[bookmark: _ikrczbnc5ocj]
[bookmark: _ibdjgdyek9xe]-- Ref1.0 – Software –
Reviewer’ comment:
	0 - Neither the software nor a test instance was available for review.


Author’s response:
We thank the referees for pointing this out. In this round, we significantly improved the interface of our software with extensive testing. We feel it is easy to use in this revised version. The main changes include:
1. We provided both online and downloadable version of the software with detailed documentation
2. We put everything on radar.gersteinlab.org and at the same time on https://github.com/gersteinlab/RADAR
3. We provided short test instance for user to check. 
Excerpt from the Manuscript:
We have included a downloadable ZIP file at radar.gersteinlab.org which contains the RADAR source code (radar.py) and a directory containing all data files needed by RADAR (resources/). This website also provides software documentation, usage information, an example. We also provided a web version of the software that can be used to run RADAR directly through the site: simply upload a variant file, select any tissue-specific scores, and provide a cancer type and the website will print the a list of scored variants.

RADAR can be run from the command line after unzipping radar.zip and downloading the necessary dependencies (Python, BEDTools and pybedtools). Users can run the software by

python radar.py -b [BED file containing variants to be scored] -o [output directory] -c [cancer type] [-kg -mr -rp]

After a few minutes (RADAR takes around 2-3 minutes to score ~1 million variants), there will be a file in the provided output directory called [input BED file name].radar_out.bed with all of the requested scores. -kg, -mr and -rp are optional parameters that are used to indicate whether these tissue-specific scores (key genes, mutation recurrence, and RBP regulation power) are requested. Cancer type information is required if any tissue-specific scores are requested.

The RADAR source code can be found at https://github.com/gersteinlab/RADAR
Here is an step-by-step walkthrough of using RADAR to score Alexandrov breast cancer variants.

First, download the required software: BEDTools (http://bedtools.readthedocs.io/en/latest/content/installation.html), Python (https://www.python.org/downloads/, our tests were conducted with version 2.7), and pybedtools (http://daler.github.io/pybedtools/main.html). Follow the installation instructions for each one. You can confirm you have successfully installed each piece of software by attempting to run `bedtools` on the command line, which should print out documentation (screenshot below is curtailed).

[image: ]

You can confirm you have Python and pybedtools installed by running the Python shell using the `python` command and attempting to import the pybedtools module with `import pybedtools`. If there are no errors, the prerequisite software was installed successfully. Note the Python version number on the first line after running the `python` command.

[image: ]

Next, download the RADAR package in ZIP format from the RADAR website Downloads page (http://radar.gersteinlab.org/#!page-downloads)

[image: ]

Unzip the file at the command line. The resulting radar/ directory contains a .py file (the executable script) and a resources/ directory that contains all data files needed by the RADAR script to produce scores.
[image: ]

Here is a head of the example input file we will be using (publicly accessible data from Alexandrov et al breast cancer variants). This file (called Breast.bed) is downloadable at http://radar.gersteinlab.org/#!page-example. 

[image: ]

Now we are ready to run the software and score our variants. Move into the recently unzipped radar/ directory, where the radar.py file exists (using `cd radar/`). Locate the path to the Breast.bed file (in the example command below, we will assume it exists in the directory above radar.py). Also identify a directory into which you would like the output file to be written (in this example, we will write the output to the same directory that contains Breast.bed). Here, we will produce all of the tissue-specific scores for BRCA. At the command line, we can run the following command to score these variants.

python radar.py -b ../Breast.bed -o .. -c BRCA -kg -mr -rp
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RADAR has generated the output file, Breast.radar_out.bed, which contains the list of scored variants. A head of the output file is shown below (note that the header takes up one line in the file, but is broken onto two lines in this screenshot):
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[bookmark: _xuzmzaf4fnm6]-- Ref1.1 – Abstract –
Reviewer’ comment:
	1 - The abstract is vague. In my view, the authors lose a critical opportunity by not reporting the significance of previously studied cases of genetic variants that affect RBP function or how their new method can help to sort the important genetic variants from the rest (DNA vs RNA).


Author’s response:

JL2JZ&MG: need to discuss this comment and make changes to abstract. Do we need more analysis?
 We thank the reviewer for pointing this out. We agree that it should be further emphasized how genetic variants affecting RBP function are an important part of studying disease. To this end, we have revised our abstract to reflect how our method, RADAR, explores mutations in the RBP regulome and how they can be separated from mutations affecting DNA.


[bookmark: _sefdawv6rocb]-- Ref1.2 – Comparison of methods –
Reviewer’ comment:
	2 - What is the rational to only show comparison among RADAR, FunSeq2 and CADD? See for example, https://www.ncbi.nlm.nih.gov/pubmed/29340599(A benchmark study of scoring methods for non-coding mutations). Please motivate your choice.


