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Abstract

Functional genomics experiments on human subjects present a privacy conundrum. On

one hand, many of the conclusions we infer from these experiments are not tied to the iden-

tity of individuals but represent universal statements about biology and disease. On the other

hand, by virtue of the experimental procedure, the sequencing reads from them are tagged with

small bits of patients’ variant information, which presents privacy challenges in terms of data

sharing. There is great desire to share the data as broadly as possible. Therefore, measuring

the amount of variant information leaked in a variety of experiments, particularly in relation

to the amount of sequencing is a key first step in reducing the information leakage and deter-

mining an appropriate “set point” for sharing, with minimal leakage. To this end, we derive

information-theoretic measures for the private information leaked in experiments and develop

various file formats to reduce this in sharing. We show that high depth experiments such as

Hi-C provide accurate genotyping that can lead to large privacy leaks. Counterintuitively,

low-depth experiments such as ChIP-Seq and single-cell RNA-Seq, although not useful for

genotyping, can be create strong quasi-identifiers for re-identification through linking attacks.

We show that partial and incomplete genotypes from many of these experiments can further

be combined to construct an individual’s complete variant set and identifying phenotypes. We

provide a proof-of-concept analytic framework, in which the amount of leaked information

can be estimated from the depth and breadth of the coverage as well as sequencing biases of a

given functional genomics experiment. Finally, as a practical instantiation of our framework,

we propose file formats that maximize the potential sharing of data while protecting individ-

uals sensitive information. Depending on the desired sharing set point, our proposed format

can achieve differential tradeoffs in the privacy-utility balance. At the highest level of privacy,

we mask all the variants leaked from reads, but still can create useable signal profiles that give

complete recovery of the original gene expression levels.
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1 Introduction

With the decreasing cost of DNA sequencing technologies, the number and the size of available

genomic data have exponentially increased and become available to a wider group of audiences

such as hospitals, research institutions and individuals [1]. Availability of genetic information

gives rise to privacy concerns; for instance, genetic predisposition to diseases may bias insurance

companies or create unlawful discrimination by employers [2]. In turn, privacy of individuals has

become an important aspect of biomedical data science [3, 4].

Early genomic privacy studies focused on the identification of individuals in a mixture by us-

ing phenotype-genotype association [5, 6]. These studies showed that private information of an

individual, such as participation in a drug-abuse study, can be revealed [5, 6]. With the increase

of large-scale genomics projects such as the Personal Genome Project [7] or recreational/direct-

to-consumer genomic databases, researchers showed that multiple datasets can be linked together

to infer sensitive information such as pariticipant’s surnames [8] or addresses [10]. Such cross-

referencing relies on quasi-identifiers, which are pieces of information that are not unique identi-

fiers by themselves but are well correlated with unique identifiers or can be unique identifiers when

combined with other quasi-identifiers [9].

Functional genomics experiments provide a wealth of information on genomic activities related

to developmental stages or diseases that are essential for personalized medicine. These studies

use large-scale high-throughput assays to quantify transcription (RNA-Seq) [11], epigenetic reg-

ulation (ChIP-Seq) [12] or the three-dimensonal (3D) organization of genome (Hi-C) [13] in a

genome-wide fashion under different conditions (e.g., samples from patients and healthy indi-

viduals). Inferring biological information from functional genomics experiments is a multi-step

procedure, in which progressive summarization of the data from raw sequencing reads to the gene

quantifications, transcription factor (TF) binding peaks or chromatin interaction matrices is per-
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formed. Although activities of the functional genome are not necessarily tied to an individual’s

genotype, reads from these experiments are derived from the biosamples that belong to individ-

uals; hence, they are tagged with individuals’ variants. Public sharing of such raw data raises

privacy concerns. In order to share high-utility data while preserving individuals’ sensitive infor-

mation, it is essential to determine a “set point”, after which trade-off between the utility of the

