an overfit of the NB regression (it is unclear whether it was analyzed with cross-validation). Another possibility is that the signal is spread over many components. In the latter case, this is not an optimal method choice.	 Formatted Table
Author Response	We thank the referee for pointing out the limited contribution from the higher order principal <u>components</u> . In fact, we actually wanted to <u>bring out this point and we</u> don't see this as efficient <u>either</u> . The point of our approach is not to say that a few top components or a few features can predict a mutation rate <u>accurately</u> . Actually we want to show the opposite that the wealth of the ENCODE data is useful and that with additional data types, one gets a small but measurable continued improvement. We use principal components essentially as a way of doing a principled unbiased feature selection but we realized that actually didn't get across very clearly, so <u>we have replotted</u> this figure and now simply show how one gets steady increase in predictions forms by just adding features one at a time.	Deleted: component Deleted: this out Deleted: correctly Deleted: actually Deleted: in background mutation estimation. This may be because of the heterogeneity and the difficulty in matching samples, but may due to the correlated nature of the features themselves Deleted: we've redone
Excerpt	We hope this gets the point across. The aim here is to not highlight a complicated mathematical method but just simply to get across the idea that the very large <u>ENCODE</u> data provides a valuable resource for predicting <u>BMR</u> and we appreciated the referee helping us achieve clarity on this point. We put the main text figures into the supplementary files and made for the main.	Deleted: end code Deleted: corpus Deleted: background mutation rate
Excerpt From Revised Manuscript	 At timb bin resolution, we compared the performance of models using random features vs. computationally selecting best features sequential (forward selection). It has shown that by adding features appropriately from ENCODE3, we can noticeably improve the performance of BMR accuracy. 	

<ID>REF2.6 – Comments on the power analysis and compact annotations

<TYPE>\$\$\$Power,\$\$\$Calc <ASSIGN>@@@JZ <PLAN>&&&AgreeFix <STATUS>%%%<u>75DONE</u>

with length. However, in case some of the functional sites are outside the compact annotation power would not decrease and is even likely to increase with the inclusion of additional sequence. Is there a justification for all functional sites to reside within compact annotations? Can this issue be explored? Some statistical tests incorporate weighting schemes. Author Response The referee is indeed correct and we expanded our power calculation in our revised manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional ones. Two examples can explain the motivation of this assumption. 1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously ponfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C data. 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region we can trim the test set to a core set of the promoter region where many <u>TFS bind</u> , which perfectly correlates with the mutation hotspots (red block) for this welknown driver site (blue line for pan- cancer and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript, we show in a formal power analysis, that the most important contribution to power comes from				Formatted: Font color: Red
 Author Author Response Response Author Response Respons	Referee	4) I do not agree with the power analysis presented to support.		Formatted: Justified
 known for regulatory regions and also sequence context dependence of mutation rate. The larger issue is that the analysis assumes that ALL functional sites are within the compact annotation. In that case, power indeed would decrease with length. However, in case some of the functional sites are within the dway that found enhancer sites by just alling uniportant sites. For instance, in the old way that found enhancer sites by just alling the deted: the grant sites. For instance, in the old way that found enhancer sites by just alling the excursive year and is even likely to increase with the inclusion of additional sequence. Is there a justification for all functional sites to reside within compact annotations? Can this issue be explored? Some statistical tests incorporate every grant sites. Frimming this Deteted: alarge battery Author Response Author Response of the englored correct and we expanded our power galculation in our revised manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional ones. Two examples can explain the motivation of this assumption. Author Response of many histone marks and further integration with STARR-seq and Hi-C data. 2) TFBS hotspots ground the promoter region of WDR74. Instead of testing the correct prime many TFS bind, which perfectly correlates with the mutation hospots (red block) for this wellknown driver site (blue line for pancare. Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis, that the most important contribution to power comes from the set with the most important contribution to power comes from the set with the most important contribution to power comes from the set with the most important contribution to power comes from the set with the most important contribution to power comes from the set with the most important contribution to power comes from the set with a set with the most impor	Comment	the idea of compact annotations. I understand that this is a		Formatted Table
 known for regulatory regions and also sequence context dependence of mutation rate. The larger issue is that the analysis assumes that ALL functional sites are within the compact annotation. In that case, power indeed would decrease with length. However, in case some of the functional sites are outside the compact annotation power would not decrease and is even likely to increase with the inclusion of additional sequence. Is there a justification for all functional sites to reside within compact annotations? Can this issue be explored? Some statistical tests incorporate weighting schemes. Author Response The referee is indeed correct and we expanded our power calculation in our revised manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional gnes. Two examples can explain the motivation of this assumption. 1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously nonfunctional sites. We believe we can get functional great and functional sites while preserving the functional gnes. Two examples can explain the motivation of this assumption. 2) TFBS hotspots ground the promoter region of WDR74. Instead of testing the promoter region where many TFs bind, which perfectly correlates with the most important contribution to power comes from the formation is that the most important contribution to power comes from the set set on a core set of the promoter region where many TFs bind, which perfectly correlates with the most important contribution to power comes from the set set on a core set of the promoter region, we can trim the test set to a core set of the promoter region where many TFs bind, which perfectly correlates with the most important contribution to power comes from the set set is a core set of the promoter region where many TFs bind, which perfectly correlates with the most important contribution to power comes from the set set i		toy analysis neglecting specific properties of mutation rate		Deleted: calculated
dependence of mutation rate. The larger issue is that the analysis assumes that ALL functional sites are within the compact annotation. In that case, power indeed would decrease with length. However, in case some of the functional sites are outside the compact annotation power would not decrease and is even likely to increase with the inclusion of additional sequence. Is there a justification for all functional sites to reside within compact annotations? Can this issue be explored? Some statistical tests incorporate weighting schemes.Deleted: Name to more accurately by the sequence of the signal, we believe accurately gets it the truly functional region, particular weighting of the nonfunctional sites while preserving the functional gets. Two the motivation of this assumption.Deleted: truly Deleted: Name the truly functional region, particular beleted: sites StateryAuthor ResponseThe referee is indeed correct and we expanded our power calculation in our revised manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional gets. The difficulty increase power. Another cas the Tr binding hotspot formatted: Underline1) Enhancers: Traditionally, enhancers were called as a fikb peak regions, which admittedly introduced a lof obviously ponfunctional sites. We believe we can get adata. 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region were many TFs bind, which perfectly correlates with the motation hotspots (red block) for this well-known driver site (blue line for pan- cancer and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most				
 analysis assumes that ALL functional sites are within the compact annotation. In that case, power indeed would decrease with length. However, in case some of the functional sites with length. However, in case some of the functional sites are outside the compact annotation power would not decrease and is even likely to increase with the inclusion of additional sequence. Is there a justification for all functional sites to reside within compact annotations? Can this issue be explored? Some statistical tests incorporate weighting schemes. Author Response revised manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional ones. Two examples can explain the motivation of this assumption. 1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously nonfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact is shapes of many histone marks and further integration with STARR-seq and Hi-C data. 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many <u>TFs bind</u>, which perfectly correlates with a core set of the promoter region were called. Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from 		dependence of mutation rate. The larger issue is that the		
 compact annotation. In that case, power indeed would decrease with length. However, in case some of the functional sites is unimportant sites. For instance, in the old way that found enhancer sites by just calling are outside the compact annotation power would not decrease and is even likely to increase with the inclusion of additional sequence. Is there a justification for all functional sites to reside within compact annotations? Can this issue be explored? Some statistical tests incorporate weighting schemes. Author Author Response The referee is indeed correct and we expanded our power calculation in our revised manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional gnes. Two examples can explain the motivation of this assumption. 1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously nonfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact of the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region where many TFS bind, which perfectly correlates with testing the conventional up to 2.5K promoter region of WDR74. Instead of testing the con		-	•	
and is even likely to increase with the inclusion of additional sequence. Is there a justification for all functional sites to reside within compact annotations? Can this issue be explored? Some statistical tests incorporate weighting schemes.Deleted: by almost any estimation included knots Deleted: in m Deleted: sites. Trimming this Deleted: a large battery Deleted: the exact shape of the signal, we believe na course to provide manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional ones. Two examples can explain the motivation of this assumption.Deleted: accurate the review of a dot of obviously nonfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C data. 2) TFBS hotspots around the promoter region, we can trim the test set to a core set of the promoter region where many TFs bind, which perfectly correlates with the mutation hotspots (red block) for this well-known driver site (blue line for pan- cancer and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from formal power analysis that the most important contribution to power comes from if and power analysis that the most important contribution to power comes from if and power analysis that the most important contribution to power comes from if and power analysis that the most important contribution to power comes from if and and the promoter region is that we have a part of the promoter many transmitted power analysis that the most important contribution to power comes from if and the promoter analysis that the most important contribution to power comes from 				unimportant sites. For instance, in the old way that we
additional sequence. Is there a justification for all functional sites to reside within compact annotations? Can this issue be explored? Some statistical tests incorporate weighting schemes. Deleted: a large battery Author Response The referee is indeed correct and we expanded our power calculation in our revised manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional ones. Two examples can explain the motivation of this assumption. Deleted: a large battery 1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously nonfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C data. Deleted: TF binds to Deleted: 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many TFs bind, which perfectly correlates with the mutation hotspots (red block) for this well known driver site (blue line for pan- cancer and green line for liver cancer). Muteurer/types * Following the reviewer's suggestions, in our revised manuscript, we show in a formal power analysis that the most important contribution to power comes from Deleted:		are outside the compact annotation power would not decrease		Deleted: 1KB region from a
functional sites to reside within compact annotations? Can this issue be explored? Some statistical tests incorporate weighting schemes. Deleted: sites. Trimming this Author Response The referee is indeed correct and we expanded our power calculation in our revised manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional ones. Two examples can explain the motivation of this assumption. Deleted: accurate 1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously nonfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C data. Deleted: without prior information 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many <u>TFs bind</u> , which perfectly correlates with the mutation hotspots (red block) for this well-known driver site (blue line for pancare and green line for liver cancer). Matter eviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from		and is even likely to increase with the inclusion of		Deleted: by almost any estimation included knots
this issue be explored? Some statistical tests incorporate weighting schemes. Deleted: a large battery Author Response The referee is indeed correct and we expanded our power calculation in our revised manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional ones. Two examples can explain the motivation of this assumption. Deleted: a curate 1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously nonfunctional sites. We believe we can get functional up to 2.5K promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many TFs bind, which perfectly correlates with the mutation hotspots (red block) for this well-known driver site (blue line for parcancer and green line for liver cancer). Poleted: Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from Deleted:				Deleted: non
weighting schemes. Author Response The referee is indeed correct and we expanded our power calculation in our revised manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional ones. Two examples can explain the motivation of this assumption. 1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously nonfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact the TF binding hotspot Shapes of many histone marks and further integration with STARR-seq and Hi-C data. 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the promoter region where many TEs bind, which perfectly correlates with the mutation hotspots (red block) for this welk known driver site (blue line for pancar and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from		-		Deleted: sites. Trimming this
Author Response The referee is indeed correct and we expanded our power <u>calculation</u> in our revised manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional ones. Two examples can explain the motivation of this assumption. 1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously ponfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C data. 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the mutation hotspots (red block) for this well-known driver site (blue line for pan- cancer and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from				Deleted: a large battery
 Response Response revised manuscript. In our initial submission, the assumption is that we were trimming off the nonfunctional sites while preserving the functional ones. Two examples can explain the motivation of this assumption. 1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously nonfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C data, 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the mutation hotspots (red block) for this well, known driver site (blue line for pancarer and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from 	•			Deleted: the exact shape of the signal, we believe mo accurately gets it the truly functional region, particular
 Deleted: will hopefully increase power. Another cas the TF binding hotspot Deleted: will hopefully increase power. Another cas the TF binding hotspot Formatted: Underline Deleted: will hopefully increase power. Another cas the TF binding hotspot Formatted: Underline Deleted: without prior information Deleted:				· · ·
examples can explain the motivation of this assumption. 1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously ponfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C data. 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many TFs bind, which perfectly correlates with the mutation hotspots (red block) for this well-known driver site (blue line for pan- cancer and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from	Response			<u>}</u>
1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously ponfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C data. 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many TFs bind, which perfectly correlates with the mutation hotspots (red block) for this well known driver site (blue line for pancancer and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from Deleted: Underline Deleted: Underline Deleted: WDR74 Deleted: Underline Deleted: Underline Deleted: WDR74 Deleted: Underline Deleted: Underline Deleted: TF binds to Deleted: Underline Deleted: Underli		······································		
 1) Enhancers: Traditionally, enhancers were called as a tko peak regions, which admittedly introduced a lot of obviously nonfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C data. 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many TFs bind, which perfectly correlates with the mutation hotspots (red block) for this well known driver site (blue line for pancancer and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from 		examples can explain the motivation of this assumption.		Formatted: Underline
admittedly introduced a lot of obviously nonfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C data. 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many <u>TFs bind</u> , which perfectly correlates with the mutation hotspots (red block) for this well-known driver site (blue line for pan- cancer and green line for liver cancer).		1) Exhangers, Traditionally, enhancers were called as a 1/h pack regions, which		Deleted: without prior information
functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C data. 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many <u>TFs bind</u> , which perfectly correlates with the mutation hotspots (red block) for this well-known driver site (blue line for pan- cancer and green line for liver cancer).			11///	Deleted: TF binds to
shapes of many histone marks and further integration with STARR-seq and Hi-C data. 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many <u>TFs bind</u> , which perfectly correlates with the mutation hotspots (red block) for this well known driver site (blue line for pancancer and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from Deleted:			11///	Deleted:
data, 2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many TFs bind, which perfectly correlates with the mutation hotspots (red block) for this well known driver site (blue line for pan- cancer and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from Deleted:			1////	p154 p153 p151 p143
2) TFBS hotspots around the promoter region of WDR74. Instead of testing the conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many TFs bind, which perfectly correlates with the mutation hotspots (red block) for this well known driver site (blue line for pancal cancer and green line for liver cancer).				/
conventional up to 2.5K promoter region, we can trim the test set to a core set of the promoter region where many <u>TFs bind</u> , which perfectly correlates with the mutation hotspots (red block) for this well-known driver site (blue line for pancancer and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from Deleted:			lll l	607,600 hp 62,60
the promoter region where many <u>TFs bind</u> , which perfectly correlates with the mutation hotspots (red block) for this well known driver site (blue line for pan- cancer and green line for liver cancer).			111	MutationcerTypes
mutation hotspots (red block) for this well-known driver site (blue line for pan- cancer and green line for liver cancer).			W .	
cancer and green line for liver cancer). Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from Deleted:			H^{-}	X
Following the reviewer's suggestions, in our revised manuscript we show in a formal power analysis that the most important contribution to power comes from Deleted:				RefSer Genes
formal power analysis that the most important contribution to power comes from Deleted:				WDR74
formal power analysis that the most important contribution to power comes from Deleted:		Following the reviewer's suggestions in our revised manuscript we show in a		
				Deleted
Deleted: now in the supplement				Deleted: now in the supplement
			l	
<u> </u>				
SUL				
SUL			9	

Deleted: Done


	including additional functional sites, which is of course by the extended gene concept and then secondarily, from removing non-functional sites, but to a lesser extent. The assumption in our compacting annotations is that we can accurately distinguish the more important functional nucleotides from the less important ones through the guidance of many functional characterization assays.	(Deleted: this
Excerpt From Revised Manuscript	Admittedly, we are making assumptions and the referee is completely correct in pointing this out. We have tried to be more precise in the text that we are assuming that the large number of ENCODE assays, when integrated, allow us to more directly get the functional nucleotides, but this, of course, is an assumption. It is hard to tell to what degree one can succeed in finding the current events in cancer. It is hard to back this up with the gold standard, but we think that some of the points are self evidently obvious. We have tried to make this clear in text and thank the referee for pointing this out.		Deleted: However Deleted: admittedly Deleted: we're basically Deleted: encode Deleted: encode Deleted: allows Deleted: at Deleted: functionally important Deleted: functionally important Deleted: really Deleted: really Deleted: success Deleted: l's Deleted: l Deleted: l Deleted: We've
TYPE>\$\$\$B ASSIGN>@ PLAN>&&&I STATUS>% ###Thinking	Defer %%TBC]	Formatted Table
Author		-	

	Our goal is BMR We show QQ w diff detection We actually show QQ plots with drivers Take some else's driver detection method, use our BMR model, show that it works better
Excerpt From Revised Manuscript	

<ID>REF2.8 – Value of the extended gene

<status>%</status>	AgreeFix <u>.&&&MORE</u>	 Deleted: DONE
Referee Comment	6) The idea of extended genes and the use of multiple. information sources to construct them is a strength of the paper.	 Formatted Table
Author Response	We thank the reviewer for the positive remarks. We further highlighted this part in our revised manuscript and added several new sections to highlight the value of <u>extended genes</u> , such as 1. We extensively expanded our power analysis part to include more extended gene analysis (as we pointed up in the response to <id>REF2.6 – Comments on the power analysis and compact annotations) 2. We showed that by using the extended gene, we can better stratify the gene expressions</id>	Deleted: a whole Deleted: section of how Deleted: could increase statistical power.
Excerpt From Revised Manuscript		

<ID>REF2.10 – BMR effect on local tri-nucleotide context

•

Excerpt
From
Revised
Manuscript
-

<ID>REF2.12 – Power analysis of extended genes

<TYPE>\$\$\$Power,\$\$\$Calc <ASSIGN>@@@JZ <PLAN>&&&AgreeFix <STATUS>%%%75DONE

Referee Comment	It would be great to see a formal analysis about how extended genes increase power of cancer driver discovery.
Author Response	We thank the referee for this comment and encouraging us to do a formal analysis. We have <u>expanded our power analysis</u> in the revised manuscript.
Excerpt From Revised Manuscript	We showed in a formal power analysis that the most important contribution to power comes from including additional functional sites, which is of course by the extended gene concept and then secondarily, from removing non-functional sites but to a lesser extent. The assumption in our compacting annotations is that we can accurately distinguish the more important functional nucleotides from the less important ones through the guidance of many functional characterization assays. Admittedly, we are making assumptions and the referee is completely correct in pointing this out. We have tried to be more precise in the text that we are assuming that the large number of ENCODE assays, when integrated, allow us to more directly get the functional nucleotides, but this, of course, is an assumption, it is hard to tell to what degree one can succeed in finding the current events in cancer. It is hard to back this up with the gold standard, but we think that some of the points are self evidently obvious. We have tried to make this clear in text and thank the referee for pointing this out.

