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1.1 Calculation of information with and without LD consideration

We calculated the information per variant (h(si) = −log2(p(si)) and information per variant with

LD consideration (hLD(si) = −(1 −mLD(si,s j))log2(p(si))) separately and plotted the concor-

dance with respect to the number of times a variant with same h(si) and hLD(si) occur in the

genome of NA12878. We found that information with or without LD consideration does not dif-

fer for rare and unique variants, which contribute to the overall information calculation the most.

LD consideration changes the information of a variant, when the variant is common in the 1000

genomes panel (Figure 1).
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Supplementary Figure 1: Information per variant with and without LD consideration LD

consideration affects only common variants, in turn does not affect overall information of the

genome (h(S)).

1.2 Simulation of individuals

In this study, we simulated individuals that belong to European (CEU) and African (YRI) popula-

tions. These individuals are simulated based on the genotype frequency of derived from the popu-

lation in 1000 genomes panel [1] and the LD relationship of the population in HapMap project [2].

Once we determine the population that the simulated individual belongs to, we draw a random

variant with its genotype based on the probability of having that variant with the genotype in the
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population. We then determine all the other variants that are in LD with the drawn genotype. We

use the LD correlation as the joint probability of two variants being observed simultaneously and

based on that we decide if the correlated variant will be simulated or not. The joint probability

is adjusted based on the genotype of the two variants. If both variants are simulated as homozy-

gous, then the joint probability is assumed to be equal to the LD correlation. If at least one of the

variants is heterozygous, then the joint probability is assumed to be equal to the half of the LD

correlation. We continue this process till we exhaust all the variants observed in the population.

We first simulated 100 individuals that belong to CEU and then 100 more individuals that belong

to YRI populations (Figure 2).

1.3 KL-Divergence

KullbackLeibler (KL) divergence is a measure to quantify the difference between two probability

distribution. For discrete probability distribuions P and Q, the KL-divergence from Q to P is

calculated as [3]

DKL(P||Q) =−∑
i

P(i) log
Q(i)

P(i)
(1)

In the context of simulating individuals, we interpreted KL-divergence as the information gain

achieved by the addition of a new individual to the population, i.e. DKL(P
n+1||Pn), where n is the

size of the population before the addition of new individual (Figure 2).
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Supplementary Figure 2: Change in information as the population size increases (a) Informa-

tion vs. the increasing number of individuals in the population. (b) KL-divergence between the

population with n individuals vs. n+1 individuals.

1.4 Overview of the different information measures

In this study, we used self-information and related measures to quantify the private information

leakage in functional genomics data. Self-information is also known as surprisal is a measure of

surprise of occurance of an event given its probability. In our study, we have the probability of

observing a variant in a genome derived from 1000 genomes panel. For example, if a variant is

observed in small number individuals in the 1000 genomes panel, then surprisal of calling that

variant from the sequencing of a sample will be high. The relation between self-information and

entropy is as follows. If we sequence a genome from the same sample say 1000 times. If we do

variant calling for each sequencing run, then we can have a probability of calling a variant. The

expected value of self-information is then defined as entropy.

Next measure we used is the pointwise mutual information (pmi), which is a measure of as-

sociation. We used this measure to quantify the association between the called variants from a

seqencing data of a sample and the gold standard variants of the same sample in the 1000 genomes
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panel. The self-information of the variants that are called from the sequencing data and observed

in the gold standard data is the pmi between the seuqncing data and the gold standard. This mea-

sure helps us to quantify how much of the information that is in the gold standard is captured by

the sequencing experiment. pmi is also used to link a sequencing data from an unknown sample

to a database of individuals. The relationship between pmi and mutual information is similar to

the relationship between self-information and entropy. pmi is calculated for single event, whereas

mutual information refers to all possible events. Mathematically, pmi quantifies the coincidence of

event x and y occuring together given their joint distribution. If the joint probability of occurence

of x and y is p(x,y) assuming independence, then

pmi(x;y) = log
p(x,y)

p(x)p(y)
= log(p(x,y))− log(p(x)) =−h(x,y)+h(x)+h(y).

Since p(x,y) = p(x|y)p(y), then the equation can be rewritten as

pmi(x;y) = log
p(x|y)p(y)

p(x)p(y)
= log

p(x|y)

p(x)
= log(p(x|y))− log(p(x)) =−h(x|y)+h(x).