data and the privacy risk is balanced. A hurdle in determining the set point is the lack of systematic

quantification of private information leakage from functional genomics data. Figure 1 summarizes

the processing steps of RNA-Seq experiments as an example of how summarization decreases the

risk of privacy while greatly decreasing the amount of sharing and the utility of the functional ge-

nomics data. In detail, functional genomics data analysis starts with the generation of DNA/RNA

sequencing reads that are stored in a special file formats called FASTQ [14]. These files are large

in size ranging from 5 GB up to 60 GB depending on the purpose of the experiment. They are

then mapped to human reference genome and stored as compressed binary file types called binary

alignment map (BAM) and/or compressive alignment map (CRAM) that are derived from the se-

quence alignment map (SAM) files in text format [15]. File formats such as CRAM have been

developed to remedy the ever increasing amount of data; compared to BAM files, CRAM provides

up to a ten-fold decrease when information loss is tolerated [16]. Further summarization of the

mapped reads (such as signal profiles or gene expression quantification) still allows researchers to

make accurate biological conclusions, while providing∼20-fold further data reduction. Although

overall aggregation and averaging reduces biological information, private information leakage also

decreases (Figure 1).

In particular, read alignment files (SAM / BAM / CRAM) are of great interest due to the large

amount of biological data they provide, as they constitute the most important input of the majority

of genome annotation pipelines. However, these files contain sequence information of the individ-

uals that may leak sensitive data. Depending on the depth of the functional genomics experiment,
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raw reads can be used to identify private single nucleotide polymorphisms (SNPs), small isner-

tions and deletions (indels), and structural variants. However, current policies related to the public

sharing of the BAM files are somewhat ad-hoc. For example, for the genome of the HeLa cell line,

the raw reads from Hi-C experiments require special access [17]. By contrast, reads from ChIP-

Seq and RNA-Seq experiments are publicly available [18]. That is, reads from the experiments

that do not require substantial depth are sometimes considered to be safe to share without privacy

concerns, owing to partial and biased sequencing. However, it is not clear that these reads are

leakage free. Although private information leakage from summary-level functional genomics data

have been quantified previously [19, 20, 21] the lack of a systematic quantification of private data

leakage from BAM files makes it difficult for biomedical data sharing policymakers to protect in-

dividuals’ sensitive information in a consistent fashion. The CRAM format provides the option for

the users to convert BAM files into lossy compression, in which quality scores of the alignments

are manipulated. This, in turn, can be used to decrease private information leakage [16]. However,

privacy leaks still occur due to the containment of mismatched information of the reads with re-

spect to reference genome [16]. The mapped read format (MRF) was introduced as a conceptual

format to remedy privacy concerns; in this case, keeping the sequence of reads is optional [22].

This does not only reduces the size of the data, but also makes it hard to genotype the individuals

from the information in these files. However, private information leakage is not entirely removed

from MRF files, as one can still infer deletions from the information in these files. Moreover, cur-

rent quantification pipelines used for gene expression analysis as well as the peak calling softwares

were not designed to take MRF files as inputs.

On the flip side of the coin is the utility of the mapped reads (BAM files) and challenges related

to dealing with private data. Access to private data requires use agreements that have expiration

dates and a tremendous amount of bureaucracy connected to them. Moreover, any secondary data

product becomes private and cannot be distributed. Problems associated with the distribution of
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secondary data products from private biomedical data is exacerbated due to large file sizes. For

example, genome annotations that are derived from private functional genomics data require the

establishment of their own databases. However, because such annotations are derived from private

data, establishment and distribution of these databases require extra levels of privacy-related bu-

reaucracy. Another example of the challenges associated with private data is that big consortia such

as the Encyclopedia of DNA elements (ENCODE) [23], the Cancer Genome Atlas (TCGA) [24] or

the Genotype-Tissue Expression project (GTEx) [25] are funded to enable a collaborative working

environment through dedicated phone calls and meetings. In turn, participants have to go through

required access procedures with their institutions. Otherwise, communication based on private

data is prohibited according to data use agreements. Moreover, when multiple institutions have

required access to the same data, they still cannot exchange files with each other. These chal-

lenges create a bottleneck and hinder the progress of important biomedical findings. Open data

helps the advancement of biomedical data science not only by easing access to the data, but also

by helping with speedy assessment of tools and methods, and in turn, reproducibility. Funding

agencies and research organizations are increasingly supporting new means of data sharing and

new requirements for making data publicly available while preserving participants’ privacy [26].