Deleted: Done

Deleted: [JZ2MG: as discussed we are only supposed to put text here but the real analysis into the supplementary file. However, this could be very inconvenient for the referee since if he wants to check the part, he needs to go to the supp with >100 pages. Please suggest here].

Formatted Table

Deleted: attempted to do this

Deleted: suppl figure XXXX

Lprefe

<ID>REF2.13 – Minor comment on burden test

<TYPE>\$\$\$Minor,\$\$\$Presentation,\$\$\$Text <ASSIGN>@@@JZ <PLAN>&&&AgreeFix

STATUS>%	%% <u>75DONE</u>		Deleted: DONE	
Referee Comment	 I would not use the term "burden test". This usage is slightly confusing because this term is commonly used in human genetics where it refers to a case-control test. 	(Formatted Table	
Author Response	We thank the referee to point out this. We have changed our terminology in our revised manuscript.			
		~	Deleted: Excerpt From	
			Deleted: Excerpt From	(
[YPE>\$\$\$N	2.14 – Minor comment on terminology linor,\$\$\$Presentation,\$\$\$Text			
TYPE>\$\$\$M ASSIGN> PLAN>&&&/	linor,\$\$\$Presentation,\$\$\$Text	(Deleted: DONE	
TYPE>\$\$\$M ASSIGN> PLAN>&&&/	linor,\$\$\$Presentation,\$\$\$Text AgreeFix	(Deleted: DONE Formatted Table	
TYPE>\$\$\$M ASSIGN> PLAN>&&&/ STATUS>% Referee	<pre>linor,\$\$\$Presentation,\$\$\$Text AgreeFix %%75DONE 2) Similarly, it is unclear what is meant by ``deleterious- SNVs" as the term is commonly used in human genetics in</pre>	(
TYPE>\$\$\$M ASSIGN> PLAN>&&&J STATUS>% Referee Comment Author	<pre>linor,\$\$\$Presentation,\$\$\$Text AgreeFix %%75DONE 2) Similarly, it is unclear what is meant by `deleterious- SNVs" as the term is commonly used in human genetics in reference to germline variants under negative selection. We thank the referee to point out this. "Deleterious SNVs" in our manuscript means somatic mutations that disrupts gene regulations. To avoid potential confusion, we</pre>			

Referee #3 (Remarks to the Author):

<ID>REF3.0 – Preamble

<TYPE>\$\$\$Text <ASSIGN>@@@MG,@@@JZ <PLAN>&&&AgreeFix <STATUS>%%%<u>75DONE</u>

In relation to the supplement and genomics, the referee points out that it's sometimes hard to see full documentation of our methods in the main part and one has to look at the extensive supplements. We are well aware of this fact. The very large scale of supplement is typical for large genomic paper. We, in fact, have been actively discussing with Nature Publishing and other companions about the supplement with regard to the main text. We have attempted to put important things in the supplement and to structure it very carefully. We admit that maybe this construction is not that intuitive. We are prepared to work very hard to make the structure of the supplement understandable. We've tried to revise it to make these clearer and also to move more appointives into the main text, though we think given the current main text limitations of a typical paper nature and the scale of the results in the data in this paper, it's simply impossible to put everything into the main text. We are preparing to work constructively with the referees and the others to make this clear.

<ID>REF3.1 – Presentation of the paper

<TYPE>\$\$\$Presentation <ASSIGN> <PLAN>&&&AgreeFix <STATUS>%%%TBC

Referee Comment It is difficult to understand the significant novel findings in this paper (compared to the main ENCODE paper). Perhaps, some of this is due to the data not being presented in a concise and clear manner. For example, I wonder whether the authors can add more details and straightforward directions when citing supplementary information. In the current main manuscript, the authors cited all supplementary information as (see suppl.). It might be hard for the reader to check where the authors refer to in the supplementary information. I think more direction, such as sup Figl, sup Table 1, or section 7.2S etc, would be very helpful. Formatted Table

Deleted: Done

Author Response	We tried the new way of citing supplementary info.	HET
Excerpt From Revised Manuscript		REWRITZ
TYPE>\$\$\$E ASSIGN> PLAN>&&&/ STATUS>%	AgreeFix	
Referee Comment	In the second paragraph of page 3, it says 'using matched replication timing data in multiple cancer types significantly outperforms an approach in a which one restricts the analysis to replication timing data from the	Formatted Table
	unmatched HeLa-S3 cell line.' This statement is confusing and does Figure 2A or 2B supported it?	
Author Response		il f

<PLAN>&&&AgreeFix <STATUS>%%%TBC

Referee Comment	In Figure 1, "top tier" should point to cell types that is mentioned in the content. However, we also see SNV, SV, Mutation, etc.
Author Response	CHO
Excerpt From Revised Manuscript	E C C

<ID>REF3.4 – Regarding enhancer detection algorithm

<TYPE>\$\$\$Presentation <ASSIGN> <PLAN>&&&AgreeFix <STATUS>%%%TBC

Referee Comment	What is a single shape algorithm? The authors point to Supplementary data, but there is no definition there either. Do the authors mean the complete graphs or connected components?	Formatted Table
Author Response	5	VGV
Excerpt From Revised Manuscript		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(ID>REF) TYPE>\$\$\$B ASSIGN> PLAN>&&&&		

<STATUS>%%%TBC

Referee Comment	For Figure 2B, what does 'regression coefficients of remaining features' mean? Does that means beta_0 or the remaining regression noise? From Figure 2B, the coefficient to regression is rounded to -0.001 and 0.001. How should we understand these values? If the coefficients are for the main features, we would be expecting higher coefficients, wouldn't we? In this case, does it means the lower the better?	Formatted Table
Author Response		
Excerpt From Revised Manuscript		行作
TY <mark>PE>\$\$\$A AS</mark> SIGN> PLAN>&&&/ STATUS>%	AgreeFix %%TBC	HOW
Referee Comment	For Figure 2C, more explanation is needed on how to form an « extended gene. For the Figure 2D and its description on the third paragraph of page 4 (as well as Figure 3A), did the authors validate all the genes systematically? Is there any validation rate showing the precision rate of the method? Are there any novel oncogenes detected by the method?	Formatted Table
Author Response)

|--|

<ID>REF3.7 – Logic gates

<TYPE>\$\$\$Network <ASSIGN> <PLAN>&&&AgreeFix <STATUS>%%%TBC

Referee	Are circuit gates necessary for Fig 3B? There are OR, AND Formatted Table
Comment	and NOT gates used. For Figure 3C(i), what is the meaning of the values between the green and yellow dots (MYC and
	*)? The figure legends are not explaining the figure very
	well and many details are omitted.
Author Response	
Excerpt From	
Revised	
Manuscript	
<id>REF</id>	3.8 – Network hierarchy
<type>\$\$\$H</type>	lierarchy
<assign>@</assign>	
<plan>&&&</plan>	
<status>%</status>	%%50DONE Deleted: TBC
Referee Comment	For Figure 4, what does the star symbol (*) mean in the 4 Formatted Table
conunctite	regend? Did the authors use a different grey color to show

	the connection between TFs? I'm not able to read the grey gradient for the edges.
Author Respor	We thank referee for point out this issue. We have updated the figure 4 to show the significance testing of network hierarchy analysis. If a p-value is less than 0.05 it is flagged with one star (*). If a p-value is less than 0.01 it is flagged with two stars (**). If a p-value is less than 0.001 it is flagged with three stars (***).
Excerpt From Revised Manusc	

<ID>REF3.9 – Network rewiring

<TYPE>\$\$\$Network <ASSIGN> <PLAN>&&&AgreeFix <STATUS>%%%TBC

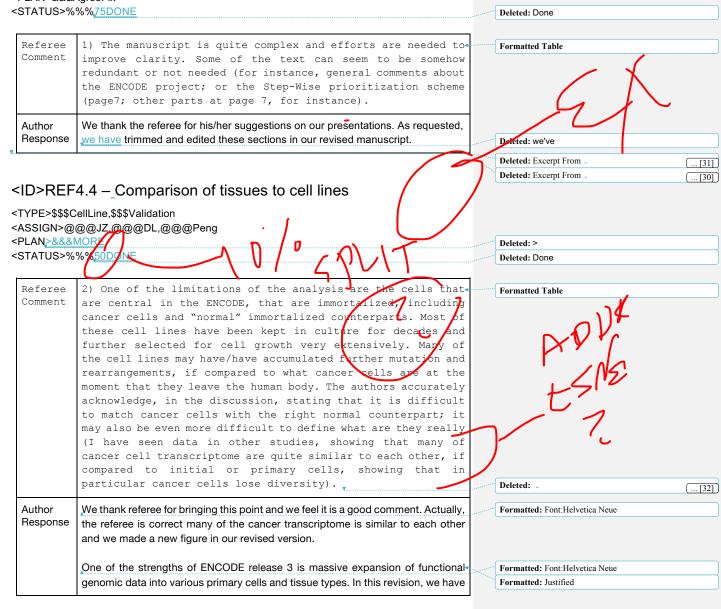
-

Referee	For Figure 5B, what does the vertexes and edges represent? \checkmark	Formatted Table	
Comment	I guess they represent genes and their network connection, respectively? How did you select the genes and why are some of them "thick" while others "thin"?	RAN	
Author Response	D15Call		
Excerpt From Revised Manuscript			

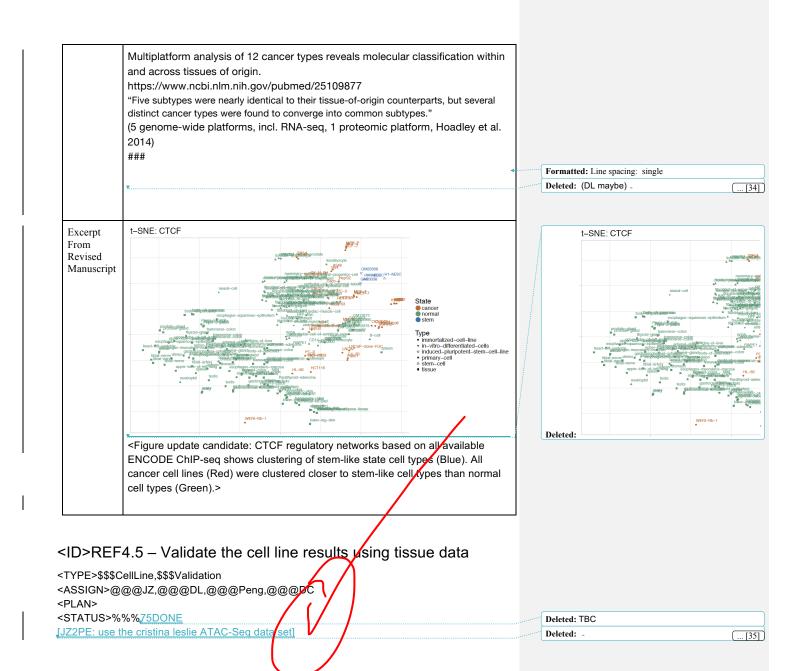
Referee #4 (Remarks to the Author):	
<id>REF4.0 – Preamble <type>\$\$\$Text <assign>@@@MG,@@@.Z PLAN>&&&AgreeFix <status>%%%75DOME We would like to appreciate the referee's feedback and positive comments about our resource. We found that many of the suggestions, such as further power analysis stemness and rewiring, comparison of cell line vs_tissue cross validation using primary cancer data, are quite valuable. As suggested, we have significantly expanded them while preserving our original goal in our revised manuscript. <id>REF4.1 – Strengths of the Paper <type>\$\$\$NoveltyPos</type></id></status></assign></type></id>	Deleted: Done Deleted: - ([27] Formatted: Font color: Black Deleted: &
<pre><assign>@@@MG,@@@JZ <plan>&&&AgreeFix <status>%%%75DONE</status></plan></assign></pre>	Deleted: Done
Referee Comment I fully acknowledge that the manuscript proposes a very important approach from detecting the mutations that are most relevant for each specific type of cancer, integrating epigenome data, transcription factor binding, chromatin looping to focus on key regions: ultimately, this work demonstrates the importance of functional data beyond the primary sequence of the genome. Other important aspects include the comprehensiveness and breadth of the data, the analysis and ultimately the whole integrated approach, which goes beyond commonly seen genomics analysis. However the manuscript is not trivial to read and digest in the first round: anyway I believe that the message, including the importance of the integration multiple types of data, is very important.	Formatted Table
Author Response We thank the referee for the positive comments.	
	Deleted: Excerpt From

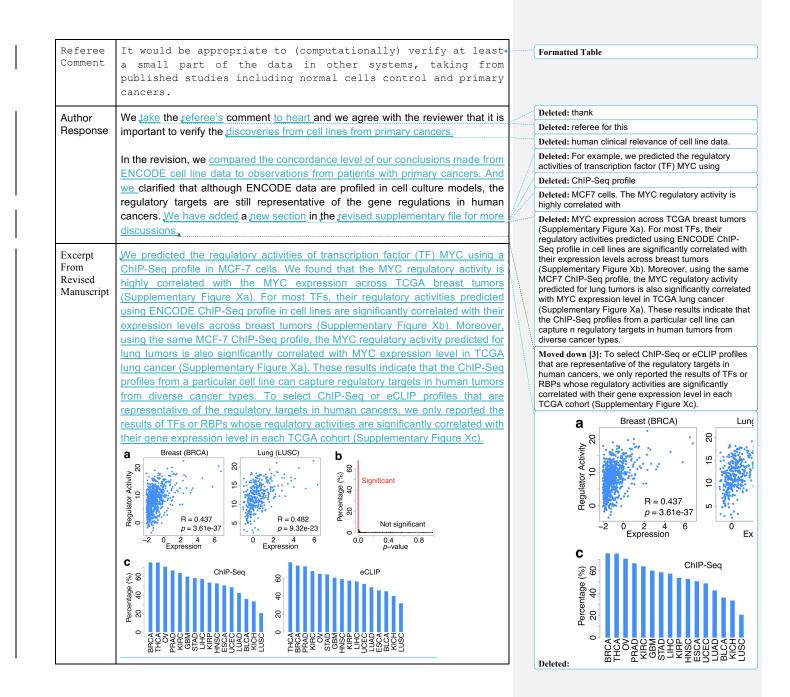
<ID>REF4.2 – Changing the presentation of the supplement

<TYPE>\$\$\$Text,\$\$\$Presentation <ASSIGN>@@@DC,@@@JZ <PLAN>&&&AgreeFix <STATUS>%%%<u>75DONE</u>


		-		
Referee Comment	Yet, efforts to make the manuscript more readable will be quite important. For instance, I could understand several sections of the manuscript after reading carefully the not so short supplementary part. The strategy of sample selection was easier to understand after seeing the first figure of the supplementary information, as well as fig S1-3 regarding the number of normal vs cancer cell lines. I'm not sure what the space limitation for this manuscript will be, but clarity should be an important component of a Nature paper.		{	Formatted Table
Author Response	We thank the referee for pointing out that jt is sometimes hard to see the full documentation of our methods in the main part and one has to look at the extensive supplements. We are well aware of this fact. The very large scale of the supplement is typical for large genomic paper. We, in fact, have been actively discussing with Nature Publishing and other companions about the supplement with regard to the main text. We have attempted to put important <u>contents</u> in the supplement and to structure it very carefully.			Deleted: In relation to the supplement and genomics, Deleted: points Deleted: it's Deleted: things
	We admit that maybe this construction is not that intuitive. We are prepared to work very hard to make the structure of the supplement understandable. We have tried to revise it to make these clearer and also to move more into the main text, though we think given the current main text limitations of a typical paper in <u>Nature</u> and the scale of the results in the data in this paper, it is not easy to put everything into the main text. We are preparing to work constructively with the referees and the others to make this clear.	 	{	Deleted: We've Deleted: appointives Deleted: nature Deleted: it's simply impossible
Excerpt From Revised Manuscript				

Deleted: Done


<ID>REF4.3 – Trimming and editing parts of the manuscript


<TYPE>\$\$\$Text,\$\$\$Presentation

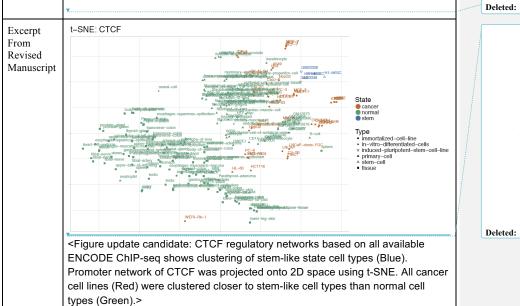
<ASSIGN>@@@DC,@@@JZ <PLAN>&&&AgreeFix <STATUS>%%%75DONE