Another way of expressing the equation is using the relationship of p(x,y) = p(y|x)p(x),

pmi(x;y) = log
p(y|x)p(x)

p(x)p(y)
= log

p(y|x)

p(y)
= log(p(y|x))− log(p(y)) =−h(y|x)+h(y).

We quantified the amount of information from the false positive variants that are called from the

sequencing data (say x) but not in the gold standard (say y) as the surprisal from the occurence of

event x given the event y has occured, which is h(x|y) =−log(p(x|y)).
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Normalized pmi (npmi) is also calculated to incorporate the false positive variants (h(x|y)) and

the gold standard variants that are not called from sequencing data (h(y|x)) to the measure.

npmi(x;y) =
pmi(x;y)

h(x,y)
=

pmi(x;y)

h(x)+h(y)− pmi(x;y)

If npmi is equal to −1, then the events x and y never occur together; if npmi is equal to 0 then event

x and y are independent; if npmi is equal to 1 then event x and y completely co-occur.

Figure 2a in the main text shows the relationship between these measures in a Venn diagram,

which is adopted from ref. [4].

1.5 Linking NA12878 to the 1000 genomes panel in the presence of their

parents

We first added the genotypes of NA12878’s parents (NA12891 and NA12892) to the 1000 genomes

panel and then calculated the pmi(SG
NA12878;SDB

j ) for all the individuals in the panel. Box plot (Fig-

ure 3) shows the distribution of the pmi values.
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Supplementary Figure 3: The distribution of pmi values when the parents of NA12878 are

added to the 1000 genomes genotype panel.

1.6 Calculation of information after imputation

When a variant is imputed, naturally the amount of information gained from imputed variant is

low as we have prior information on the probability of observing imputed variant due to the LD

correlation. IMPUTE2 [5, 6, 7] prints a probability for each genotype for a given variant and an
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info column that is a measure for the confidence of observing the variant. Confidence value (coni

for variant si) is reported as a number between 0 and 1. We first removed all the imputed variants

that have confidence below 0.3. We then selected the genotypes that have the highest probability

for each imputed variant. The confidence is used as a prior information on the probability of

observing the imputed variant. We then calculated the information gain from the imputed variant

si as,

him(i) = (1− coni)h(si) (2)

Figure 4 shows the difference in the information gain with and without considering imputation a

priori information.
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Supplementary Figure 4: The contribution of imputed variants to the naive information When

we do not consider the a priori information we obtained from imputation, we infliate the infor-

mation gain from the imputed variants (cyan curve). When we remove the a priori information

from the information gain, it shows that there is negligible information gain from the observation

of imputed variants due to high correlation (red curve). The information before the imputation is

depicted with green curve.

1.7 Gaussian Process Regression (GPR) to estimate information from se-

quencing properties

In order to increase the number of data points, we used sampled reads as new data points. These

downsampled data points are from Hi-C as Hi-C experiments have large number of reads and sam-

pling does not alter the sequence depth distribution. Moreover, if the downsampled data contains

reads in the range of 1 million bp to 10 million bp, it can mimick ChIP-Seq data. This allowed us
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to have total of 45 data points. We found that normalized pmi for these data points ranges between

0.005 and 0.97. To avoid the problems due to the precision, we magnified npmis by a factor of α

as following;

npmi(SFGE ;SGS) =
1

α
f (dFGE ,bFGE ,βFGE)

We set α to 100. We then randomly selected 5 data points and removed them from the dataset to

use it as independent test case. For the remaining 40 data points, we tried many regression learn-

ers including linear regression, regression trees, Support Vector Machines, and Gaussian Process

Regression. Although they all exhibit good prediction with low root mean square errors (RMSE),

Gaussian Process Regression with an exponential kernel reported the lowest RMSE. The GPR is

a non-parametric Bayesian approach, which is powerful to capture noisy relationships between

inputs and output by optimizing large number of parameters hence allowing the level of complex-

ity to be decided by the data through Bayesian inference [8]. We used MATLAB’s Statistics and

Machine Learning toolbox to perform fitting.