Author’s response:
We thank the referee for this comment and we agree that it is important to explain the motivation behind comparing to certain methods. In addition to explaining our rationale below, we have done a more extensive comparison now including another method from this Benchmark paper. Eventually we selected FunSeq2, CADD, and FATHMM-MKL for comparison purpose. The selection reason is as below.
1. RADAR shares a lineage to FunSeq2 in some ways, such as adapting the Shannon entropy scoring scheme, we believe that the comparison the two is natural, in order to see how prioritizing variants from a transcriptional versus post-transcriptional perspective would differ. 
2. We also compare RADAR to CADD, due to the popularity that CADD has gained, in the field of variant prioritization. 
3. we have also included FATHMM-MKL in the comparison set. 
4. We did not include GWAVA since the installation is not applicable and runs with error. Another reason is that while GWAVA does have a online interface to score variants, it only scores common germline variants, unlike the other methods.
Excerpt from the Manuscript:
[JZ2JL: please add this part ASAP]
[bookmark: _xciwrd8gr5ch]-- Ref1.3 – RBP Splicing –
Reviewer’ comment:
	3 - The relevance of RBPs on RNA splicing is not considered at all.


Author’s response:
We agree with the reviewer that RNA splicing is an important factor to consider in the RBP regulome but we did consider the effect of many splicing factors in our initial submission (at least 69 in HepG2 and 87 in K562). In our revised manuscript, we further highlighted the splicing factors in supplementary tables.
***###Make comparisons with (http://tools.genes.toronto.edu/#lynch-examples)

Table R2. Summary of RBP functions, including splicing, polyadenylation, etc.
[image: ]
Excerpt from the Manuscript:
We included a table in our supplement (extracted from the supplement and shown below in supplementary file S3 categorizing each RBP by their function, many of which are splicing related.
Table R.XXX. Specific RBPs and their functions.
[image: ]
We also included a download link on our website of eCLIP data annotated by each RBPs specific function, which can easily be filtered for splicing related RBPs.
We Updated Figure 2, with a heatmap showing the clustering of RBPs by the similarity of their target gene sets. Splicing and non-splicing RBPs are seen to form clusters, perhaps due to functional similarity. This heatmap is shown below in Figure R.XXX.
 
Figure R.XXX. Similarity of target genes of splicing and non-splicing RBPs.
[image: ]
 

[bookmark: _m2vaf3ndlkqm]-- Ref1.4a – Basic and tissue RADAR score explanation –
Reviewer’ comment: break down into three parts
	4a-  The basic and tissue-specific scoring is not well explained. 


Author’s response:
We thank the reviewer for this suggestion. We have restructured our methods section, which now contains specific details on scoring a variant for each component of the score (6 basic, 3 user-specific). Equations used in each part of the score have been carefully added to the appropriate sections and numbered. We have also included a simple flowchart as well as more detailed flowchart (Reviewer comment 1.4c).
Excerpt from the Manuscript:
[image: ]
 -- Ref1.4b – Separation of results and methods sections –
Reviewer’ comment: regarding the method section
	4b-  The method section is mixed with results (eg. In Regulatory Power from Linear Regression). Please separate results from methods.


Author’s response:
We thank the reviewer for this comment. We agree, and have removed all results from the methods section, so that the methods section now clearly illustrates only the models and equations used to score variants.
Excerpt from the Manuscript:
***--- include some text from the results section ---***

 -- Ref1.4c – Clear presentation of the scoring system –
Reviewer’ comment: 
	4c- I would like to see a clear presentation on how a RADAR score is computed for a given variant from basic and user-specific contributions in mathematical terms.


Author’s response:
To further clarify the scoring of a given variant in addition to an updated methods section, we also provide a flowchart for scoring, shown below in Figure R.XXX, extracted from the supplement. We hope this flowchart, when used in conjunction with the detailed methods section with mathematical equations, will clarify how variants are scored, in both the basic and user-specific contributions.

Excerpt from the Manuscript:
Figure R.XXX. Schematic flowchart of scoring a variant.
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[bookmark: _s9pfsayuoz5a]-- Ref1.5 – Relevance of features of RADAR –
Reviewer’s comment:
	5 - Please assess the individual relevance of the features listed in Table 1 for RADAR. Especially, the data types that are not modelled by the preceding software FunSeq2 (see Figure 1).