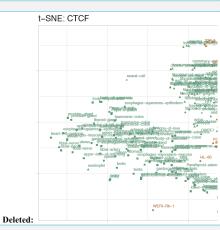
extensively explored the chromatin landscape and expression path of available ENCODE primary cells and tissues, and compared the immortalized cell lines with deep annotations. We have chosen C	Err with existing Formatted: Font:Helvetica Neue
and RNA-seq, which has the most abundant number of cell types i	
examples to highlight this point. We looked at differential bindi	
CTCF at promoter regions across cell types. The t-SNE plot of shows that most of normal cell lines form a cluster together with h cells, and cancer cell lines can be linearly separable from counterparts.	healthy primary
.	t-SNE: CTCF
############ 23 mar ongoing stuff ###################################	to extended
####7mar - get pe to do this timputed on the leslie data & also so	ime
transcriptome analysis	man chora-triangle Gardeter
####7mar either for imputed network OR for the transcription, we	take the
referee's comment to heart & try to do they we as the the ref su	body Dast Arristic Arriver Arristic Arriver Arrive
Take one TF from the imputed network	Provide an and a second
Ask PE on tumor data ATAC-seq paper	even
	Gastinergen und der Bestehlung u
Try to use some of the imputed stuff on roadmap tissue to show s	similar results
Let peng to use PE's network, compare results?	tests gazinocompetersularia every Bastlocritenius-mediateorit.pepter
To use the imputed network in tissue and used the KD data in cell	l line as a
validation	WERI-Rb-1
KD in tissue external data	Deleted:
**** we've really made better use of the encode knockdown data a	and highlight
&&&& knockdowns	
### PDM references ###	
A pathology atlas of the human cancer transcriptome	
http://science.sciencemag.org/content/357/6352/eaan2507	
"analyses revealed that gene expression of individual tumors withi	in a particular
cancer varied considerably and could exceed the variation observ	/ed between
distinct cancer types." (RNA-seq, Uhlen et al. 2017)	
Human cancers overexpress genes that are specific to a variety of	f normal
human tissues	
http://www.pnas.org/content/102/51/18556	
"The results indicate that many genes that are overexpressed in h	iuman cancer
cells are specific to a variety of normal tissues, including normal tis	issues other
being are specifie to a variety of normal disputes, moldaling normal di	

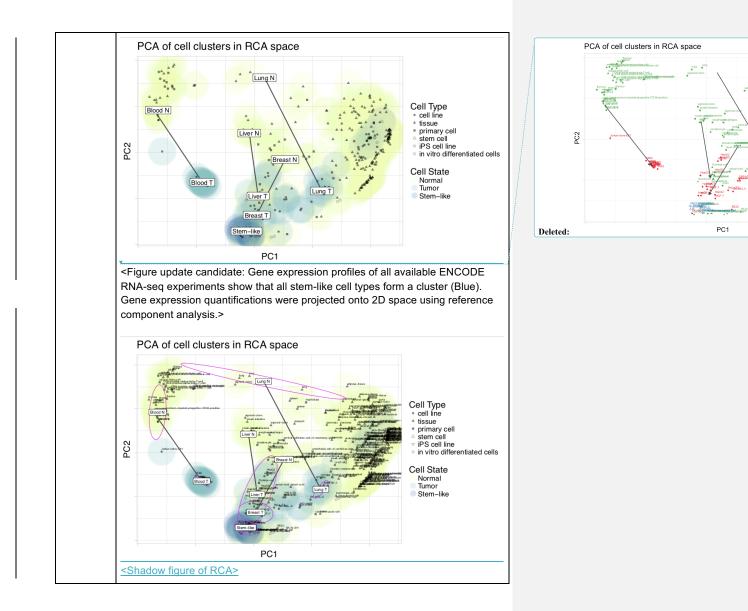
	Supplementary Figure X. The clinical relevance of ENCODE cell line data in human primary tumors.	
	(a) The correlation between <i>MYC</i> expression level and regulatory activity across tumors. The MYC regulatory activity in each tumor was predicted using the ChIP-Seq profile in $\underline{MCF-7}$ cell line. The Pearson correlation between MYC gene expression level and	Deleted: MCF7
	regulatory activity were computed across tumors in each cancer type. The statistical significance of Pearson correlation was tested by the two-sided student t-test. BRCA: breast invasive carcinoma. LUSC: lung squamous carcinoma.	
	(b) The distribution of correlation <i>p</i> -values in TCGA breast cancer. For each TF, we tested the statistical significance of Pearson correlation between TF expression levels and regulatory activities predicted across tumors through two-sides student t tests as panel a. For TCGA breast cancer cohort, most <i>p</i> -values are very significant with a few non-significant values.	
	The fraction of regulators with statistically significant correlations in different cancer types for ChIP-Seq and eCLIP networks. In each TCGA cancer type, we computed the correlations between regulator expression levels and regulatory activities across tumors for all regulators (TFs, or RBPs). We selected regulators	
	with statistically significant correlations through two-sided student t test (FDR < 0.05).	
	0.05).	
[YPE>\$\$\$	0.05). =4.6 – Relationship of H1 to other stem cells Stemness\$\$\$Calc	
TYPE>\$\$\$ ASSIGN>@	0.05). F4.6 – Relationship of H1 to other stem cells Stemness\$\$\$Calc @@@DL,@@@PE,@@@DC	
TYPE>\$\$\$ ASSIGN>@ PLAN>&&8	0.05). =4.6 – Relationship of H1 to other stem cells Stemness\$\$\$Calc	Deleted: TBC%%MORE
TYPE>\$\$\$ ASSIGN>@ PLAN>&&8	0.05). F4.6 – Relationship of H1 to other stem cells Stemness\$\$\$Calc @@@DL,@@@PE,@@@DC AgreeFix. <u>&&&MORE</u>	Deleted: TBC%%%MORE Formatted Table

Author Response We thank the referees for bringing this point out and we have done what they suggested. We have chosen H1-hESC because it offers the broadest ChIP-seq

1


1


Deleted: > PE's imputed network stuff


[... [36]]

coverage and has the most amount of other assays in ENCODE. In our revised manuscript, we have expanded our analysis to other stem cells. We have compared other available stem-related cell types, as suggested by the referee, to H1-hESC to show that H1-hESC is not very different from other stem cells from tissues. We have evaluated regulatory activity of all ENCODE biosamples and across all available stem-like cells in ENCODE and measured the distance between stem-like cells. We show that H1-hESC is not far distinct from other stem-like cells. As shown earlier, one analysis we have added is to look at regulatory networks of CTCF, one of the most widely assayed TF in ENCODE. As expected, all of stem-like cell types formed a cluster, suggesting stem-like cell types have a distinct regulatory profile from normal and cancerous cell types, and stem-like cells including H1 and iPSCs have similar regulatory patterns.

Another analysis we added was to look at gene expression profiles of all available ENCODE cell types. In agreement with the previous analysis, gene expression profiles of stem-like cell types were very similar to each other and formed a cluster when projected onto 2D RCA space.

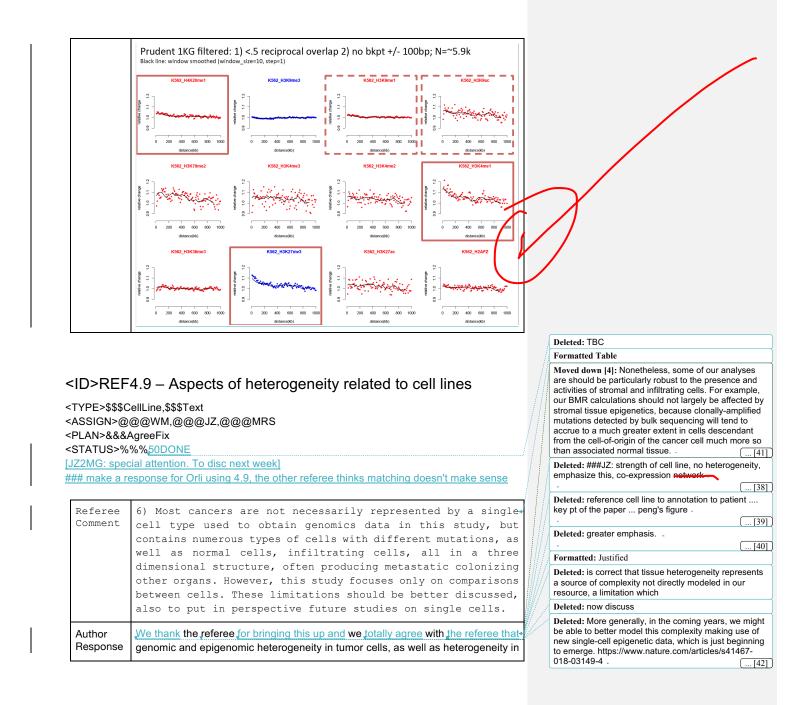
<ID>REF4.7 – Fixes for Figure 1

<TYPE>\$\$\$Presentation,\$\$\$Later

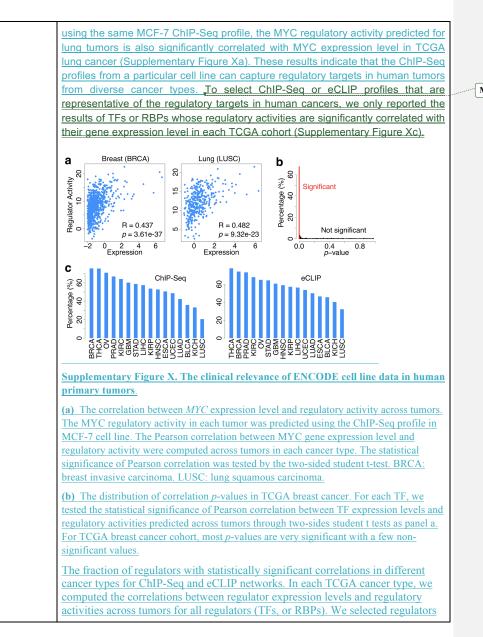
STATUS>%	%% <u>75DONE</u>	 Deleted: TBC
Referee Comment	4) I have difficulties to fully understand Fig.1, in- particular the patient cohort (PC) at the bottom of the "depth approach" (just above the green box of cell -specific analysis). The two rows are at the bottom of the columns report mutation and expression, but they belong to the columns of the cell lines (K562, HepG2, etc). I just simply do not understand that part of the figure, in particular the relation between cell lines and the patient cohort (the figure legend does not help, and also supplementary material did not help).	 Formatted Table
Author Response	We thank referee for the suggestion. In the revision we have extensively revised the figure 1. We understand that numbers at the mutation and expression rows can be misleading, so we have separated cohort-based data matrix out of cell-type data matrix. In addition, more emphasis was put into the overview schematic to highlight the value of ENCODEC as a resource,	 Deleted: DL - think about how we can change the figure . ([37])
Excerpt From Revised Manuscript		

<ID>REF4.8 – SVs affecting BMRs & Network

<TYPE>\$\$\$BMR,\$\$\$Network,\$\$\$Calc <ASSIGN>@@@DL,@@@XK, @@@TG,@@@STL <PLAN>&&&AgreeFix<u>&&&MORE</u> <STATUS>%%%<u>30DONE</u> [JZ2MG: to disc next week]


[JZ2DL, XM, TG, STL: woiuld you please help to fill in the stuff?]

|--|


Deleted: TBC,%%%MORE

Deleted:

Author Response		on the relationship of structural variants, BMR, e are <u>verv</u> good suggestions and we wished we n.		Deleted: extremely
	in main text figures that look at the mature background mutational rate We think this is an ideal illustration mapping a lot about the function sets actually give rise to structural integral output of the product. Re	taken this comments to heart and have added ne degree to which structural variants, or SVs, te, and they also affected the network rewiring. ion of the ENCODE data since, in addition to of the genome, some of the new incurred data variants meaning that structural variants are an elating them to network wiring and background on of the value of the data and the project. We		Deleted: we're Deleted: taking Deleted: a Deleted: wiring
	heartly thank the referee for pointi First, we did observe an elevated a	w main figures that address this and we quite ng this out. To summarize our conclusion, SNV/indel rate around the breakpoints. uced enhancer gain/loss events and relate them of SNVs to network rewirings		Deleted: mains
Excerpt <u>1</u> From Revised Manuscript	Regarding the relationship of SNV to SNPs density	<u>SV</u> InDels density	-	
	10 12 14 10 10 12 14 10 10 12 14 10 10 12 14 10 10 12 14 10 10 12 14 10 10 12 14 10 10 12 14 10 10 12 12 14 10 12 12 14 10 12 12 14 10 12 12 14 10 12 12 14 11 12 12 14 11 12 12 14 12 12 12 14 13 12 12 12 14 12 12 12 15 12 12 12 15 12 12 12 15 12 12<	0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	0 200 400 600 880 1000 distance(kb)	0 200 400 600 800 1000 distance(tb)		

	the tumor microenvironment (e.g., immune cell infiltrates, hormonal factors, normal cell populations, etc.) are significant factors in tumor growth and development. This is a limitation of the current technique, which we now discuss with greater emphasis.		Deleted: Nonetheless, we feel there remains value in single-cell comparisons between tumor and normal cells.
	Apart from the advantage of single-cell analyses of enabling examination of complex cancer cell biology, there is, moreover, reason to believe that single-cell analyses may capture important tumor biology present <i>in vivo</i> . Cancers that result from a single progenitor cell, or homogenous progenitor population, provide a justification for the use of single-cell analyses and comparisons. There is evidence that a number of cancers may develop according to the cancer stem-cell model, which posits that it is only a small population of stem-like cells that are responsible for tumor development and observed intratumoral heterogeneity (PMID: 24607403). Understanding the biology of a single cells in the progenitor population may be sufficient to gain perspective on the tumor landscape as a whole.		
	Nonetheless, some of our analyses are should be particularly robust to the presence and activities of stromal and infiltrating cells. For example, our BMR calculations should not largely be affected by stromal tissue epigenetics, because clonally-amplified mutations detected by bulk sequencing will tend to accrue to a much greater extent in cells descendant from the cell-of-origin of the cancer cell much more so than associated normal tissue.		Moved (insertion) [4] Deleted: Even Formatted: Justified
	In addition, even when there is genomic heterogeneity observed across tumore clones and subclones, the main driver mutations and phenotypic traits may be widely shared among cells (PMID: 3944607, 21376230). For example, in a single-cell sequencing analysis of colon cancer, the primary drivers TP53 and APC were present in the majority of cells across clones, with other mutations showing greater heterogeneity. (PMID: 24699064) Furthermore, even when there is substantial initial genomic and phenotypic heterogeneity, tumors may tend to converge to a genomic and phenotypic equilibrium (e.g, to a stem-like state) as has been shown in a number of studies on breast cancer tumor evolution (PMID: 21854987, 21498687, 22472879). As we have shown in the revised manuscript that, the conclusions we made from the cell lines correlate well with the observations from primary cancer patients.	(Formatted: Justified
Excerpt From Revised Manuscript	We predicted the regulatory activities of transcription factor (TF) MYC using a ChIP-Seq profile in MCF-7 cells. We found that the MYC regulatory activity is highly correlated with the MYC expression across TCGA breast tumors (Supplementary Figure Xa). For most TFs, their regulatory activities predicted using ENCODE ChIP-Seq profile in cell lines are significantly correlated with their expression levels across breast tumors (Supplementary Figure Xb). Moreover,		jt-

Moved (insertion) [3]

with statistically significant correlations through two-sided student t test (FDR ≤ 0.05).

<ID>REF4.10 – IncRNAs and BMR

<TYPE>\$\$\$BMR,\$\$\$Calc <ASSIGN>@@@JZ <PLAN>&&&AgreeFix <STATUS>%%%50DONE

Referee Comment	7) When analyzing the BMR in cancer, did the author estimate the mutation rate in the lncRNAs? Is there any other interesting lesson from the analysis of the non-coding regions and their mutations rate?	Conce be	Formatted Table Formatted: Justified
Author Response	We thank the referee to point out this. We have added the analysis of IncRNA by comparing BMRs in genes and IncRNAs.		
Excerpt From Revised Manuscript			

<ID>REF4.11 – (Minor) updates to figure numbering in

supplemantary

<TYPE>\$\$\$Minor,\$\$\$Presentation <ASSIGN>@@@JZ <PLAN>&&&AgreeFix <STATUS>%%%75DONE

Referee In the supplementary material, there is room to improve Comment figures (some numbers are too small). Formatted Table

Deleted: Done

Deleted: Done

Formatted: Justified

Author Response	We thank the referee to point out this and we have fixed in our revised manuscript
Excerpt From Revised Manuscript	

<ID>REF4.12 – (Minor) Figure legends

<TYPE>\$\$\$Minor,\$\$\$Presentation <ASSIGN>@@@JZ <PLAN>&&&AgreeFix <STATUS>%%%75DONE

1

<51A105>%	%% <u>/5DONE</u>	 Deleted: Done	
Referee Comment	Figure legends. Figure legends are essential but I struggled to understand the figures based on the legends only.	 Formatted Table	
Author Response	We thank the referee to point out this and we have fixed in our revised manuscript		
Excerpt From Revised Manuscript			

Referee #5 (Remarks to the Author):

<ID>REF5.0 – Preamble

<TYPE>\$\$\$Text <ASSIGN>@@@MG,@@@JZ <PLAN>&&&AgreeFix <STATUS>%%%75DONE

We would like to appreciate the referee's feedback. We found that many of the suggestions, such as further power analysis, the false positive rate of rewiring, comparison with other networks, cross_cvalidation using external data, are quite valuable and we <u>significantly</u> expanded them in our revised manuscript as suggested. The referee mentioned that, but the novelty of the paper is lacking. We also thank the referee to point out his/her confusion about whether this is prospective or biology paper. We want to make it clear that this paper is to be considered as a "resource" paper, not a novel biology paper. We feel that cancer is the best application to illustrate certain key aspects of ENCODE data and analysis - particularly deep annotations and network changes. We have listed some more details about the novelty of this paper as below.