1.8 Privacy-enhancing file formats for functional genomics experiments

1.8.1 k-anonymity for BAM files

We went through all the attributes of the BAM files and grouped them into three category: (1)

attributes to supress with an asteriks, (2) attributes to generalize with a common value and (3)

attributes to keep as they are. The first category includes the attributes sequence and quality string

for the sequence. The reason for doing suppression instead of generalization to these attributes are

to save disk space. The second category includes attributes that are necessary to have for several

processing pipelines such as gene expression quantification and TF binding. They are the cigar

attribute and optional fields in the BAM files that are tagged with “AS” (alignment score) and

“MD” (string for mismatching positions). Cigar gives out information about how many matching

and nonmatching nucleotied there are in the read with respect to reference genome. In turn, one can
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call variants by lookimg at the non-matching nucleotides. We converted all the cigars to perfectly

matching strings. For example, if the read length is 35 and the cigar is 14M1X15M, then the cigar

is converted to 35M. AS reveals information about the number of matching positions in a read. An

adversary can predict if a read contains variant by looking at the alignment score and subtracting

it from the read length. MD reveals information about the mismatching positions and deletions in

the reads and their corresponding nucleotides. For example, if there is a nucleotide in the read that

is “A” in the 15th position of 30 bp long read, and if the reference allele for this position is G, then

the MD tag will look like “MD:Z:14MA15M”, which directly reveals the variant position in the

read. We converted all the alignment scores to the read lengths and all the MD tags to a perfectly

matching string (for example “MD:Z:30M” for the example above). the rest of the attributes of the

BAM files are designated as the third category and kept as they are.

1.8.2 pBAM

Privacy-enhancing file formats can be generated for SAM, BAM and CRAM files. For simplicity,

we will refer the regular files as BAM and the privatized file format as pBAM. The difference

between the regular files and the privatized files are on the fields of cigar, sequence, alignment

score and the string for mismatching positions (see section k-anonymity for details). Note that any

optional field that leak sesitive information about the sample can be manupilated. We focus on

AS and MD tags throughout this paper, since they are the most obvious leakages, but a module to

manupilate any other tag can easily be added to p-tools.

Let’s assume read length for the sequencing experiment is 30, which is the total number of

nucleotides in a fragment. Below are itemized description of how cigars are converted to privatized

cigars along with examples.:

Cigars in non-intronic reads (i.e cigars with no ‘N”)

• Cigar for perfectly mapped reads is a number of read length followed by the letter “M”,
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indicating every nucleotide in the read is mapped to the reference human genome. This also

means that there is no variant in this read (unless indicated in the MD tag). In this case,

regular BAM has “30M” in the cigar and pBAM will have ‘30M” in the cigar as well.

• Cigar for reads that contain a mismatch is marked with the letter “X”. For example, if the

10th nucleotide in the fragment has a mismatch, then the cigar in the regular BAM becomes

“9M1X20M”. This usually means that there is a SNP on the 10th nucleotide of the fragment.

Since we know the start coordinate of the read from the regular BAM, an adversary can easily

infer that there might be a SNP on the “start+10”th coordinate of the genome of the sample.

To prevent that we convert “9M1X20M” to “30M” in the pBAM file. This conversion does

not add any noise to the results since “start + 10”th is sequenced, however as a different

letter and processing of functional genomics data deals with the depth rather than the letter

of the nucleotide.

• Cigar for reads that contain soft-clipping is marked with the letter “S”. For example, if

the first 5 nucleotides are soft-clipped from the fragment, then cigar becomes “5S25M”. The

start coordinate reported as the beginning of mapped nucleotides, which is the 6th nucleotide

of the fragment. In this case we report the cigar as “30M” and keep the start coordinate as

it is. This is because soft-clipping can be due to a structural variant, insertion or a deletion.

The associated noise with this conversion is that the coordinates between “start + 26” and

“start +30” gain extra read, i.e depth.

• Above point applies for the reads with hard-clipping that are marked by the letter “H”.

For example, if the nucleotides from 6th to 25th are hard-clipped from the fragment, then

cigar becomes “5M20H5M”. In this case we report the cigar as “30M” ignoring the hard-

clipped nucleotides. The associated noise with this conversion is that the coordinates be-

tween “start+6” and “start +25” gain extra read, i.e depth.

• Cigar for reads that contain an insertion is marked with the letter “I”. For example, if the
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23th to 30th nucleotide in the fragment is an insertion, then the cigar in the regular BAM

becomes “22M8I”. Since we know the start coordinate of the read from the regular BAM,

an adversary can easily infer that there is an insertion on the “start + 23”th coordinate of

the genome of the sample. To prevent that we convert “22M8I” to “30M” in the pBAM file.