In an attempt to consider both sides of the coin, we aimed to determine how much information is

enough information to identify individuals and how we can protect the sensitive information with

minimal loss of utility in a public data sharing mode. To this end, we derived novel information

theory-based measures and applied these measures to quantify the amount of leaked information

in various functional genomic assays from ENCODE [23] and other sources [17] at varying cov-

erage. Based on our findings, we developed new file formats that allow the public sharing of read

alignments of functional genomics experiments, while protecting the sensitive information and

minimizing the amount of private data that requires special access and storage. Our file format

manupilation system achieves different levels of privacy versus utility balance with an adjustable

parameter.
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In this study, we used an indivudial (NA12878) as a case example and their 1000 genomes

genotypes as the gold standard [27]. We sampled reads from the sequencing data of functional ge-

nomics experiments at increasing coverage, and detected SNVs and indels using Genome Analysis

Toolkit (GATK) best practices recommendations [28, 29]. We propose a new metric for quanti-

fying the amount of information that can be obtained from sequencing data with respect to the

gold standard. We next present a simple and practical instantiation of a linking attack with the

assumption of adversaries accessing an increasing amount of the sequencing data. We show that

individuals are vulnerable to identifications even at small coverage of sequencing data. We further

show that with summation of reads from functional genomics experiments and imputation through

linkeage disequilibrium, the leaked number of variants can reach the total number of variants in

an indivudal’s genome. We then provide a theoretical framework where the amount of leaked

information can be estimated from depth and breadth of the coverage as well as the bias of the

experiments. Finally, we focus on ways to publicly share alignment data without comprimising

an individual’s sensitive information. We propose privacy-enhancing file formats that hide variant

information, are compressed, and have a minimal amount of utility loss.

2 Results

2.1 Information Theory to quantify private information in an individual’s

genome

An individual’s genome can be represented as a set of variants. Each variant is composed of

the chromosome to which it belongs, location on that chromosome, the alternative allele, and the

corresponding genotype. Let S = {s1,s2, ..,si, ..sN} be the set of variants. Then each variant can

be represented as si = {vi,gi}, where vi consists of the location and alternative allele information

and gi denotes the genotype of the variant as 1 for a heterozygous variant and 2 for a homozygous
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variant. Note that we calculate the information with respect to reference genome, therefore gi = 0,

where the alternative allele and the reference allele are the same is not considered. We can then

calculate the naive self-information of S in bits as

h(S) =−
i=N

∑
i=1

log2(p(si)). (1)

In eq. 1, N is the total number of variants in an individual’s genome, p(si) = ni/nT is the geno-

type frequency, in which ni is the number of individuals with variant si = {vi,gi} and nT is the

total number of individuals in the panel (see Figure 2a). Note that we denote h(S) as “naive” infor-

mation because it is an estimate of the real information in a situation, in which the population to

which the individual belongs is unknown and the number of inidivuals are finite. Eq.1 holds true

only if variants are independent of each other, which is not the case due to the correlation between

variants in linkage disequilibrium (LD). In theory, the population to which the individual belongs

to can easily be predicted by using a few variants. However, from an adversary’s perspective, this

will add one more layer of calculation (i.e., computational and time costs) to the identification at-

tack. Eq.1 is also an estimate of the information when we consider all the individuals in the world

(i.e., limnt→∞ h(S)).