Contribution	Subtypes	ENCODE experiments		
Processed raw signal tracks	Histone modification	Signal matrix in TSV format	2015 Histone ChIP-seq	
	DNase I hypersensitive site (DHS)	Signal matrix in TSV format	564 DNase-seq	
	Replication timing (RT)	Signal matrix in TSV format	135 Repli-seq and Repli- ChIP	
	TF hotspots	Signal track in bigWig format	1863 TF ChIP-seq	
Processed quantification matrix	Gene expression quantification	FPKM matrix in TSV format	329 RNA-seq	
	TF/RBP knockdowns and knockouts	FPKM matrix in TSV format	661 RNAi KD + CRISPR- based KO	
Integrative annotation	Enhancer	Annotation in BED format	2015 Histone ChIP-seq 564 DNase-seq STARR-seq	
	Enhancer-gene linkage	Annotation in BED format	2015 Histone ChIP-seq 329 RNA-seq	

Deleted: Done

Deleted:

Deleted: his

Formatted Table

	Extended gene	Annotation in BED format	1863 TF ChIP-seq 167 eCLIP Enhancer-gene linkage
SV and SNV callsets	Cancer cell lines	Variants in VCF format	WGS BioNano Hi-C Repli-seq
Network	RBP proximal network	Network in TSV format	167 eCLIP
	Universal TF-gene proximal network	Network in TSV format	1863 TF ChIP-seq
	Tissue-specific TF-gene proximal network	Network in TSV format	1863 TF ChIP-seq
	Tissue-specific imputed TF-gene proximal network	Network in TSV format	564 DNase-seq
	TF-enhancer-gene network level 1-3	Network in TSV format	2015 Histone ChIP-seq 564 DNase-seq

Specifically for the BMR estimation part, the reviewer mentioned that there <u>had</u> been many existing references focusing on applications like cancer driver detection. First, we thank the referee for pointing out to a lot of related references. On the reference side, we have listed many of the papers as the referee suggested and compared them with our approach. We have acknowledged the efforts of many of these references and in the revised version we have further expanded our reference list for some the publications <u>after our initial submission date</u>. We want to emphasize that the richness of the ENCODE data can help many of the methods used in these papers. With a larger pool of covariate selection, the estimation accuracy can be significantly improved.

Deleted: have

Formatted: Underline

Deleted: actually

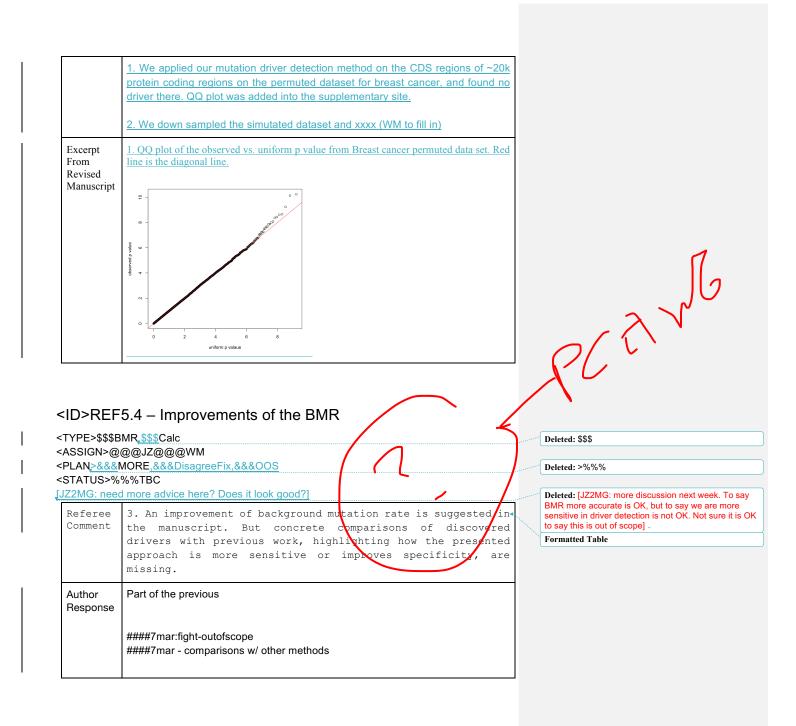
Reference	Initial	Revised	Main point	Comments
Lawrence et al, 2013	Cited	Cited	Introduce replication timing and gene expression as covariates for BMR correction	Replication timing in one cell type
Weinhold et al, 2014	Cited	Cited	One of the first WGS driver detection over large scale cohorts.	Local and global binomial model
Araya et al, 2015	No	Cited	Sub-gene resolution burden analysis on regulatory elements	Fixed annotation on all cancer types
Polak et al (2015)	Cited	cited	Use epigenetic features to predict cell of origin from mutation patterns	Use SVM for cell of origin prediction, not specifically for BMR
<u>Martincorena</u> et al (2017)	No (out after our submission)	Cited	Use 169 epigenetic features to predict gene level BMR	No replication timing data is used
Imielinski (2017)	No	Yes	Use ENCODE A549 Histone and DHS signal for BMR correction	Limited data type used from ENCODE
Tomokova et al. (2017)	No	Yes	8 features (5 from ENCODE) for BMR prediction and mutation/indel hotspot discovery	Expand covariate options from ENCODE data
huster-Böckler and Lehner (2012)	Yes	Yes	Relationship of genomic features with somatic and germline mutation profiles	NOT specifically for BMR
Frigola et al. (2017)	No	Yes	Reduced mutation rate in exons due to differential mismatch repair	NOT specifically for BMR
<u>Sabarinathan</u> et al. (2016)	No	Yes	Nucleotide excision repair is impaired by binding of transcription factors to DNA	NOT specifically for BMR
Morganella et al. (2016)	No	Yes	Different mutation exhibit distinct relationships with genomic features	NOT specifically for BMR
Supek and Lehner (2015)	No	Yes	Differential DNA mismatch repair underlies mutation rate variation across the human genome.	NOT specifically for BMR

Reference	Initial	Revised
Lawrence et al, 2013	Cited	Cited
Weinhold et al, 2014	Cited	Cited
Araya et al, 2015	No	Cited
Polak et al (2015)	Cited	cited
Martincorena et al (2017)	No (out after our submission)	Cited
Imielinski (2017)	No	Yes
<u>Tomokova</u> et al. (2017)	No	Yes
huster-Böckler and Lehner (2012)	Yes	Yes
Frigola et al. (2017)	No	Yes
Sabarinathan et al. (2016)	No	Yes
Morganella et al. (2016)	No	Yes
Supek and Lehner (2015)	No	Yes

Deleted:

<ID>REF5.1 – Positive comment of the paper

<TYPE>\$\$\$Text <ASSIGN>@@@MG,@@@JZ <PLAN>&&&AgreeFix <STATUS>%%%DONE


Deleted: Done

Referee While the resources provided in this manuscript are Formatted Table potentially interesting for the cancer genomics community and comprise an extensive body of work

Author Response	We thank the referee for the positive comment.		
ID>REF	5.2-BMR		Deleted: Excerpt From[44] Deleted: Excerpt From[43]
TYPE>\$\$\$T ASSIGN>@(PLAN>&&&A STATUS>%	@@JZ AgreeFix		Deleted: Done
Referee Comment	1. The manuscript does not clearly state innovation and novelty over previously published data and methods. Several published studies have used epigenomic data types, including replication time and histone modifications from ENCODE and other sources, to model background mutational background density and define genomic elements of interest. The use of the Negative Binomial/gamma-Poisson distributions to model mutational background in cancer has also been published (Imielinski et al 2016; Martincorena et al, 2017).		Formatted Table Formatted: Justified
Author Response	We thank the reviewer for bringing out these references. We did notice that epigenetic features have been used to estimate BMR and improve driver mutation detection. We do not intend to claim it is a new discovery that using matched features are better, but rather to show that the breadth of ENCODE data allows for improved estimates of background mutation rate. We have turthen acknowledged prior efforts on this topic in our revised manuscript. It is worth to mention that we have released way pore genomic features in a ready-to-use format and have shown that it would noticeably improve BMP estimate accuracy if appropriately used. We want to further emphasize two points here.	Sec. 1	Formatted: Font:Helvetica Neue Uncted: identifying Formatted: Font:Helvetica Neue Deleted: recognize Formatted: Font:Helvetica Neue Deleted: reviously been Formatted: Font:Helvetica Neue Deleted: or aim was not to produce novel BMR estimation models, but rather to showcase how ENCODE data can help improve the performance of such models. Formatted: Font:Helvetica Neue
	<u>1. ENCODE3 uniformly processed 2017 histone modification data, which makes</u> a much larger pool of features to choose from to potentially improve BMR estimation. Also, the majority of them are actually from real tissues and primary cells (1339 out of 2017).		Moved (insertion) [5] Formatted: Font:Helvetica Neue, 11 pt Formatted: Justified Formatted: Font:Helvetica Neue
	ENCODE3 provides way more replication timing data. Previously, researchers either use no or only HeLa replication timing for all cancer types (Martincorena et		Moved (insertion) [6] Formatted: Font:Helvetica Neue Formatted: Line spacing: multiple 1.15 li

		al., 2017, Lawrence et al., 2013), or any of the 16 repli-Seq data from previous ENCODE release. We largely extended this number to 51 cell types (12 cell lines).					
Excerpt From	Table S	1. Summary of ENCODE3 histone ChIP-S	Seq data				
Revised Manuscript		Cell Type	# histone marks				
Ĩ		tissue	<u>818</u>				
		primary-cell	<u>521</u>				
		<u>cell-line</u>	<u>339</u>				
	in	in-vitro-differentiated-cells	<u>179</u>				
		stem-cell	<u>114</u>				
		induced-pluripotent-stem-cell-line	<u>46</u>				

TYPE>\$\$\$B ASSIGN>@ PLAN <u>>&&&</u> I STATUS>%	5.3 – TCGA benchmark MR_\$\$\$Calc @@JZ,@@@WM MORE %%/55ONE your please help to paste your stuff here?]	 Deleted: on the gene level Deleted: \$\$\$ Deleted: >%%% Deleted: TBC
Referee Comment	2. Throughout, the main manuscript lacks data and statistics supporting the claims made. For example, the performance of tissue-specific background mutation models applied to TCGA data needs to be evaluated against known results and benchmarks from TCGA. It seems that some of these are presented in the extensive supplement and should be moved to the main manuscript.	Formatted Table
Author Response	We thank the referee for bringing out this point. We agree that it is important to benchmark the mutation rate estimation. However, we are part of the PCAWG noncoding driver detection group for the joint analysis of TCGA and ICGC data. From our experience in this group, we did not find a gold standard for the whole genome mutation rate estimation. Alternatively, we evaluated the BMR estimation to the commonly used permutation set, which random select a new position within a 50kb window of each somatic variant while preserving the local context.	 Deleted:[46])

	###21mar - Inigo's paper is not about BMR/driver discovery #### in response doc, praise referee, do analysis to compare Inigo's method
Excerpt From Revised Manuscript	

<ID>REF5.6 – Power analysis

PLAN <u>>&&&</u> I STATUS>%	MORE %%75DONE	Deleted: >%%% Deleted: TBC
	ns that this referee need to see results not just math equations]	Putturi IDO
Referee Comment	4. The power considerations for selecting genomic elements are valuable. Again, sensitivity/specificity analyses of driver discovery with large sets, or long vs. reduced element size need to be added. Prior efforts to address this problem with restricted hypothesis testing for cancer genes should be cited (Lawrence et al, 2014; Martincorena, 2017).	Formatted Table Formatted: Justified
Author Response	We thank the referee for his/her positive comment on the value of selecting genomic element and suggestion on the power analysis. In our revised manuscript, we expanded our power calculation extensively (see details below). In terms of reference, we cited the Lawrence et al, 2014 paper (and the paper before this one in the same group) in our initial submission and added the Martincorena, 2017, which is published after our submission in Aug 2017.	Detterd: .
	 nonfunctional sites while preserving the functional ones. Two examples can explain the motivation of this assumption. 1) Enhancers: Traditionally, enhancers were called as a 1kb peak regions, which admittedly introduced a lot of obviously nonfunctional sites. We believe we can get functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C data. 	V

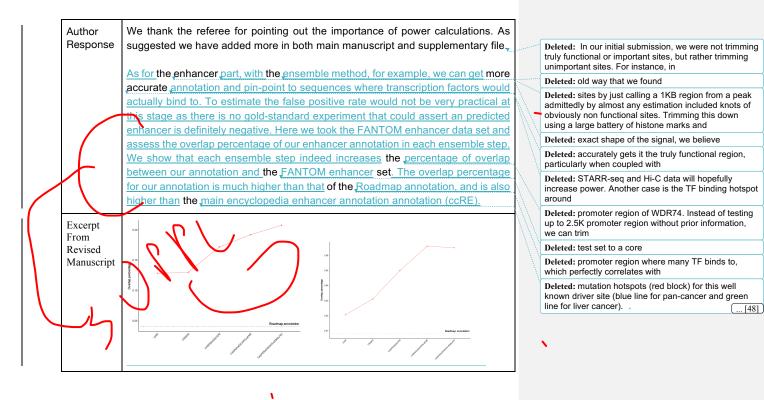
	conventional up to 2.5 the promoter region v mutation hotspots (rea cancer and green line Following the reviewe formal power analysis including additional fu	and the promoter region of WDR74. Instead of X promoter region, we can trim the test set to a there many TFs bind, which perfectly correlat I block) for this well-known driver site (blue li for liver cancer). T's suggestions, in our revised manuscript we that the most important contribution to power of inctional sites, which is of course by the external ndarily, from removing non-functional sites, but	core set of es with the ne for pan- show in s comes from nded gene	
	extent. The assumption distinguish the more in through the guidance of Admittedly, we are may pointing this out. We have that the large number directly get the function hard to tell to what deg It is hard to back this up	in a our compacting annotations is that we car apportant functional nucleotides from the less important functional characterization assays. King assumptions and the referee is completed ave tried to be more precise in the text that we ar of ENCODE assays, when integrated, allow that nucleotides, but this, of course, is an assur- tee one can succeed in finding the current event of with the gold standard, but we think that some opus. We have tried to make this clear in text an	accurately ortant ones y correct in e assuming us to more nption. It is s in cancer. of the point	
Excerpt From Revised Manuscript	referee for pointing this			; J Ç P L
	wer <mark>_§§§</mark> Text)@JZ ORE	power analysis to other work	Deleted: \$ Deleted: >	

[JZ2MG: can we say this is out of scope here? Please advise]

Referee Comment	5. "Increased" power of the combined strategy is suggested * in the manuscript, yet comparison to prior work is missing.	Formatted Table
Author Response	Following the reviewer's suggestions, we show in a formal power analysis new in the supplement that the most important contribution to power comes from including additional functional sites, this is of course by the extended gene concept and then secondarily, from removing non-functional sites, but to a lesser extent. The assumption in our compacting annotations is that we can accurately distinguish the more important functional nucleotides from the less important ones through the guidance of many functional characterization assays. However, we are admittedly making assumptions and the referee is completely correct in pointing this out. We have tried to be more precise in the text that we're basically assuming that the large number of encode assays when integrated allows us to more directly get at the functionally important nucleotides, but this of course is an assumption. It's hard to really tell to what degree one can success in finding the current events in cancer. It's hard to back this up with the gold standard, but I think that some of the points are self evidently obvious. We've tried to make this clear in text and thank the referee for pointing this out.	$\left(\frac{z}{z} \right)$
Excerpt From Revised Manuscript		

<ID>REF5.8 – false positive rates of enhancers

<TYPE>\$\$\$Power<u>\$\$\$</u>Text <ASSIGN>@@@JZ<u>@@@MTG</u> <PLAN>&&&AgreeFix <STATUS>%%%<u>DONE</u>

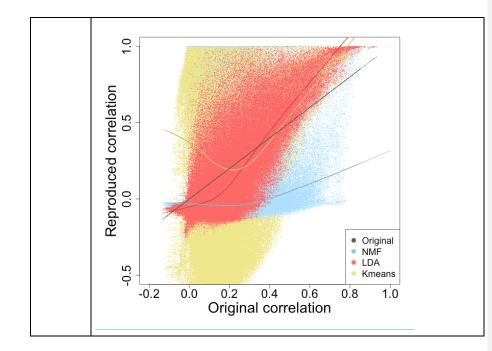

Referee 6. The authors claim that reduction of functional elements. Comment increases power to discover recurrently mutated elements. This point needs quantitative support in the main manuscript (some analysis is given in the supplemental). For example, in the enhancer list derived from the ensemble method, what fraction of enhancers are estimated to be false positives? Deleted: Calculation of power

Deleted: Done

Deleted: \$\$\$

Formatted Table

Formatted: Justified



<ID>REF5.9 – Assessing quality of enhancer gene linkage annotation

ГҮРЕ>\$\$\$А	nnotation <mark>.\$\$\$</mark> Text		Deleted: \$\$\$
ASSIGN>@(PLAN <u>>&&&</u> M	@@KevinYip,@@@SKL AORE		Deleted: >%%%
	%%50DONE		Deleted: TBC
	 The authors claim superior quality of gene-enhancer links 		Deleted: [JZ2MG: next week will check the status of KevinYip, SKL stuff added] -
Comment	and gene communities derived from their machine learning		Formatted: Justified
	approach. The method should at least be outlined in the main		Formatted Table
	text, and accompanied by data supporting its accuracy and	1	Formatted: Font:Helvetica Neue
	better performance compared to existing approaches.	- 17	Deleted: We have done as suggested. We
			Formatted: Font:Helvetica Neue
Author	We thank the referee for the comments. In the revised supplementary file, we have	and the second	Deleted: a few sentences
Response	added two sections to discuss these points.	6	Formatted: Font:Helvetica Neue
			Deleted: the main text better
			Formatted: Font:Helvetica Neue