The associated noise with this conversion is that the coordinates between “start + 22” and

“start +22+8” gain extra read, i.e depth.

• Cigar for reads that contain an deletion is marked with the letter “D”. For example, if the

13th to 14th nucleotide in the fragment is a deletion, then the cigar in the regular BAM

becomes “12M2D16M”. Since we know the start coordinate of the read from the regular

BAM, an adversary can easily infer that there is an deletion on the “start+12”th coordinate

of the genome of the sample. To prevent that we convert “12M2D16M” to “30M” in the

pBAM file. This conversion does not add any noise to the results, because if there is high

depth around these 2 deleted nucleotides, there is functional enrichment in that fragment

regardless of the deletion. This also prevents signal profiles to leak the small deletions as the

curve that corresponds to the deletion will look smooth based on its neighboring nucleotides.

• There are also cigars that may have multiple of the above letters. Here are a few examples

and the solution:

– Cigar ‘3S15M3I2D7M” becomes “30M”, which introduces noise to only to 6 nu-

cleotides that are on the coordinates between “start+24” and “start +30”.

– Cigar “5H10M2X5M3D7M” becomes “30M”, which introduces noise to only to 5th

nucleotides that are on the coordinates between “start +27” and “start+32”.

Cigars in intronic reads (i.e cigars with ‘N”)

• Cigar for perfectly mapped reads but split due to the introns are split by the letter “N”. For

example, if there is a 1000 nucleotide long intronic region between mapped regions, it can
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have a cigar as “10M1000N20N”. In this case pBAM will have a cigar of “10M1000N20M”

as well.

• If the reads are split in the mapped regions due to mismatch, insertion, deletion or clipping,

then pBAM deals with them such that splice sites are as accurate as possible. Here are few

examples;

– Cigar “3S15M1000N10M2D” becomes “18M1000N12M”, which shifts the intronic

region to right by 3 nucleotides.

– Cigar “10M3I3M1000N2S2M” becomes “16M1000N4M”, which shifts the intronic

region to left by 2 nucleotides.

– Cigar “10M3D3M1000N3M2I9M” becomes “16M1000N14M”, which does not add

any noise to the plice site.

Details of these examples are depicted in Figure 5.

1.8.2.1 Transcriptome alignments Since RSEM requires sequences to be present in BAM

files, we can no longer put random strings to the sequence column in pBAM file. Therefore, we

manipulated the sequences in BAM files and reported the reference transcriptome sequences in the

pBAM.

1.8.3 .diff files

.diff files contain the difference between the original BAM files and the pBAM files in a compact

form. If the information is already available in the reference human genome such as sequence

of the fragment, then the .diff file does not report it. This is done to keep the .diff files as small

as possible. These are the files that require special permission to access and contains the private

information about the individual. To be able to go back and forth between BAM and pBAM files

using the .diff files, the BAM and pBAM files are required to be coordinate sorted.
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Supplementary Figure 5: Visual representation of mapped fragments before and after convert-

ing the cigars for pBAM file format. The insertions, deletions, soft and hard-clipping as well as

intronic reads are depicted. The noise that is added to the pBAM file in order to enhance privacy

is also depicted in the fragments.
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1.8.4 Utility of the pBAM files

Figure 6 shows the difference of various quantification metrics from ChIP-Seq data when BAM

vs. pBAM files are used.
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Supplementary Figure 6: The difference between ChIP-Seq peak calling using BAM and

pBAM as input for the fold over change compared to control, the number of reads that pile

up on the location of peak and the location of the peak summit.

1.9 Calculation of average and maximum leakage per variant

In the section “Comparison of private information leakage from different layers of data stack of

RNA-Seq” of main text, we first overlapped the 1000 genomes variants with the exon annotations.

We classified the variants into the categories of exonic variants, exonic SNVs (excluding indels),

exonic indels and exonic small deletions. For each category, we calculated the self-information

of the variant for all three possible genotypes (0, 1 and 2) as h(s0),h(s1) and h(s2). The average

of self-information for each variant in each catorgory is the average information leakage and the

max(h(s0),h(s1),h(s2) is the maximum information leakage for that particular variant. We then

calculated the mean and standard deviation for all the variant in each category. Total information

leakage is calculated as the product of the total number of accesible variants and the average
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information leakage per variant. The distributions of the lakage can be seen in Figure 7.