To understand whether naive information is a good estimate, we first calculated the informa-

tion with the consideration of LD scores taken from the European population of the HapMap

project [30]. LD scores are pairwise correlations between variants (LD(si,s j)), which we consider

as the prior information on the existence of a variant given other variants in the same LD block

exist in a genome. Then, the information with LD consideration is calculated as

hLD(S) =−
i=N

∑
i=1

(1−mLD(si,s j))h(si) (2)
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mLD(si,s j) is the maximum LD correlation of variant si with other variants such that mLD(si,s j) =

max
i 6= j, j∈(1,..,N)

LD(si,s j), where mLD(si,s j) 6= mLD(s j,si).

Figure 2c shows a negligible difference between the naive information and information with LD

consideration for the NA12878 genome. To understand the lack of difference better, we calculated

the self-information of each variant in an LD block with and without LD consideration. We found

that highly informative variants do not exhibit any difference due to the low LD correlations (Fig-

ure 2b). We further show that the number of variants with differences between information with

or without LD consideration is small compared to the number of variants low LD correlations on

average (SI Figure 1). This also shows that information (h(S)) is driven by the rare variants.

We then estimated the information when the population size is infinite [31]. We sampled frac-

tions on the order of 10%, 20%,..., 100% individuals from the 1000 Genomes panel (total of 2504

individuals) and calculated the information using the sampled distribution of genotypes. We re-

peated this calculation 100 times and calculated the mean information for each sampled fraction.

The relationship between the inverse of the sample fraction and the information fit best to a power

function with two terms (y = mxb +n, R = 0.99). The y-intercept of the curve is the extrapolation

of information when the population size approaches infinity (1/∞ = 0, Figure 2c). We again found

a negligible difference between the naive information and the information when the population

size is infinite (Figure 2c). We also calculated the information by starting from a single individual

and adding individuals one by one to the population (SI Figure 2). These individuals were simu-

lated using the genotype frequencies in the 1000 genomes panel and the LD information from the

HapMap project (see SI methods). Both the information calculation and the KL-divergence be-

tween different-sized populations showe that as the size of the population increases, the difference

in the information decreases and eventually becomes negligible (SI Figure 2)
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The calculations above show that naive information can be an accurate approximate to the private

information content of an individual’s genome when the individual’s population is unknown and

the population size is bound by the number of individuals in 1000 Genomes panel due to the

relationship of information at n → ∞ ≥ naive information ≥ information with LD (Figure 2c).

That is, an adversary with no prior knowledge of the population of the sample and limited number

of individuals in a known genotype panel can accurately approximate the private information in

the genome of the sample.

2.2 Information Theory to quantify private information leakage in func-

tional genomics data

We next aimed to understand the relationship between the leaked information and the coverage

to make a fair comparison between different functional genomics experiments. We sampled c

amount of total nucleotides from the 24 different functional genomic experiments and from whole

genome sequencing (WGS) and whole exome sequencing (WES) data of sample NA12878 (see SI

Table 1). We used GATK to call SNVs and indels with the parameters and filtering suggested in the

GATK best practices [28, 29]. We used the genotypes in the 1000 Genomes panel for NA1278 as

the gold standard. We used “naive” pointwise mutual information (pmi) as a measure to quantify

the association between the gold standard and the called variants. If SG = {s∗1, ..,s
∗
i , ...,s

∗
M} is the

set of variants from the gold standard and SF(c) = {s1, ..,si, ...,sM} is the set of variants called from

the c total sequencing coverage of a functional genomics experiment, then the set A = SG
⋂

SF(c)

contains the variants that are called and are in the gold standard set. If A = {a1, ..,ai, ..,aT}, then

pmi(SG;SF(c)) =−
i=T

∑
i=1

log2(p(ai)) (3)

We then added more coverage to the sampled coverage and repeated the calculation. We re-

peated this procudere untill we depleted all the reads of a functional genomics experiment. The
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overall process is depicted in Figure 2a. Figure 2a also shows how different measures such as

self-information, pmi or joint information relate to each other [32]. More detail can be found in SI

Methods.