	1. Regarding the gene-enhancer linkages		Deleted: definition and gene linkage prediction. We have created suppl. Section XXX that shows the performance of JEME + Hi-C.
	2. Regarding the gene community methods		Formatted: Font:Helvetica Neue, Italic, Underline
	We have compared the gene community model with other methods like WIF by	(Y)	Formatted: Font:Helvetica Neue, Italic, Underline
	extending our analysis from 122 GM12878 and K526 dataset to all the 862 F	()	Formatted: Font:Helvetica Neue, Italic, Underline
	ChIP-Seq assays included in ENCODE data portal. Analysis showed that our		Formatted: Font:Helvetica Neue
	method can better preserve the data structure after dimension reduction,		Formatted: Justified
			Deleted: Also we
Excerpt	Mix membership model is a hierarchical Bayesian topic model framework and can		Formatted: Font:Helvetica Neue
From Revised	help to uncover the underlying semantic structure of a document collection. The core of topic models is Latent Dirichlet Allocation(LDA), which cast the mixed-	ununun .	Deleted: . Mix membership model is a hierarchical Bayesian topic model framework and can help to $\frac{1501}{2}$
Manuscript	membership (topics) problem into a hidden variable model of documents. The LDA model has been widely used to analyze a wide variety of data types, including but		Moved down [7]: The core of topic models is Latent Dirichlet Allocation(LDA), which cast the mixed-
	not limited to text and document data, genotype data, survey and voting data. The		Formatted: Font:Helvetica Neue
	advantage of LDA over other algorithms (like SVD, PLSI) used in semantic		Deleted: SVD, PLSI) used in semantic
	analysis has been described in Blei 2003.		Formatted: Font:Helvetica Neue
			Deleted: has been described in Blei 2003.
	With regards to the referee's question, there is no ready-made answers since the		Deleted: GM
	data type (TF target network) and problem-definition of our study are both specific.		Formatted: Font:Helvetica Neue
	If we treat the LDA mixed-membership analysis as a dimensionality reduction		Deleted: samples
	problem, it is possible to compare how well of a model can reproduce the		Formatted: Font:Helvetica Neue
	information of original data, as described in paper (Guo, Y., & Gifford, D. K. (2017).		Formatted: Font:Helvetica Neue
	Modular combinatorial binding among human trans-acting factors reveals direct and indirect factor binding. BMC Genomics, 18(1), 45.). The correlations of the		Deleted: In order to get a reliable correlation, we also increase the number of topic to 50 as the number [[53]
	original target gene vectors between two TFs are compared with those of		Moved down [8]: As shown in the figure, the x-axis is original correlation of two TF regulatory target, y ₁ [54]
	dimension reduced vectors. The better method should be much close to original		Deleted: the NMF.
	vectors correlations.		Moved (insertion) [7]
	To explore how well the LDA mixed-membership analysis on TF regulatory		Moved (insertion) [8]
	network, we extend our dataset from 122 GM and K526 samples to all the 862 TF ChIP-Seg assays included in ENCODE data portal. In order to get a reliable		1.0
	correlation, we also increase the number of topic to 50 as the number of TF sample		
	increases. The non-negative matrix factorization (NMF) and Kmeans clustering		
	are used for comparison because the nature of regulatory network requires a non-		ela
	negative decomposition. The same target dimension K =50 was used to NMF and		
	target number of clusters K=50 for Kmeans. The Euclidean distance between each		0 7
	data the centroidds are used to calculated the correlation. As shown in the figure,		Ö Ö
	the x-axis is original correlation of two TF regulatory target, y-axis is reproduced	1	Reproduced correlation
	correlation from LDA document to topic distribution and NMF decomposed matrix.		
	The solid line is the 'loess' smoothing curve for the scattered dots. We can see	/	B. O. R.
	the LDA method can reproduce the original correlation better than either NMF or		
	Kmeans. Overall correlation between the reproduced pairwise correlation and the		0.2
	original correlation were 0.123 in Kmeans, 0.404 in NMF and 0.788 in LDA.		-0.2 0.0 0.2 0.4 0.6
	1		Deleted: Original correlation

~ 4

<ID>REF5.10 – What data sets are used

summarized it in a line in the main text.

<TYPE>\$\$\$BMR <ASSIGN>@@@JZ <PLAN>&&&Defer <STATUS>%%%DONE

Author Response

Referee	8. From the main manuscript, it is not clear which cancer.	
Comment	data sets were analyzed with the new background mutation rate	
	estimates and functional regions. Datasets and sample size	
	should be mentioned explicitly.	

We thank the referee for bringing out this point. We provide it here in the table and

Formatted: Justified Formatted Table

Deleted: Done

public data?]

Deleted: [JZ2MG: to disc next week can we use other

Excerpt From Revised Manuscript			
	AgreeFix	·	
Comment Author Response	We thank the reviewers for pointing this out. In the BMR calculation section, we did consider the local 3mer context effect. But we did not specifically looked into the mutational signatures otherwise. We have made this clear in the revised manuscript.	Deleted:	[[55]]
Excerpt From Revised Manuscript			
	AgreeFix		

Referee 10. The significance analysis of cancer cohorts (Figure 2) Comment should highlight known cancer genes versus those newly found

Formatted Table

	in this study. A QQ-plot should be included to confirm that the algorithm accurately models the background expectation.			
Author Response	We thank the reviewers for pointing this out. Yes, we have provided the QQ plot in the supplementary file in our initial submission		Deleted: _ Excerpt From _	[[56]
			Deleted: Excerpt From .	[[57]
	5.13 – Sequence coverage			
ASSIGN>@				
PLAN>&&& STATUS>%	AgreeFix %% <u>100DONE</u>		Deleted: DONE	
Referee	Do the authors include sequence coverage in their method? •		Formatted Table	
Comment				
Author Response	Thanks for pointing this out. We did not consider coverage but this is a good point. We included in the discussion in our revised manuscript,		Deleted:	
Excerpt From Revised Manuscript				
ID>REF	5.14 – Power analysis for compact annotation			
TYPE>\$\$\$F ASSIGN>@ PLAN>&&&/				
STATUS>%	%% <u>100DONE</u>		Deleted: Done	
Z2MG: feel	the three power related questions can be combined]			
			Formatted Table	
Referee	How do the new "compact annotations" lead to improved	r /	Deleted: When all	

	results over traditional annotations?	1			
Author Response	We thank the referee for pointing this out. We have made it more clear in our supplementary file. In our initial submission, the assumption is that we were				
	trimming off the nonfunctional sites while preserving the functional ones. Two				
	examples can explain the motivation of this assumption.	1			

Deleted: sites are within the test region, a shorter or "compact" annotation

Deleted: significantly reduce noise level and increase statistical power. For example, if we were not trimming truly functional or important sites, but rather trimming unimportant sites, the test power will increase. For instance, in

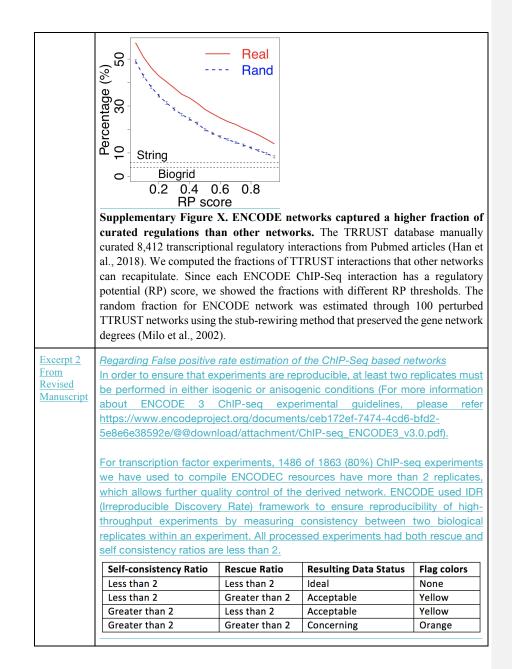
Deleted: old way that we found enhancer sites by just calling a 1KB region from a

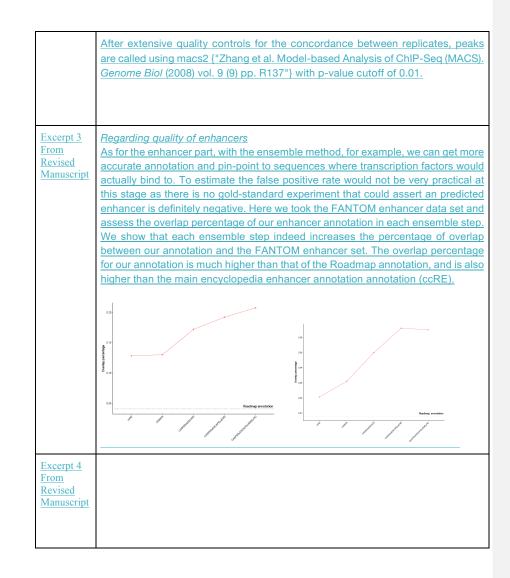
	admittedly introduced a lot of obviously nonfunctional sites. We believe we can get		Deleted: by almost any estimation included knots
	functional region more accurately by trimming the enhancers down using the exact shapes of many histone marks and further integration with STARR-seq and Hi-C		Deleted: non functional sites. Trimming this down usin a large battery of histone marks and the exact shape the signal, we
	data, <u>2) TFBS hotspots around the promoter region of WDR74</u> . Instead of testing the		Deleted: gets it the truly functional region, particularly when coupled
	conventional up to 2.5K promoter region, we can trim the test set to a core set of	\mathbb{N}	Deleted: accurate
	the promoter region where many <u>TFs bind</u> , which perfectly correlates with the mutation hotspots (red block) for this well known driver site (blue line for pan-	$\langle \rangle \rangle$	Deleted: will hopefully increase power. Another case the TF binding hotspot
	cancer and green line for liver cancer),	$\mathbb{N}\mathbb{N}$	Formatted: Underline
		$\langle \rangle \rangle$	Deleted: without prior information
Excerpt From	p15.4 p15.3 p15.1 p14.3 p14.1 p13 p12 p11.2 p11.12 q11 q12.1 q12.2 q13.1 q13.3	$\langle \rangle \rangle$	Deleted: TF binds to
Revised	5,566 bp	\sim	Deleted:
Manuscript	MutationcerTypes		Deleted:
D>REF	5.15 – BCL6 Questions		4221
TYPE>\$\$\$A \SSIGN>@	Annotation,\$\$\$50alc @@XK_@@@TG		A221
TPE>\$\$\$A SSIGN>@ LAN>&&&	Annolation,\$ \$\$Co lc @@XK.@@@TG AgreeF/x		Deleted: TBC
TPE>\$\$A SSIGN>@ PLAN>&&& STATUS>%	Annotation,\$\$\$50alc @@XK_@@@TG		Deleted: TBC Deleted: to be added to
TPE>\$\$A SSIGN>@ PLAN>&&& STATUS>%	nnolation,\$ \$\$Ca lc @@XK.@@@TG kgreeF/x %% <u>2(Done</u>		
TPE>\$\$A SSIGN>@ PLAN>&&& STATUS>%	nnolation,\$ \$\$Ca lc @@XK.@@@TG kgreeF/x %% <u>2(Done</u>		Deleted: to be added to
TYPE>\$\$\$A SSIGN>@ PLAN>&&& STATUS>% Z2MG: chec	Annotation,\$\$\$Celc @@XK @@@TG AgreeFix %%2 <u>CDone cking the SV status now, to report</u> next week]		Deleted: to be added to Deleted: disc agenda
TYPE>\$\$\$A SSIGN>@ PLAN>&&& TATUS>% Z2MG: cher Referee	Annotation, \$\$\$Calc @@XK.@@@TG greeF/x %%2CDone cking the SV satus now, to report next week] 11. The authors mention that BCL6 would have been missed in an exclusively coding analysis. In which part of the extended annotations were recurrent BCL6 mutations found? If near the promoter, is the BCL6 5' region a known AID off-target? Are		Deleted: to be added to Deleted: disc agenda Formatted Table

Excerpt From Revised			1
Manuscript	RefSeq Genes	NR_034062 BCL6 IIIIIII I	

<ID>REF5.16 – ChIP-seq vs other computational based networks

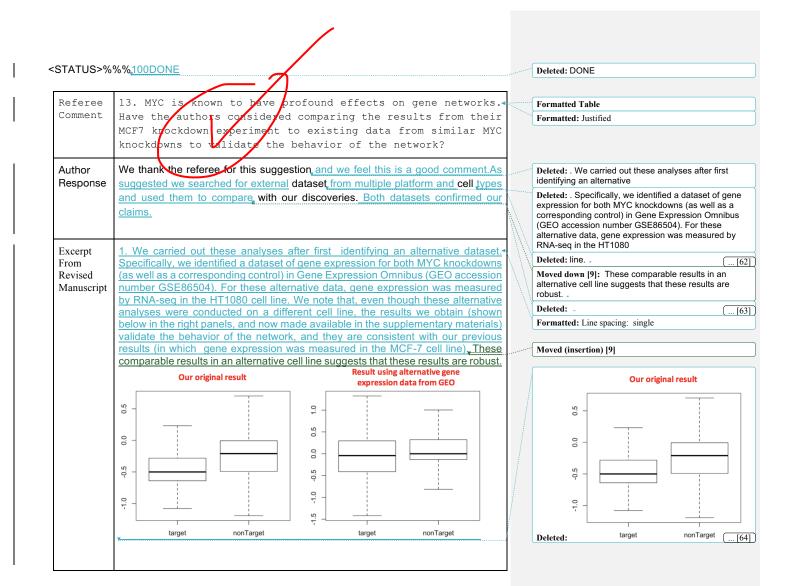
<TYPE>\$\$\$Network,\$\$\$Calc <ASSIGN>@@@Peng,@@@JZ <PLAN> &&&AgreeFix <STATUS>%%%75DONE

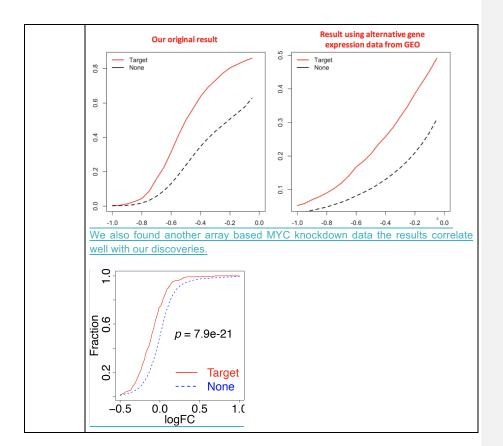

STATU52%	%% <u>75DONE</u>		Formatted: Font:Helvetica Neue, 11 pt		
		1 - 11	Formatted: Font:Helvetica Neue, 11 pt		
Referee	12. The manuscript notes that the new networks presented $\!$		Formatted: Font:Helvetica Neue, 11 pt		
Comment	contain "more accurate and experimentally based" gene links.		Moved up [5]:		
	This claim should be supported with comparisons with existing		Deleted:		
	networks and statistical evaluation. How many of the derived		Formatted: Font:Helvetica Neue, 11 pt		
	networks are false positives? How many networks are derived in total?		Formatted: Font:Helvetica Neue		
			Deleted: To make		
			Formatted: Font:Helvetica Neue		
Author Response	We thank the referee for bringing this up this point and we also feel that it is important to make comparison with other existing networks with statistical evaluation. We made the following revisions in the updated manuferript. 1. Regarding the proximal regulatory element network: 1.1 Comparison with Biogrid and String experimental interactions.		Deleted: statement more accurate, we changed our previous sentence from "more accurate and experimentally based regulatory linkages" to "ENCODE TF and RBP networks provide experimentally based linkages that are more relevant to gene expression regulation that other network types." As stated, we constructed two ENCODE regulatory networks: 1, transcriptional regulations between TFs and target genes; 2, post-transcriptional regulations between RBPs and target genes.		
	We showed that the ENCODE ChIP-seq/eCLIP based networks can capture a		Moved up [6]: .		
	higher fraction of standard interactions (from manually curated networks from		Deleted: To evaluate the quality of ENCODE transcriptional regulatory networks, we utilized		
	TTRUST) than protein physical networks, including Biogrid and String		Formatted: Font:Helvetica Neue		
	experimental interactions (see details below). <u>1.2 Comparison with DHS-based imputed networks</u>				
	experimental interactions (see details below).		Formatted: Font:Helvetica Neue Deleted: TRRUST database, which manually curated transcriptional regulations from Pubmed articles (Han et al 2018). We defined the TRRUST interactions as the standa and tested the fraction of standard interactions that other		
	experimental interactions (see details below). 1.2 Comparison with DHS-based imputed networks		Formatted: Font:Helvetica Neue Deleted: TRRUST database, which manually curated transcriptional regulations from Pubmed articles (Han et a 2018). We defined the TRRUST interactions as the standa and tested the fraction of standard interactions that other networks		
	experimental interactions (see details below). 1.2 Comparison with DHS-based imputed networks 1.3 False positive rate estimation of the ChIP-Seq based networks		Formatted: Font:Helvetica Neue Deleted: TRRUST database, which manually curated transcriptional regulations from Pubmed articles (Han et a 2018). We defined the TRRUST interactions as the standa and tested the fraction of standard interactions that other networks Formatted: Font:Helvetica Neue		
	experimental interactions (see details below). 1.2 Comparison with DHS-based imputed networks 1.3 False positive rate estimation of the ChIP-Seq based networks The ENCODE consortium has always enforced a strict data quality standards for		Formatted: Font:Helvetica Neue Deleted: TRRUST database, which manually curated transcriptional regulations from Pubmed articles (Han et a 2018). We defined the TRRUST interactions as the standa and tested the fraction of standard interactions that other networks Formatted: Font:Helvetica Neue Deleted: recapitulate. The ENCODE network can		
	experimental interactions (see details below). 1.2 Comparison with DHS-based imputed networks 1.3 False positive rate estimation of the ChIP-Seq based networks The ENCODE consortium has always enforced a strict data quality standards for all ENCODE produced transcription factor ChIP-seq experiments, which allow us		Formatted: Font:Helvetica Neue Deleted: TRRUST database, which manually curated transcriptional regulations from Pubmed articles (Han et a 2018). We defined the TRRUST interactions as the standa and tested the fraction of standard interactions that other networks Formatted: Font:Helvetica Neue Deleted: recapitulate. The ENCODE network can Formatted: Font:Helvetica Neue		