Author’s response:
We thank the reviewer for the comment and suggestion. We address the improtance of features in RADAR in a detailed text below, as well as provide a table below, extracted from the supplement.
Since RADAR is a variant prioritization scheme focused on the RBP regulome, features of RADAR are incorporated based on their importance of assessing the biology of the RBP regulome. The following are descriptions of features in the universal score, and their importance in post-transcriptional variant prioritization. One aspect of the RBP regulome to consider is the conservation of regions where RBPs bind (from eCLIP), which we examine from multiple perspectives. We consider both cross-population and species conservation, as mutations in eCLIP binding sites with higher conservation could be more deleterious. Mutations in more conserved structures of RNA also could prove to be more important, and therefore these regions are prioritized using Evofold. We also show that regions where more RBPs simultaneously bind have a higher rare DAF, indicating a need to prioritize variants more highly when they bind to network hubs of RBPs. The binding motif of RBPs are very important, as disruption by mutation could be harmful to regulation. We consider de novo and experimental Bind-n-seq motifs and prioritize variants that cause a drastic change in the motifs. Finally, when motifs are disrupted, it is also important to see if there are regulatory effects on certain genes. We therefore also prioritize variants that not only disrupt motifs, but do so in a way that affects the expression of linked genes. It is also important to note that measuring conservation using rare DAF can be severely confounded by GC content bias. Therefore, when considering conservation derived from rare DAF, we correct for this bias, which is important for prioritizing variants in the RBP regulome (since the GC can vary quite a lot).
In RADAR, we also include tissue specific features, that further help to priortize variants specific to a tissue type (e.g. somatic liver cancer variants). Since RBPs linked to genes with higher differential expression between cancer and normal tissues could be involved with regulation, variants in such regions are prioritized higher. Mutational hotspots are often classified as drivers, which take into account through usage of a binomial model. Finally, RBPs in certain tissue types may demonstrate different regulatory behavior than others, and therefore, we use a tissue specific regression model to take into account the differences in regulatory potential.

Excerpt from the Manuscript:
[image: ]
[bookmark: _wvnq9yjr1pou]-- Ref1.6 – Cell specific validation –
Reviewer’ comment:
	6 - Please use the cell-line specific aspect of ENCODE to assess the performance of your method. I believe that cell-specific information for K562 and HepG2 cell lines are available, such as shRNA-seq, eCLIP. Variant information might be also available for both cell lines as I have seen whole genome sequencing data in NCBI's SRA.
Please train / build the model on one cell type ("Baseline) and evaluate on the other ("specific component"). This could be as convincing as an experimental validation.


Author’s response:
We thank the referee for this comment and we agree that it is important to run the cross validation. As suggested, we have completed built the RADAR model using the two different cell specific data, creating a HepG2 and K562 score (baseline and tissue specific in each). We give two examples below to show how using cell type specific data could influence the RADAR score. Our conclusion is that for universal score the commonly expressed genes showed comparable HepG2 and K562 scores, while HepG2 specific genes demonstrated much higher scores. We also found that tissue specific features in our second scoring system greatly helped to distinguish cell type info. We added this part in the results and discussion sections.

Excerpt from the Manuscript:

Example 1: Comparison of cell type specific RADAR scores on variants in genes with different expression patterns in HepG2 and K562. Group 1 represents the HepG2 score on variants falling in genes that have the top 10% expression from total RNA-Seq experiments. Group 2 represents the same variants and their K562 score. Group 3 and 4 are the HepG2 and K562 score of variants falling genes that are highly expressed in HepG2 but show no expression in K562 (FPKM>1). 

[image: ]
### argue universal score is good because it combines k and h
### add a merged score violin plot
### 

Example 2: scoring on somatic variants from tumor-specific and pancan driver genes
We compare the HepG2 and K562 scores for a set of Liver cancer variants available publicly from the Alexandrov et al paper \cite{23945592}.

Here we see that variants that fall in CTNNB1, a well known cancer driver gene unique to liver cancer are scored much higher when using the HepG2 version of the score compared to the K562 version. As a control, we look at the scores of variants falling in TP53, a well known cancer driver, but not specific to liver cancer. The results are shown in Figure R.XXX below.
Figure R.XXX. Difference in RADAR cell type specific score (HepG2 and K562) when scoring liver cancer variants in CTNNB1, a known driver gene unique to liver cancer, and in TP53, considered to be a driver in multiple cancer types.
[image: ]
[bookmark: _vep1iw439qwq]-- Ref2.0a – eCLIP versus transcript annotations –
Reviewer’ comment:
	One major concern appears to be whether the observed results are reflective of true biology or simply artifacts of various algorithms. For example, figure 2 and lines 21-32 discuss the overlap between eCLIP peaks and annotations. However, the description of the CLIPper algorithm in Lovci et al (2013) used in the ENCODE pipeline suggests that clusters are identified only within transcripts, which would then trivially localize all eCLIP peaks to transcript annotations.