2.3 Private information leakage in 24 functional genomics experiments with

different coverage

We calculated naive pmi values for 24 functional genomics experiments with different coverage.

The experiments involved whole genome approaches such as Hi-C, transcriptome-wide assays

such as RNA-Seq, and targeted assays such as ChIP-Seq of histone modifications and transcription

factor binding (SI Table 1). In addition, we calculated the pmi for WGS, WES, and SNP-ChIP for

comparison (Figure 3).

As expected, the Hi-C data contained almost as much information as the WGS data and more

information than the SNP ChIP array data. The WGS data contained more information than the

Hi-C data at the beginning of the sampling process. As we sampled nucleotides between 1.1 and

10 billion bps, the information content of the Hi-C data surpassed the WGS data (Figure 3a).

We speculate that this is due to a higher quality of genotyping of the genomics regions that are in

spatial proximity, as Hi-C has a bias of sequencing more reads from those regions. As expected,

we could not infer as much information from the ChIP-Seq reads (Figure 3b). Surprisingly, many

of the ChIP-Seq assays such as the ones targeting CTCF and RNAPII contained a large amount

of information at low coverage. Furthermore, comparison between WES and different RNA-Seq

experiments showed that none of the RNA-Seq experiments contained as much information as

the WES data; this is due to the fact that RNA-Seq captures reads only from expressed genes in

a given cell type (Figure 3c). An unexpected observation was that more information could be

inferred from polyA RNA-Seq data at low coverage compared to WES and total RNA-Seq data.

To make a fair comparison between each of these assays, we calculated the mean pmi per base
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pair depicted in Figure 3d. To do so, we normalized the pmi values by the amount of coverage (c).

We then averaged each by the number of times (n) we performed sampling on that experiment

(∑ pmi(SF(c);SG)/c
n

). The Hi-C and ChIP-Seq experiments targeting the transcription factor HDGF

provided more genotyping information per base pair compared to the WGS data. The RNA-Seq

experiments provided the least genotyping information per base pair (Figure 3d).

2.4 Genotyping accuracy

In light of our finding that genotyping can be performed using low-depth, biased functional

genomics experiments, we next assessed the accuracy of genotyping by calculating the false dis-

covery rate at different coverage. This approach also measures how much noise each assay cap-

tures. We defined the false discovery rate as the ratio between the information obtained from

the incorrectly called variants (h(SF(c) | SG)) and the information obtained from all the called

variants (h(SF(c))) at a given sequencing coverage c, namely

FDR(SF(c)) = h(SF(c) | SG)/h(SF(c)) (4)

Figure 4a shows that the false discovery rate for Hi-C data was lower compared to WGS data

at lower coverage. We attribute this finding to the deeper sequencing of the genomics regions

in close spatial proximity. Hence, sampling more reads from regions at low coverage is more

likely compared to uniform sampling of reads from WGS. ChIP-Seq data had a comparable false

discovery rate to WGS and Hi-C data given the shallow sequencing depth. ChIP-Seq targeting

CTCF had the lowest false discovery rate (Figure 4b). We further found that the polyA RNA-

Seq experiment had the lowest false discovery rate compared to WES and total RNA-Seq. This

could be attributed to the deeper sequencing of regions containing highly expressed genes and

deeper sampling from these regions. In general, assays targeting the transcriptome such as WES

and RNA-Seq produced noisier genotypes compared to WGS and Hi-C experiments; single-cell
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RNA-Seq was the noisiest among all the assays, as expected (Figure 4c).