Deleted: Done

Formatted Table

Formatted: Justified


	2. Regarding the distal regulatory element network:]				
	With the ChIP-Seq, DHS, STARR-Seq, ChIA-PET, and Hi-C experiment, ENCODE		Formatte	ed: Font:Helveti	ca Neue	
	has a distal TF-enhancer-gene network of high quality, which is less discussed		Deleted:	fraction of stand	ard networks that E	NCODE
	and investigated previously. We feel this is one of the unique aspect of our	1	Deleted:	recapitulated		
	resource. 2.1 High quality of enhancer definitions after integrating many histone ChIP-seq		supported	l the higher relev	ner than random. Th vance of ENCODE n compared to other n	etworks on
	and DHS, and STARR-Seq data		Formatte	ed: Font:Helveti	ca Neue	
	Here we took the FANTOM enhancer data set and assess the overlap percentage	$\langle \rangle \rangle$	Formatte	ed: Font:Helveti	ca Neue	
	of our enhancer annotation in each ensemble step. We show that each ensemble step indeed increases the percentage of overlap between our annotation and the FANTOM enhancer set. The overlap percentage for our annotation is much higher		network b	between RBPs ar	another post-transcr nd target genes throu e 3'UTR regions. To	igh linking the
	than that of the Roadmap annotation, and is also higher than the main	M/M	Formatte	ed: Font:Helveti	ca Neue	
	encyclopedia enhancer annotation annotation (ccRE).	$\langle \rangle \langle \rangle$	Formatte	ed: Font:Arial		
		////	Deleted:	knowledge,		
	2.2 High quality of enhancer-gene linkages	- ///	Formatte	ed: Font:Arial		
		- //	Deleted:	current study is		
		\	Formatte	ed: Font:Arial		
Excerpt <u>1</u> From Revised	Regarding Comparison with Biogrid and String experimental interactions. To evaluate the quality of ENCODE transcriptional regulatory networks, we utilized the TRRUST database, which manually curated transcriptional regulations from Pubmed	A A A A A A A A A A A A A A A A A A A	systemati	cally; thus we ar that can provide	V RBP-gene interacti e not aware of any p gold standard regul	previous
Manuscript	articles (Han et al., 2018). We defined the TRRUST interactions as the standard and tested	Ň	Deleted:			
	the fraction of standard interactions that other networks can recapitulate. The ENCODE network can capture a higher fraction of standard interactions than protein physical networks, including Biogrid and String experimental interactions (Supplementary Figure X). Moreover, the fraction of standard networks that ENCODE network recapitulated is consistently higher than random. These results supported the higher relevance of ENCODE networks on transcriptional regulation compared to other networks. We also constructed another post-transcriptional network between RBPs and target genes through linking the		tage (%) 30 50	, r , r , r , r		Real Rand
	RBP binding sites on gene 3'UTR regions. To the best of our knowledge, the current study is the first one to study RBP-gene interactions systematically; thus we are not aware of any previous resources that can provide gold standard regulations for comparison.		Percentage 10 30	String	T T T T T	L' F Z J L I
		1	0	Bio	grid	
				0.2	0.4 0.6 RP score	0.8



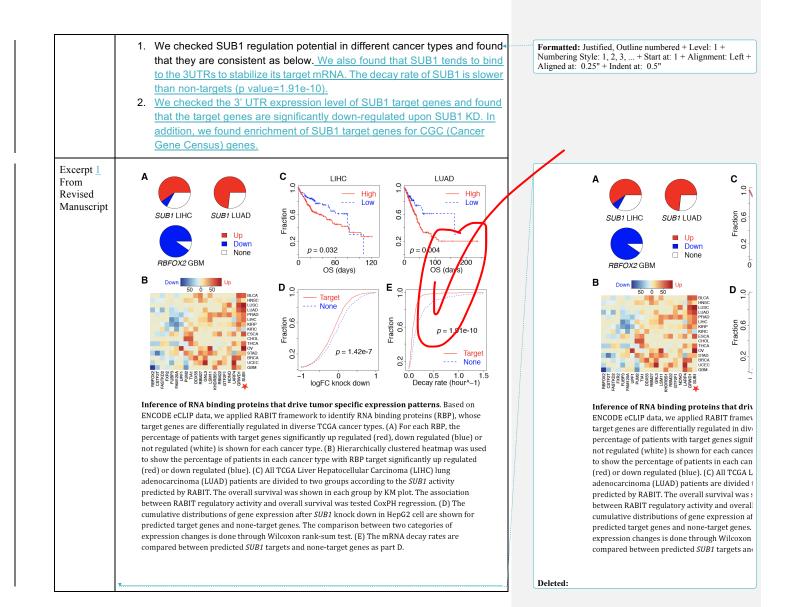
<ID>REF5.17 – MYC KD

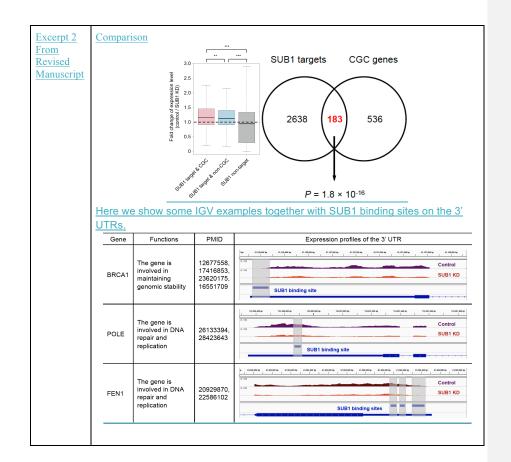
<TYPE>\$\$\$Network,\$\$\$Text <ASSIGN>@@@DC <PLAN>&&&AgreeFix

<ID>REF5.18 – SUB1 analysis

<TYPE>\$\$\$NoveltyPos,\$\$\$Calc <ASSIGN>@@@MRS,@@@JL,@@@YY <PLAN>&&&MORE <STATUS>%%%<u>85DONE</u>

[JZ2Peng: write something about sub1 decay rate]

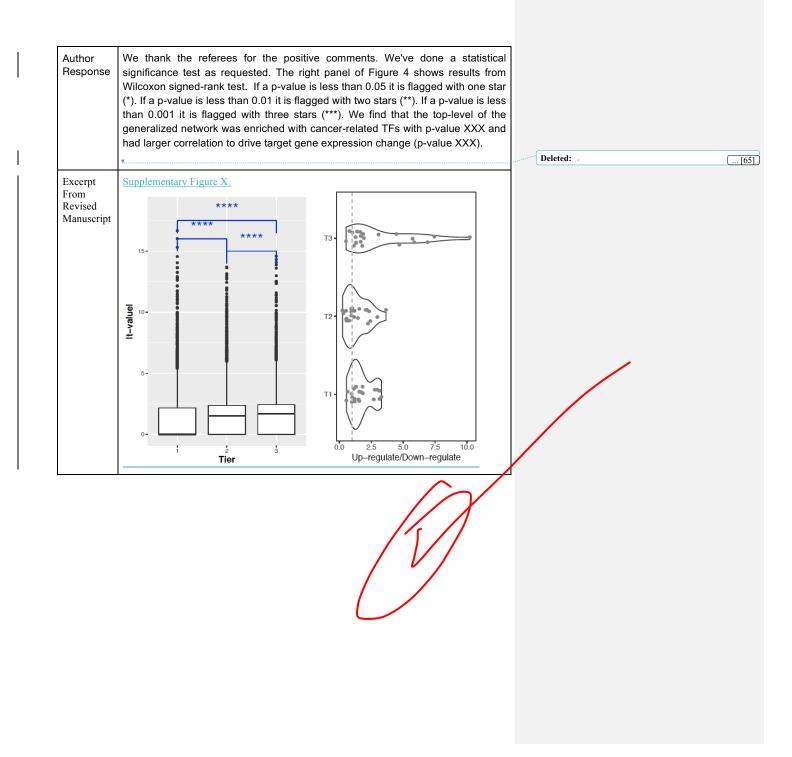

Referee 14. SUB1 is a potentially interesting new cancer gene. The authors should further explore the biology of this gene.

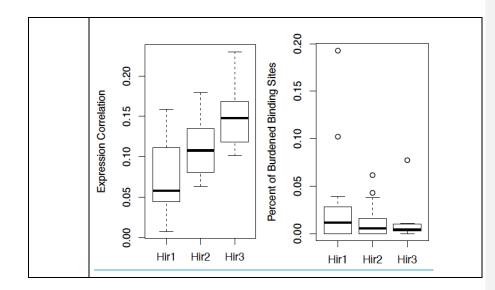

AuthorWe thank the referees for the positive comments. We did follow up with SUB1 inResponsethis round of revision.

Deleted: TBC

Deleted: [JZ2YY: would you please add your stuff here?] •

Formatted Table

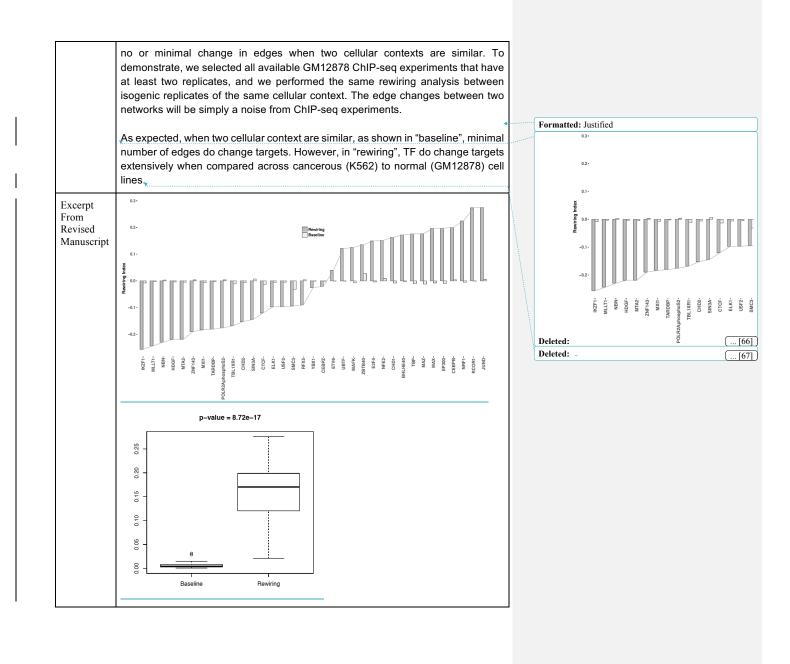



<ID>REF5.19 – Significance of regulatory network hierarchy

<TYPE>\$\$\$Network,\$\$\$Calc <ASSIGN>@@@DL <PLAN>&&&AgreeFix <STATUS>%%%<u>100DONE</u>

<STATUS>%%%100DONE

Referee
Comment
15. The manuscript claims that transcription factors placed
at the top level of the network hierarchy are enriched in
cancer-associated genes and drive expression changes. Both
claims need to be supported with statistical tests.
Deleted: DONE
Formatted Table
Fo



<ID>REF5.20 – Rewiring of regulatory network

<TYPE>\$\$\$Network,\$\$\$Calc <ASSIGN>@@@DL <PLAN>&&&AgreeFix <STATUS>%%%100DONE

STATUS>%	%% <u>100DONE</u>	 Deleted: DONE
Referee Comment	16. In the tumor-normal network comparison, is the fraction of edge changes related to the total number of edges for a given TF? This analysis should further clearly state its null hypothesis (what changes are expected?). What happens when edges are randomly permuted?	Formatted Table Formatted: Justified
Author Response	We thank referee for pointing out this issue. We agree with the referee that we need to be more clear about the rewiring of regulatory network in the revised manuscript.	 Deleted: We would like to truly
	We would like to clarify that the rewiring index is based on the fraction of regulatory edge changes between two cellular contexts. The rewiring index is also normalized across all regulatory proteins, and the sign reflects the direction of rewiring. Details of rScore derivation can be found in Supplementary 5.3. Given this, we assume a null hypothesis to be no change in regulatory edge across cell types. We expect	

<ID>REF5.21 – Rewiring analysis in the stem cells

<TYPE>\$\$\$Stemness,\$\$\$Calc <ASSIGN>@@@DL <PLAN>&&&AgreeFix

Referee Comment	17. The network change comparisons with the H1 stem cell- models need statistical testing for significance. What fraction of the rewired edges are expected to be false positives?	Street L	Formatted: Justified Formatted Table
Author Response	We thank referee for the pointing this out. We took referee's suggestion to heart and we now have added a statistical significance testing for H1 stem cell model in the revised manuscript.		Deleted: ####7mar we truly thank referee. Took referee's comment to heart, made hugh improvement .
Excerpt From Revised Manuscript	7_		

<TYPE>\$\$\$Validation,\$\$\$Text <ASSIGN>@@@JZ,@@@DL <PLAN>&&&AgreeFix <STATUS>%%%75DONE

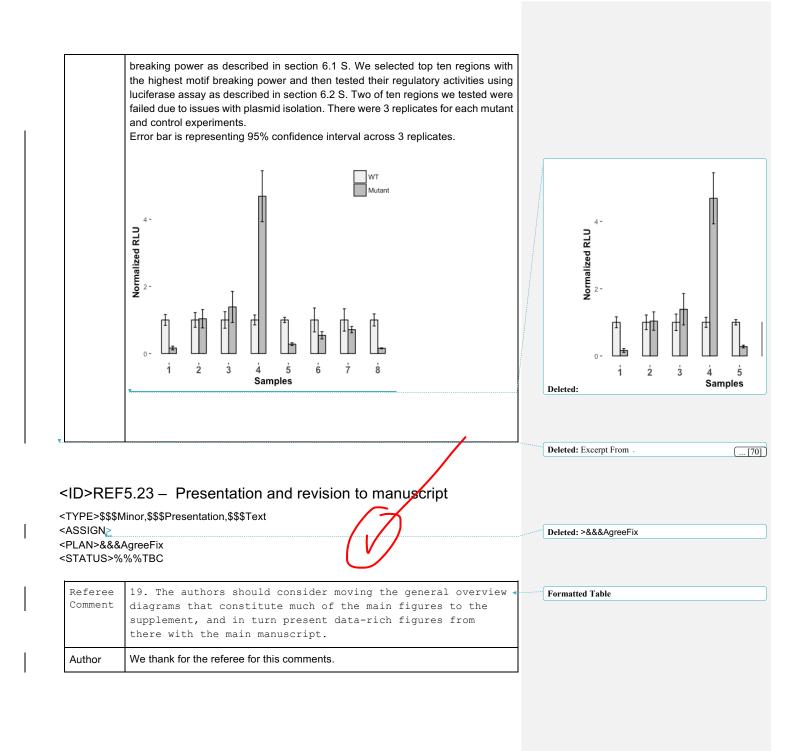
Referee

Comment

Author

Response

AgreeFix 6%%75DONE


18. How were the eight regions that were tested functionallyselected? Where are these regions located in the genome, and with respect to neighboring genes? How many replicates were performed? What are the p-values?

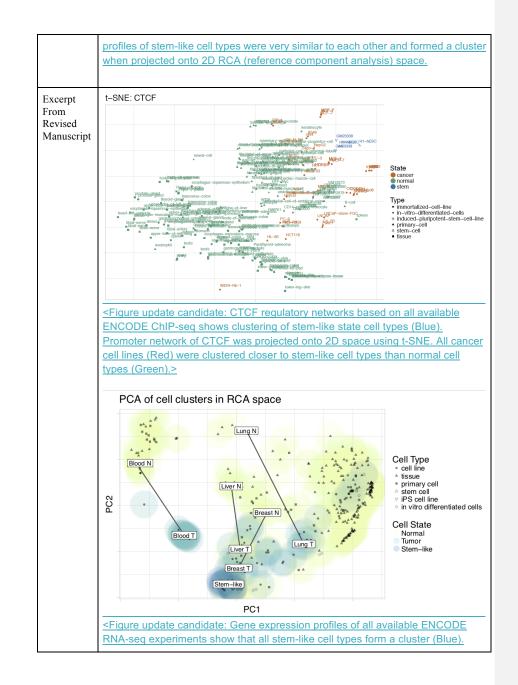
We thank the referee for pointing this out. We had some of the details in the supplementary but they weren't that well spelled out . We've redone supplementary section 6 and to answer this question.