Author’s response:
We thank the reviewer for the comment and we agree that the peak calling is an important factor in the scoring system. Different from ChIP-Seq data peak calling, eCLIP data is more tricky since the definition of the transcribed regions is not as as obvious. Extending the null model to the whole genome might introduce false positives. 
We hope that in the future as the development of computational algorithms the peaks will be called more accurately, which directly helps the scoring system. At the moment, we prefer to use the more conservative peak calling on the annotated transcribed region. But we added this point into the discussion section. 
[bookmark: _k5mnxd37h0aj]-- Ref2.0b – Relative size of the RBP regulome –
Reviewer’ comment:
	Similarly, although the 'RBP regulome' appears smaller than that for TFs, it is unclear whether this is simply because the average peak size for eCLIP is significantly smaller than the average CHIP-seq peak due to differences in method and peak callers (likely, as most known RBP and TF motifs are of similar sizes).


Author’s response:
We thank the reviewer for this suggestion. We agree that with the referee that due to the different resolution of assays, it is unfair to compare the size of TF and RBP regulome. Actually, our original plan is to show the RBP regulome is important. Hence, in our revised manuscript, we changed Figure 2 by changing the focus to show that the RBP regulome covers a decent amount of the genome that is not overlapped with any existing annotation. While the eCLIP peaks does show some overlap with previous transcript annotations such as TFBS, DHS, and enhancer regions, 47% of the eCLIP peak annotations do not intersect any of the previous ENCODE2 annotations and are unique to the RBP regulome. To illustrate this point better, we have modified our Figure 2 in the main figure pack, and extracted panel A, shown below as Figure R-2A.

Excerpt from the Manuscript:
Figure R-2A. Updated panel of Figure 2 showing eCLIP data as having a higher resolution than ChIP-Seq annotations, allowing for more accurate biological definitions of binding events.
[image: ]












[bookmark: _ngboz2qrlkur]-- Ref2.1a – Weighting of RBPs with different patterns of binding –
Reviewer’ comment:
	One major question regards the weighting of eCLIP binding sites. The eCLIP data appears to contain not only narrow binding proteins, but also broad binding or coating proteins (such as POLR2G https://www.encodeproject.org/experiments/ENCSR820WHR/). Perhaps because of this, the number of significant peaks appears to range dramatically between datasets, from less than a hundred to tens of thousands. It is unclear from the manuscript how these are differently weighted in the end, and thus whether RADAR is simply reflecting predictions of a small number of broadly binding RBPs.


Author’s response:
We agree with the reviewer’s comment that some RBPs bind more broadly than others. When weighting different RBPs, we are careful to not bias our score results as to only prioritize those variants that fall in broadly binding peaks. In order to account for this, we used a scoring scheme based on Shannon entropy as well as rare DAF. 

For entropy: given, f, as the number of 1KG variants falling within all peaks of an RBP divided by the total number of 1KG variants, the entropy is given as:



In this equation, an increase in  will cause a decrease in the entropy (for ). Therefore, broadly binding peaks are actually slightly weighted smaller than narrow binding peaks. This ensures that our results are more reflective of predictions on all RBPs rather than just those that bind broadly.

The second component of the score if the rare DAF. Given an RBPs binding peaks, which contains  rare mutations and  common mutations, the rare DAF is given as:



In this equation, since both  and  depend on how broadly an RBP binds, we have a measure that is independent of the coverage of the RBP.

The product of the two components gives the final cross-population conservation score component. In both parts, we are careful to make sure that we are not confounding the score by the coverage of binding of RBPs.

We also show a boxplot of the average number of peaks of different CLIP based methods for determining RBP binding peaks. It is important to note that although there is some variation in the coverage of different RBPs, we believe the eCLIP data is the most conservative and shows the lowest variance between RBPs compared to all other methods.

Excerpt from the Manuscript:
[image: ]



### scores of broadly binding peaks vs narrow binding peaks violin plot (hopefully should be the same)

[image: ]
[bookmark: _zdecknz4p4gr]-- Ref2.1b – General comments –
Reviewer’ comment:
	Similarly, knockdown of some proteins which are essential cause dramatically more gene expression changes than others. It is unclear from the manuscript how these are differently weighted in the end, and thus whether RADAR is simply reflecting predictions of a small number of broadly binding RBPs.


Author’s response:
Our impression is that the shRNA KD data is noisy in some sense. The expression changes are not just due to how essential the RBP is, but also significantly confounded by the fold change of expressions of the RBP itself from variance between experiments. In addition, expression changes could be caused by direct or indirect linkages in the RBP gene network, but at this stage, we only consider the direct links, as to have a more conservative approach. As the quality of KD data improves over time, a more accurate representation of changes in gene expression of networks related to RBPs will be possible. We have now included a discussion of this in the manuscript.

Excerpt from the Manuscript:
Figure R.XXX. Quality check of the KD data.
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