2.5 Linking attack scenario

Linking attacks aim to re-identify an individual by cross-referencing datasets (Figure 5a). For

example, in a hypothetical scenario an attacker aims to query an individuals HIV status from

his/her phenotype data. This phenotype data is released with the individuals genotype information

with an anonymized identifier for each individual. We assume that the adversary obtains access

to this dataset by either lawful or unlawful means. Now lets assume that the attacker has access

to a biosample. This could be partial or complete mapped reads from functional genomics ex-

periments or a saliva sample taken from a used glass. The idea is to genotype the biosample and

find the matching genotypes in the HIV status database. However, individuals share many com-

mon variants with each other. The number of shared variants between individuals is large within

a racial population and even larger within a family. The question becomes how well an adversary

should sequence an individuals genome to be able to perform successful linking. Specifically, the

adversary is interested in investigating whether noisy and partial reads from functional genomics

experiments can be used as quasi-identifiers and how accurate the genotyping needs to be in order

to link individuals to databases.

For this, the attacker calls variants directly from the reads of anonymized functional genomic

experiments. Then he/she compares the called noisy and incomplete genotypes to the genotype

data panel and finds the entry with the highest pmi. This reveals the sensitive information for the

linked individual to the attacker. We then consider a scenario in which the attacker has access to

partial or increasing amount of reads to find out when the data crosses the set point and becomes

private.
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Based on the pmi values of each experiment at different coverage, we defined a metric for linking

accuracy called gapquery. Let assume SDB
j is the set of variants that belongs to the jth individual in

the genotype panel and SF
query(c) is the set of variants that was called from the functional genomics

experiments of the query individual at c total sequencing coverage. We first calculate the pointwise

mutual information between every individual in the panel and the query as pmi(SF(c);SDB
j ). We

then ranked all the pmi values in a decreasing order such that;

pmi(SF(c);SDB
i )(1) > pmi(SF(c);SDB

j )(2) > ... > pmi(SF(c);SDB
m )(N)

In our linking attack scenario, we calculate a metric called gapquery, which is the ratio between

the pmi of first ranked individual and that of second ranked individual. The idea is that if the first

ranked individual is separated from the rest of the population (i.e., gapquery¿1), then the first rank

individual is predicted as query (Figure 5).

As our query individual (NA12878) was in the panel, we could measure the accuracy of this

prediction by further extending the definiton of gapquery. We calculate the gapquery for three pos-

sibilities: (1) First ranked individual is NA12878, (2) first ranked individual is not NA12878, but

NA12878 is in the first five ranked individuals, and (3) none of the top five mathing individuals

are NA12878. In the possibility (1), the attacker makes a correct prediction. The strength of this

prediction is the gapquery, which is measured as the fold change difference between the pmi of best

matching individual (coorect prediction) and the second best matching individual. In the possibil-

ity (2), the strength of this prediction (gapquery) is measured as the fold change difference between

the pmi of the real individual, that is ranked somewhere between 2nd to 5th and the pmi of the best

matching individual, that is the misprediction. In the possibility (3), the attacker makes a false

prediction that the query cannot be retrieved from the panel, there gapquery becomes 0. We can

formulate this as;
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gapquery =
pmi(SF(k);SDB

i )(t)

pmi(SF(k);SDB
j )(2)

, if SDB
i = query and t = 1

gapquery =
pmi(SF(k);SDB

i )(t)

pmi(SF(k);SDB
j )(1)

, if SDB
i = query and t ∈ 2,3,4,5

gapquery = 0, otherwise

(5)

We then defined that if gapquery is 0, then the individual cannot be identified as there are other

individuals in the panel that have the matching genotypes. If 0 < gapquery ≤ 1, then the individual

might be vulnerable with auxiliary data such as gender or ethnicity, because he/she is in the top

five matching individuals. If 1 < gapquery ≤ 2, then the individual is vulnerable as we can identify

him/her with a one- to two-fold difference between him/her and the second best match. Lastly,

if gapquery > 2, then the individual is extremely vulnerable with more than a two-fold difference

between him/her and the second best match. A detailed flowchart of the linking attack is shown in

Figure 5a.