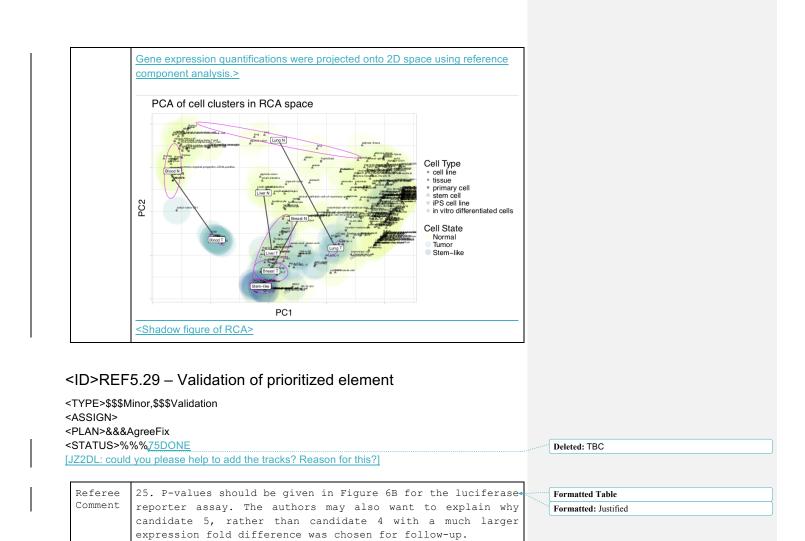
Deleted: DONE

Formatted: Justified
Formatted Table

The eight regions were selected from our integrative promoter and enhancer regions in MCF-7 cell lines. We prioritized these regulatory regions based on motif

<ID>REF5.24 – Difference between ENCODEC and existing prioritization methods


SSIGN> LAN>&&&# TATUS>%</th><th>alidation,\$\$\$Text .greeFix %%<u>100Done</u></th><th> Deleted: >&&&AgreeFix Deleted: TBC</th><th></th></tr><tr><th>Referee Comment</th><th>20. It is not clear how variant prioritization differs or exceeds the variant prioritization method FunSeq published by the same group. Are they complementary approaches?</th><th>Formatted: Justified Formatted Table</th><th></th></tr><tr><td>Author Response</td><td>We thank the referee to bring this up. We believe that the method that we used here is new and novel. The important aspect is that it takes advantage of many new ENCODE data and integrates over many different aspects. In particular, it takes into account the STARR-Seq data, the connections from Hi-C, the better background mutation rates, and the network wiring data, which is only possible in the context of the highly integrated and their data available on certain cell lines. We are showing this as an example of the best we can do with this level of integration. The fact that we coupled this with quite successful validation that we believe points to the great value of the integrated incurred data.</td><td></td><td></td></tr></tbody></table>
--


<ID>REF5.25 – BMR

<TYPE>\$\$\$Minor,\$\$\$BMR <ASSIGN>@@@JZ

TATUS>%	%% <u>100DONE</u>	Deleted: TBC
Referee Comment	21. When the authors describe recurrent events, are these significant? If so, please provide p-values (and q-values, when applicable).	Formatted Table
Author Response	We thank the referee to point this out. We have the values and q-values alle deposited into our online resource and supplementary files. We have made this clearer in our revised manuscript.	Formatted: Justified
		Deleted: Excerpt From .
D>REF	5.26 – Citation of previous work	
/PE>\$\$\$N SSIGN> _AN>&&&	AgreeFix	
	%% <u>100DONE</u>	Deleted: TBC
Referee	22. Prior work using ENCODE chromatin data to define	Formatted Table
Comment	regulatory regions and gene enhancers links should be cited (referred to in the manuscript as "Traditional methods").	Formatted: Justified
Author Response	We thank the referee to point this out. References have been added in the new submission.	
	<u></u>	Deleted: Excerpt From .
	5.27 – Tumor normal comparison and composite model /inor,\$\$\$CellLine AgreeFix	
TATUS>%	%% <u>100DONE</u>	Deleted: TBC
	Π	Deleted: [JZ2MG, JZ2DL: to disc next week]
Referee	23. The use of a "composite normal" is not optimal for tissues or tumor-type specific analyses that the authors advocate.	Formatted Table
leferee Comment		Formatted: Justified

Author Response	We thank the referee for bringing this out. We did noticed the Roadmap data. Actually, in the new release, ENCODE3 reprocess the complete set of roadmap data and we did include that in our data tables (Figure 1 and supplementary table xxx).	Deleted: JZ: I assume that we used Roadmap normal? There is no ChIP-Seq data there! . Decerpt From
ASSIGN> PLAN>&&&#</th><th>AgreeFix %%50DONE</th><th>Deleted: TBC</th></tr><tr><th>/////00/ /0</th><th></th><th>Deleted: \$\$\$Stemness %%%TBC</th></tr><tr><td>Referee</td><td>24. The authors use the H1 embryonic stem cell line as model</td><td>Formatted: Normal</td></tr><tr><td>Comment</td><td>for "stemness" in cancer. Tumor "stemness" often resembles</td><td>Formatted Table</td></tr><tr><td></td><td>tissue progenitors, not embryonic stem cells. In the absence</td><td>Formatted: Justified</td></tr><tr><th></th><th>of reliable data for such progenitors the authors should note this caveat with their analysis.</th><th></th></tr><tr><td>Author Response</td><td>We thank the referees for bringing this point out. We agree with the referee that the use of H1 embryonic stem cell line for measuring "stemness" should be further discussed. We, therefore, have revised the manuscript with two additional analysis to show that use of H1-hESC maybe a suitable substitute for a such analysis, especially in the absence of the proper progenitor cell data.</td><td></td></tr><tr><td rowspan=2></td><td>We agree with the referee that tissue progenitors of matching cell type would be the ideal pairing to look at "stemness" in cancer. However, as the referee has noted, we mainly have chosen H1-hESC because it offers the broadest TF ChIP- seq coverage and also one of the top-tier cell lines with most variety of experimental assays in ENCODE.</td><td></td></tr><tr><td>We first aimed to evaluate regulatory networks of all ENCODE biosamples including many available stem-like cells and profile their differences. We show that H1-hESC is not far distinct from other stem-like cells, and it is a good representation of stem-like state. We used a regulatory networks of CTCF, one of the most widely assayed TF in ENCODE, to examine their regulatory patterns</td><td></td></tr><tr><td></td><td>across different cell types. As expected, all of stem-like cell types formed a cluster, suggesting stem-like cell types have a distinct regulatory profile from normal and cancerous cell types, and stem-like cells including H1 and iPSCs have similar regulatory patterns.</td><td></td></tr><tr><td></td><td>Second analysis we added was to look at gene expression profiles of all available ENCODE cell types. In agreement with the previous analysis, gene expression</td><td></td></tr></tbody></table>		

We thank the referee for this comment. We added all the details of regions we

tested into the revised supplementary file. The reason we selected candidate 4 is that it is the highest scored variants in our analysis. We made this more clear in

Author Response

our new version.

Excerpt From Revised Manuscript		
ID>REF	5.30 – SYCP2 and beyond	
ASSIGN> PLAN>&&&# STATUS>%</th><th></th><th>Deleted: ? Before Tuesday neight</th></tr><tr><th>Referee Comment</th><th>26. The discovery of a previously unknown enhancer of SYCP2 * is interesting. The authors should consider following up on this lead by integrating existing mutation and expression data from additional studies (e.g. 560 ICGC breast cancers from Nik-Zainal et al).</th><th>Formatted Table</th></tr><tr><td>Author Response</td><td>2</td><td>, </td></tr><tr><td>Excerpt From Revised Manuscript</td><td></td><td></td></tr><tr><td></td><td>5.31 – Utility of ENCODEC</td><td></td></tr><tr><td></td><td>inor,\$\$\$Presentation</td><td></td></tr></tbody></table>		

Referee Comment	27. The abstract mentions the usefulness of ENCODE data for interpretation of non-coding recurrent variants, yet this point is not explored much in the manuscript.	Formatted: Justified Formatted Table
Author Response	We thank the referee for this comment. Actually, we tried to show in Fig 6 how each data type has been integrated to evaluate the function of variants. For example, the histone ChIP-seq, STARR-Seq, and DHS data helped to define function of surrounding element. The histone ChIP-seq, Replication timing, and Expression data help to calibrate local BMR to evaluate mutation rate and somatic burden. TF ChIP-seq/eCLIP data can help to investigate the local nucleotide effect. And Hi-C and ChIA-pet data can help to link noncoding variants to surrounding genes for better interpretation.	
Excerpt From Revised Manuscript		

<ID>REF5.32 – P-value of survival analysis

SSIGN <u>>@</u> LAN>&&&/ TATUS>%		 Deleted: > Deleted: TBC
Referee Comment	28. In Figure 2e, a p-value should be given with the analysis.	Formatted Table Formatted: Justified
Author Response	We thank referee for the comment. We now have updated figure 2e with p-value.	
Excerpt From Revised Manuscript		

<ID>REF5.33 – Q-value of extended gene analysis

<TYPE>\$\$\$Minor,\$\$\$Presentation <ASSIGN> <PLAN>&&&AgreeFix <STATUS>%%%Done

<status>%</status>	%% <mark>Done</mark>	 Deleted: TBC
Referee Comment	29. Figure 2d, q-values should be given for each identified + driver gene.	 Formatted Table
Author Response	We thank referee for the suggestion. We would like to first point out that we were not focused in finding cancer drivers in this analysis. Figure 2d is to illustrate the utility of extended gene. However, we do agree with the referee that adding q- value to the figure would be important, so we have updated the figure in the revised manuscript.	 Formatted: Justified
Excerpt From Revised Manuscript		

<ID>REF5.34 – Presentation issue with network hierarchy

<TYPE>\$\$\$Minor,\$\$\$Presentation <ASSIGN> <PLAN>&&&AgreeFix <STATUS>%%%<u>100DONE</u>

Deleted: Done

Referee Comment	30. Figure 4 would benefit from labeling of the network tiers.	Formatted Table Formatted: Justified
Author Response	We thank reviewer for the comment. We fixed the labeling of the network tiers in the revised manuscript.	
Excerpt From Revised Manuscript		

<ID>REF5.35 – Presentation

<TYPE>\$\$\$Minor,\$\$\$Presentation <ASSIGN>@@@DL <PLAN>&&&AgreeFix <STATUS>%%%75DONE

Deleted: TBC

Deleted: Done

Referee Comment	31. In Figure 6b, it should be clarified whether "samples" refers to genomic locations, patients, or cell lines. The number of replicates for each experiment should be shown, and p-values between wt and mutant readings should be given.	Formatted Table Formatted: Justified
Author Response	We thank referee for pointing this issue out. We refer "samples" to the genomic- locations in the submitted manuscript. We agree with the referee that this could be confusing. We have updated the figure in the revised manuscript.	 Formatted: Justified
Excerpt From Revised Manuscript		

<ID>REF5.36 – Supplementary document

<TYPE>\$\$\$Minor,\$\$\$Presentation <ASSIGN> <PLAN>&&&AgreeFix <STATUS>%%%75DONE

	32. The supplement contains multiple reference errors.		Formatted Table
Comment		-	~
	We thank the referee on this comment and we have made numerous improvements to the supplementary document.		Deleted: We've

Excerpt From Revised		
Manuscript		

Page 1: [1] Deleted

jingzhang.wti.bupt@gmail.com

3/23/18 4:23:00 PM

DONE : Finished

%%%MORE : Go above and beyond the scope of the question and indicates more analyses

Page 3: [2] Delete	d jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript		
Page 4: [3] Delete	d jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript		
Page 4: [4] Delete	d jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript		
Page 9: [5] Delete	d iingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM

[JZ2MG: I am a little bit confused, since this preamble actually contains some of the question. Then do we delete the questions that are mentioned here? I currently feel we should delete them, have some local version and can revert if this is not appropriate.]

Reference	Initial	Revised	Main point	Comments
Lawrence et al, 2013	Cited	Cited	Introduce replication timing and gene expression as covariates for BMR correction	Replication timing in one cell type
Weinhold et al, 2014	Cited	Cited	One of the first WGS driver detection over large scale cohorts.	Local and global binomial model
Araya et al, 2015	No	Cited	Sub-gene resolution burden analysis on regulatory elements	Fixed annotation on all cancer types
Polak et al (2015)	Cited	cited	Use epigenetic features to predict cell of origin from mutation patterns	Use SVM for cell of origin prediction, not specifically for BMR
Martincorena et al (2017)	No (out after our submission)	Cited	Use 169 epigenetic features to predict gene level BMR	No replication timing data is used
Imielinski (2017)	No	Yes	Use ENCODE A549 Histone and DHS signal for BMR correction	Limited data type used from ENCODE
Tomokova et al. (2017)	No	Yes	8 features (5 from ENCODE) for BMR prediction and mutation/indel hotspot discovery	Expand covariate options from ENCODE data
huster-Böckler and Lehner (2012)	Yes	Yes	Relationship of genomic features with somatic and germline mutation profiles	NOT specifically for BMR
Frigola et al. (2017)	No	Yes	Reduced mutation rate in exons due to differential mismatch repair	NOT specifically for BMR
Sabarinathan et al. (2016)	No	Yes	Nucleotide excision repair is impaired by binding of transcription factors to DNA	NOT specifically for BMR
Morganella et al. (2016)	No	Yes	Different mutation exhibit distinct relationships with genomic features	NOT specifically for BMR
Supek and Lehner (2015)	No	Yes	Differential DNA mismatch repair underlies mutation rate variation across the human genome.	NOT specifically for BMR

Page 10: [6] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript		
Page 10: [7] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM

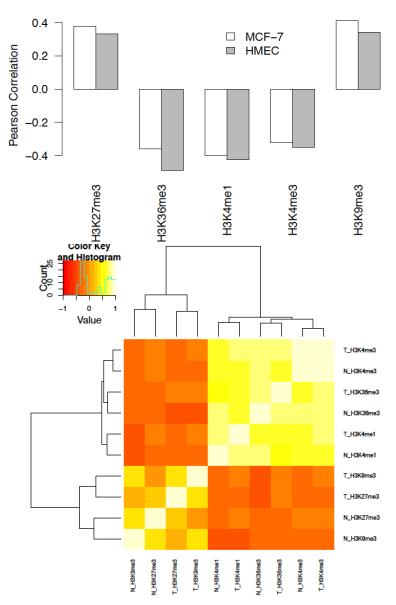
Excerpt From Revised Manuscript		
Page 11: [8] Delet	ed jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM

For example, many prior efforts to model BMR have been limited by the availability of genomic assays, or by the availability of assays matched by cell-type. For example, Lawrence et al., 2013, used HeLa replication timing data and K562 chromatin state via Hi-C. Martincorena et al., 2017, included histone modification features, but not replication timing. The genomic signals we used from ENCODE have been processed uniformly and are provided in a ready-to-use format for the community.

We do not intend to claim it is a new discovery that using matched features are better, but rather to show that the breadth of ENCODE data allows for improved estimates of background mutation rate. We have further acknowledged prior efforts on this topic in our revised manuscript.

Page 13: [9] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM

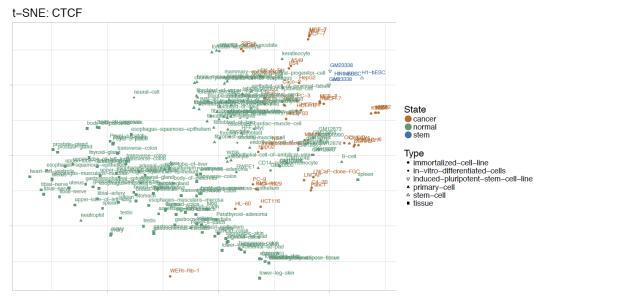
1. Regarding the cell line data, we still think they are quite useful to predict the mutation rates. Two points need to be noted here are:


(1.1) Even in the

Page 13: [10] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
, it is not always t	he case that cell-of-origin can be predicted perfectly	using the epigenetic
features (Fig. 4 b).		