(1) Raw read leakages
(2) Signal profile leakage (3) eQTL leakage

Supplementary Figure 7: The distributions of the information leakage per variant in different

levels of the data stack. Individual characterizing information (ICI) is calculated based on

ref [9].

1.10 Contribtuion of de novo variants to FDR

Figure 8 shows how FDR values inflated when de novo variants are assumed to be false positives.

This relates to genotyping a noisy sequencing experiment when the correct genotypes are unknown.

In that case, any new genotype prediction can be seen as false positives even when they are actually

de novo variants.
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Supplementary Figure 8: False discovery rates when de novo variants are assumed to be false

positives

1.10.1 Relation to differential privacy

Differential privacy ensures a high level of privacy such that adversary retrieves similar result

with and without the addition of the individual’s data to the database [10]. A randomized algorithm

A that retrives results A(D) from database D is considered ε-differentially private if the results

satisfies the condition

prob(A(D) =C)

prob(A(D±i) =C)
= eε

, (3)

where D±i indicates the addition or subtraction of ith individual to the database. This concept

applies to databases of individuals, in which database itself is not released and calculations from

this database (i.e algorithm A) is randomized such that adversary cannot infer information about

individuals in the database.

We fist tried to see if we can apply differential privacy to BAM files, where we consider each

read in the BAM file as an entry and the file itself as a database. The idea is that everytime we

retrive a read from BAM file, it will be manipulated such that with or without the retrieved read,

when genotyping is performed the results will be the same, hence one cannot infer the variant in

that retrieved read.
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However since our desire is to be able to use the data for further processing such as testing a

newly developed algorithm or quantifiying gene expression without the need to go through special

access process, retrieving information from BAM files one read at a time, while satisfying the

differential privacy is not practical. Moreover, ensuring that the final pile of reads will have high

enough utility to make any biological conclusions is challenging as randomizing the data might

affect the conclusions. Therefore, we decided to apply k-anonymity to BAM files to create pBAMs,

where the user has the freedom to have all the reads at once and use the new file formats with any

software that works with BAM format.
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Supplementary Table 1: The functional genomics experiments used in this study with their total

coverage

ENCODE ID/Source Experiment # of Reads Read Length

1kG WGS 757,704,193 255

1kG WES 212,461,381 76

Rao et al. 2014 Hi-C exp 1 PE1 219,616,072 101

Rao et al. 2014 Hi-C exp 1 PE2 220,087,882 101

Rao et al. 2014 Hi-C exp 2 PE1 448,843,710 101

Rao et al. 2014 Hi-C exp 2 PE2 451,088,484 101

Rao et al. 2014 Hi-C exp 3 PE1 536,684,803 101

Rao et al. 2014 Hi-C exp 3 PE2 536,101,709 101

ENCSR000CVT Total RNA-Seq 227,501,266 202

ENCSR000COQ PolyA RNA-Seq 267,602,146 76

ENCSR000AJA Single-cell RNA-Seq1 38,377,124 100

ENCSR000AJH Single-cell RNA-Seq2 47,896,396 100

ENCSR000AKF H3K4me1 42,763,056 36

ENCSR145XQO HDGF 41,626,373 101

ENCSR387QUV RELB 25,652,682 101

ENCSR000DZN CTCF-Snyder 25,463,397 36

ENCSR000AKA H3K4me3 20,221,959 36

ENCSR000DYS JUND 18,701,295 36

ENCSR000AOW H3K79me2 16,073,184 36

ENCSR000AKE H3K36me3 15,239,685 51

ENCSR000AOV H2AFZ 14,724,790 36

ENCSR000AOX H3K9me3 14,049,420 36

ENCSR000AKB CTCF-Broad 11,026,086 51

ENCSR000BIF rnap2 10,428,778 36

ENCSR000AKC H3K27ac 10,410,928 51

ENCSR000AKG H3K4me2 9,815,194 51

ENCSR000AKI H4K20me1 9,757,368 51

ENCSR000AKD H3K27me3 8,454,639 51

ENCSR000AKH H3K9ac 7,981,456 51

ENCSR000DKV CTCF-Iyer 7,614,943 35

ENCSR000BGD rnap2 7,516,461 36

ENCSR000BGR PBX3 6,119,046 36
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