(1.2) the Polak 2015 paper only compare among normal tissues from the Roadmap data and they

Page 13: [11] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM


BRCA var counts/mbp vs Histone Sig/mbp

2. In general

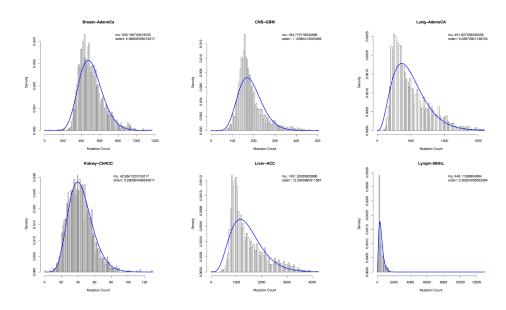
Page 14: [12] Deleted

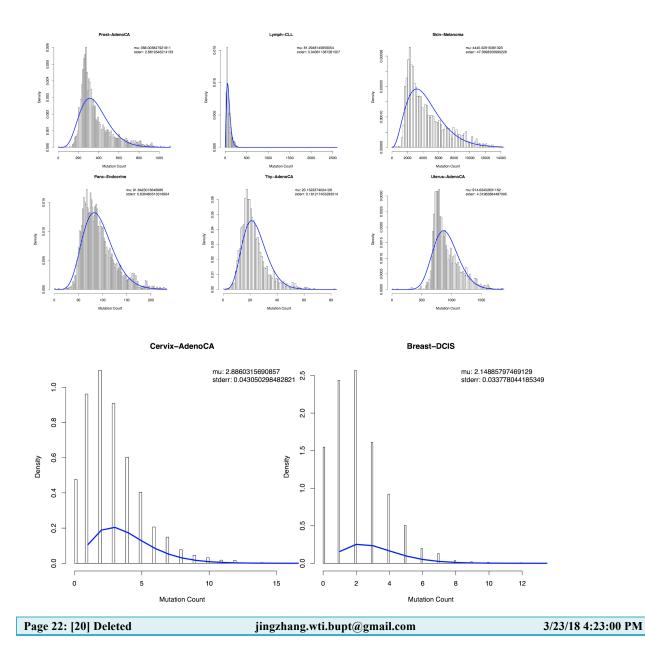
jingzhang.wti.bupt@gmail.com

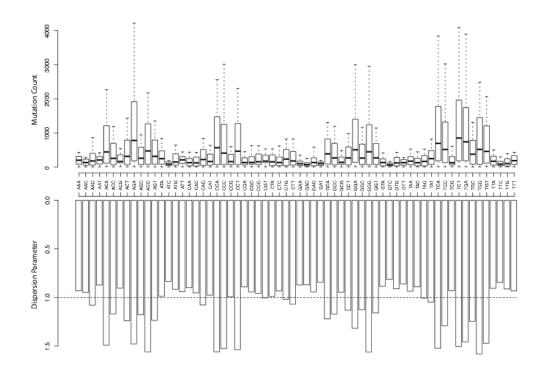
Page 15: [13] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
rage 15: [15] Deleted	jingznang.wti.bupt@gman.com	5/25/18 4:25:00 PM

####Dictation

Page 19: [14] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript		
Page 19: [15] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript		
Page 19: [16] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM


Page 19: [17] Deleted

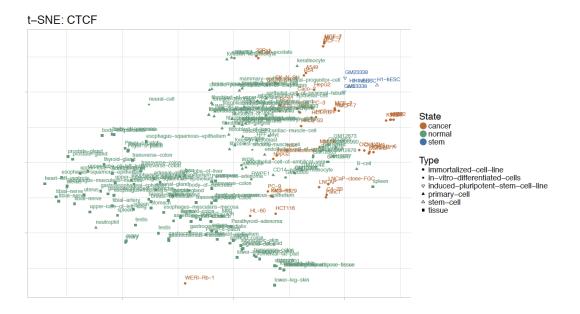

jingzhang.wti.bupt@gmail.com



Page 20: [19] Deleted

jingzhang.wti.bupt@gmail.com

Page 28: [21] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript		
Page 28: [22] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript		
Page 30: [23] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM


Excerpt From Revised Manuscript iingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM 'age 30: [25] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM Excerpt From Revised Manuscript iingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM 'age 30: [26] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM 'age 30: [26] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM 'age 37: [27] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM 'age 37: [27] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM JZ2MG: do we need a preamble here? I don't feel strongly] JZ2MG: JZ2MG:			
Excerpt From Revised Manuscript imgzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM 'age 30: [25] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM 'age 30: [26] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM 'age 30: [26] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM 'age 30: [26] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM Excerpt From Revised Manuscript jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM 'age 37: [27] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM JZ2MG: do we need a preamble here? I don't feel strongly] JZ2MG: JZ2MG:	From Revised		
From Revised Manuscript jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM Fage 30: [25] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM Page 30: [26] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM Excerpt From Revised Manuscript jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM Page 37: [27] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM JZ2MG: do we need a preamble here? I don't feel strongly] JZ2MG: do we need a preamble here? I don't feel strongly]	Page 30: [24] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript Page 30: [26] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM Excerpt From Revised Manuscript Page 37: [27] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM JZ2MG: do we need a preamble here? I don't feel strongly]	From Revised		
From Revised Manuscript jingzhang.wti.bupt@gmail.com Page 30: [26] Deleted jingzhang.wti.bupt@gmail.com Excerpt From Revised Manuscript Page 37: [27] Deleted jingzhang.wti.bupt@gmail.com JZ2MG: do we need a preamble here? I don't feel strongly]	Page 30: [25] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript Page 37: [27] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM JZ2MG: do we need a preamble here? I don't feel strongly]	From Revised		
From Revised Manuscript Page 37: [27] Deleted jingzhang.wti.bupt@gmail.com JZ2MG: do we need a preamble here? I don't feel strongly]	Page 30: [26] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
JZ2MG: do we need a preamble here? I don't feel strongly]	From Revised		
	Page 37: [27] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Page 37: [28] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM	JZ2MG: do we need a pre	eamble here? I don't feel strongly]	
	Page 37: [28] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM

1 age 57. [20] Den	icu	jingznang.wii.bupt@ginan.com	5/25/10 4.25.00 I M
Excerpt From Revised Manuscript			
Page 37: [29] Del	ted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM

Excerpt From Revised Manuscript		
Page 39: [30] Delete	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript		
Page 39: [31] Delete	l jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript		
Page 39: [32] Delete	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM

Page 40: [33] Deleted

jingzhang.wti.bupt@gmail.com

####7mar - Thx you for this comment... you are right... we've made we new fig. Bc it in fact does show ...

Page 41: [34] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
(DL maybe)		

Page 41: [35] Deletedjingzhang.wti.bupt@gmail.com3/23/18 4:23:00	PM
--	----

[JZ2MG: almost done, but need to gather figures from multiple persons here] [JZ2MG: If we have Peng's result, do we need to have PE's imputed network comparison from the Leslie lab?]

Page 43: [36] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
> PE's imputed network stuff		
> histones DHS		
&&&&& explicit imputed network		
Expand the resource -		
-		

===

Page 46: [37] Deletedjingzhang.wti.bupt@gmail.com3/23/18 4:23:00 PM

DL - think about how we can change the figure

(We fixed the figure, Less data, more on overview schematic)

Page 48: [38] Deletedjingzhang.wti.bupt@gmail.com3/23/18 4:23:00 PM###JZ: strength of cell line, no heterogeneity, emphasize this, co-expression network### Can mention something related to single cells### Some clinically significant changes will occur in

####7mar - high level is how to connect

Page 48: [39] Deletedjingzhang.wti.bupt@gmail.com3/23/18 4:23:00 PMreference cell line to annotation to patient key pt of the paper ... peng's figureIndividualize the network a little bit

###WUM text### The

Page 48: [40] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
greater emphasis.		

 Page 48: [41] Moved to page 63432 (Move #4)jingzhang.wti.bupt@gmail.com
 3/23/18 4:23:00 PM

Nonetheless, some of our analyses are should be particularly robust to the presence and activities of stromal and infiltrating cells. For example, our BMR calculations should not largely be affected by stromal tissue epigenetics, because clonally-amplified mutations detected by bulk sequencing will tend to accrue to a much greater extent in cells descendant from the cell-of-origin of the cancer cell much more so than associated normal tissue.

Page 48: [42] Deletedjingzhang.wti.bupt@gmail.com3/23/18 4:23:00 PM

More generally, in the coming years, we might be able to better model this complexity making use of new single-cell epigenetic data, which is just beginning to emerge.

https://www.nature.com/articles/s41467-018-03149-4

Another possibility for future improvements that we mention in our updated discussion section is the potential to model regulatory networks and the BMR separately for each major subclone present in a patient cancer sample, whose differential mutations can be approximately inferred using existing computational tools.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003665

###PDM text### As the reviewer correctly states,

Page 56: [43] Deleted

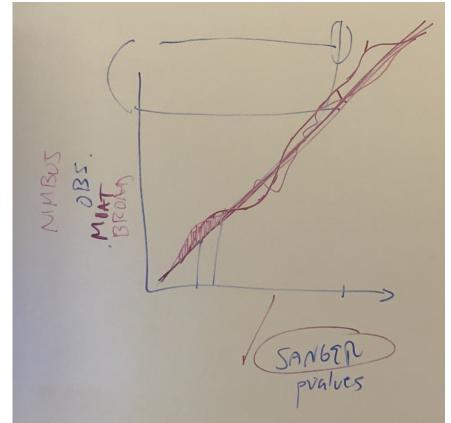
jingzhang.wti.bupt@gmail.com

Excerpt From Revised Manuscript		
age 56: [44] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript		

Our aim was not to produce novel BMR estimation models, but rather to showcase how ENCODE data can help improve the performance of such models.

With the wealth data available through ENCODE data, we had a much larger pool of features to choose from to potentially improve BMR estimation. It is worth to mention that ENCODE data is not just cell line data, in fact XXX of this histone modification data is actually from real tissues. I Indeed, we found that application of some additional features from the this expansive set, especially the replication timing data, significantly improved BMR estimation in many cancer types (see Supplement Section S7).

For example, many prior efforts to model BMR have been limited by the availability of genomic assays, or by the availability of assays matched by cell-type. For example, Lawrence et al., 2013, used HeLa replication timing data and K562 chromatin state via Hi-C. Martincorena et al., 2017, included histone modification features, but not replication timing. The genomic signals we used from ENCODE have been processed uniformly and are provided in a ready-to-use format for the community.


Page 57: [46] Deleted

jingzhang.wti.bupt@gmail.com

3/23/18 4:23:00 PM

* we're part of pcawg ... there's no benchmark, There's a driver comparison but this is different Best we find is tcga pancan but this is genes We tried this we got... ####7mar - WM & esther // running est. program on our data set // could use the sanger randomized or the broad model to compare against nimbus but not do a q-q for driver detection

WM 3/13: [Esther can't help us - MutSigNC doesn't store, allegedly, the BMRs, only the p-values. New idea: Derive implicit BMR from PCAWG Sanger sims using downsampling. For each patient in (a subset of) PCAWG We will probably win since Sanger overfits]

####7mar - compare the sanger rand v us (nimbus) in a qq

Page 59: [47] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
	J88	

|--|

mutation hotspots (red block) for this well known driver site (blue line for pan-cancer and green line for liver cancer).

		p15.4	p15.3	p15.1	p14.3	p14.1	p13	p12	p11.2	p11.12	q11	q12.1	q12.2	q13.1	q13.3
	- 4 ;,607,000 bp 		1		62,608,0	000 bp		I		62,609,000 bp			1	5,5	56 bp ——
MutationcerTypes	[0 - 6.71]						1				<u></u>	L			ı
RefSeq Genes		WDF	274		1	I				I	1 1	11 11	I		

Page 62: [49] Deleted jingzhang.wti.bupt@gmail.com [JZ2MG: next week will check the status of KevinYip, SKL stuff added] [JZ2XK: can you please update this figure and check this text?]

Page 63: [50] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM

3/23/18 4:23:00 PM

. Mix membership model is a hierarchical Bayesian topic model framework and can help to uncover the underlining semantic structure of a document collection.

Page 63: [51] Moved to page 63 (Move #7)jingzhang.wti.bupt@gmail.com3/23/18 4:2:	:00 PM
--	--------

The core of topic models is Latent Dirichlet Allocation(LDA), which cast the mixed-membership (topics) problem into a hidden variable model of documents. The LDA model has been widely used to analyze a wide variety of data types, including but not limited to text and document data, genotype data, survey and voting data. The advantage of LDA over other algorithms (

Page 63: [52] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
has been described in Blei 2003		

been described in Blei 2003.

With regards to the referee's question, there is no ready-made answers since the data type (TF target network) and problem-definition of our study are both specific. If we treat the LDA mixedmembership analysis as a dimensionality reduction problem, it is possible to compare how well of a model can reproduce the information of original data, as described in paper (Guo, Y., & Gifford, D. K. (2017). Modular combinatorial binding among human trans-acting factors reveals direct and indirect factor binding. BMC Genomics, 18(1), 45.). The correlations of the original target gene vectors between two TFs are compared with those of dimension reduced vectors. The better method should be much close to original vectors correlations.

To explore how well the LDA mixed-membership analysis on TF regulatory network, we extend our dataset

Page 63: [53] Deleted jingzhang.wti.bupt@gmail.com 3/23/18 4:23:00 PM In order to get a reliable correlation, we also increase the number of topic to 50 as the number of TF sample increases. The non-negative matrix factorization (NMF) are used for comparison because the nature of regulatory network requires a non-negative decomposition. The same target dimension K =50 are used

Page 63: [54] Moved to page 63 (Move #8)jingzhang.wti.bupt@gmail.com3/2

3/23/18 4:23:00 PM

. As shown in the figure, the x-axis is original correlation of two TF regulatory target, y-axis is reproduced correlation from LDA document to topic distribution and NMF decomposed matrix. The solid line is the 'loess' smoothing curve for the scattered dots. We can see the LDA method can reproduce the original correlation better than

Page 65: [55] Delete	d jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Page 66: [56] Delete	d jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Page 66: [57] Delete	d jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript		
Page 67: [58] Delete	d jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
-	p15.4 p15.3 p15.1 p14.3 p14.1 p13 p12 p11.2 p11.12 q11 q12.1 q12.	q13.1 q13.3 . 5,566 bp

				5,566 bp
	;607,000 bp	62,608,000 bp	62,609,000 bp	_, p
MutationcerTypes	0-571			
RefSeq Genes	WDR74		1 100 111 1	-

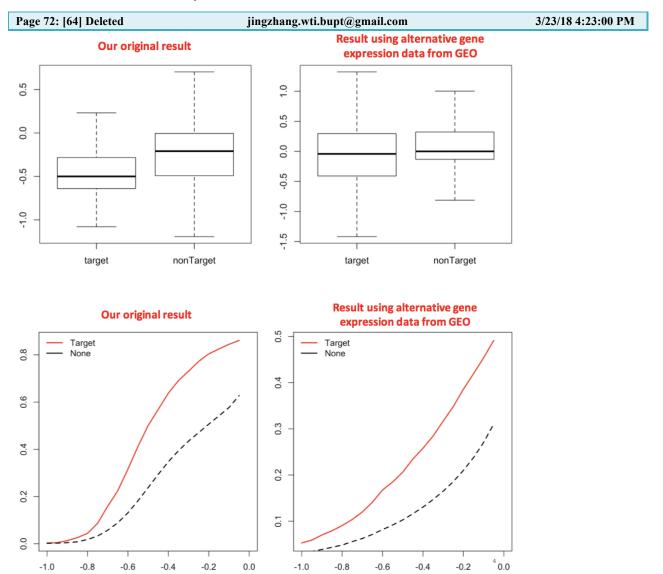
Page 67: [59] Deletedjingzhang.wti.bupt@gmail.com3/23/18 4:23:00 PMBCL6 mutations were found in promoter region.

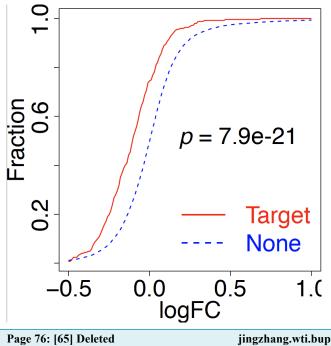
XK, TG @@@7mar - yuck! Are any SVs associated with BCL6?

Page 68: [60] Moved to page 56 (Move #5) jingzhang.wti.bupt@gmail.com

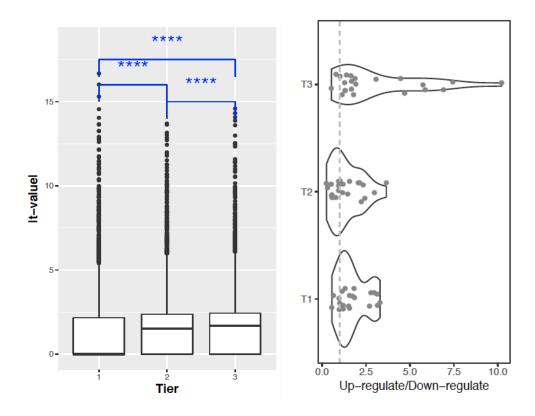
Page 68: [61] Moved to page 56 (Move #6) jingzhang.wti.bupt@gmail.com

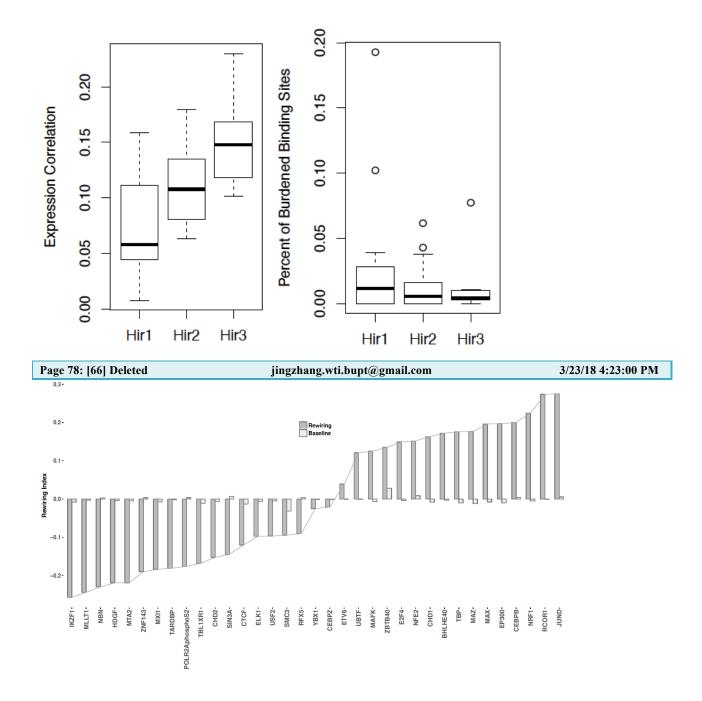
3/23/18 4:23:00 PM

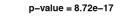

2.


Page 72: [62] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
line.		

We note that, even though these alternative analyses were conducted on a different cell line, the results we obtain (shown below in the right panels, and now made available in the supplementary materials) validate the behavior of the network, and they are consistent with our previous results (in which gene expression was measured in the MCF7 cell line).


Page 72: [63] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
-----------------------	------------------------------	--------------------


We also found another array based MYC knockdown data the results correlate well



jingzhang.wti.bupt@gmail.com

Page 78: [67] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM

Page 79: [68] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
####7mar we truly thank refe	eree. Took referee's comment to heart, ma	ade hugh improvement

Page 79: [69] Deleted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM

to do - same as 16
False positive rate analysis

Think about test of significance (have some more analysis) DL/JZ disc.

Page 80: [70] Delo	ted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript			
Page 81: [71] Delo	ted	jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript			

Page 82: [72] Delet	ed jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM	
Excerpt From Revised Manuscript			
Page 82: [73] Dele	ed jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM	
Excerpt From Revised Manuscript			
Page 83: [74] Dele	ed jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM	
JZ: I assume that we used Roadmap normal? There is no ChIP-Seq data there!			

But we did use the DHS data for the imputed network!

Page 83: [75] Deleted		jingzhang.wti.bupt@gmail.com	3/23/18 4:23:00 PM
Excerpt From Revised Manuscript			