We found that NA12878 was extremely vulnerable even at the lowest sampled coverage for Hi-

C and RNA-Seq data (Figure 5b). Interestingly, between ∼1.1 and 10 billion base pairs, the Hi-C

data exhibited higher linking accuracy than the WGS data, consistent with the previous observation

of pmi shown in Figure 3a. The total coverage of ChIP-Seq data compared to Hi-C and RNA-

Seq data was quite low (SI Table I). However, the linking accuracy of ChIP-Seq was as good

as Hi-C and WGS (Figure 5b), showing extreme vulnerability of individuals with respect to a

release of a small amount of data. More strikingly, the attacker can link NA12878 by using the

reads of single-cell RNA-Seq data, which cover a small portion of the genome in a single cell

(Figure 5d). We then added the variants of NA12878s parents to the 1000 Genomes genotype panel

and repeated the linking attack. We found that although NA12878 was still extremely vulnerable

to re-identification with the presence of her parents in the database, the second-best matching

individuals were her parents (SI Figure 3). This shows that, using the metric gap, an adversary can
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also identify individuals related to the target individual.

2.6 An individuals genome can be accurately approximated from publicly

available data by imputation

To determine whether an attacker can correctly assemble an individuals variants by only using

the reads from ChIP-Seq and RNA-Seq experiments, we imputed variants by using IMPUTE2 [33,

34, 35] and the variants called from ChIP-Seq and RNA-Seq experiments. We then collected

all the called and imputed variants in a set. Although imputed variants did not contribute to the

information due to high correlation with the called variants (SI Methods and SI Figure 3), total

number of captured variants increases significantly (Figure 6a). By using shallow sequencing data

of ChIP-Seq and RNA-Seq, we were able to call and impute almost as many variants as the gold

standard.

We then tested if we could infer potentially sensitive phenotypes from these variants. Figure 6b

shows a small set of example variants associated with physical traits such as eye color, hair color,

or freckles. Many of these variants are in the called set of Hi-C, ChIP-Seq, and RNA-Seq data.

The number of variants associated with traits further increased with imputation as expected.

2.7 Toy model for estimating the amount of leaked data without variant call-

ing

Genotyping from DNA sequences is the process of comparing the DNA sequence of an individ-

ual to that of the reference human genome. To be able to successfully genotype, one needs substan-

tial depth of sequencing reads for each base pair. According to the Lander-Waterman statistics for

DNA sequencing, when random chunks of DNA are sequenced repeatedly, the depth per base pair

follows the Poisson distribution with a mean that can be estimated from the read length, number of
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reads, and the length of the genome [36]. As functional genomics experiments aim to find highly

expressed genes, TF binding enrichment, or 3D interactions of the genome, it is expected that the

sequencing depth per base pair does not follow Poisson statistics. Thus, genotyping using reads

from functional genomics experiments is biased towards variants that are in the functional regions

of the cell types/lines of interest.

To this end, we we hypothesized that genotyping from sequencing-based functional genomics

data depends on the average depth per base pair (d) , and the total fraction of the genome that is

represented at least by one read (i.e., the breadth, b = ∑N
i=1 δ (di), such that δ (di) = 1 if di > 0,

b = 0 otherwise and N is the total number of nucleotides in the genome), and a parameter β that

estimates the sequencing bias ( i.e., how much the distribution of depth per basepair deviates from

the Poisson distribution, Figure 6c). The bias parameter β is composed of two terms: (1) the

negative bias β− and (2) the positive bias β+. The negative bias estimates if there is an increase

in the number of low depth basepairs relative to the mean with respect to the expected Poisson

distribution; the positive bias estimates the increase in the number of high-depth basepairs (see SI

for more details).

To quantify the genotyping accuracy from the functional genomics data, we used “naive” nor-

malized pmi (npmi, see SI for details). This approach takes into account the information from

the correctly identified genotypes (pmi(SF ;SG)), the information missed that is in the gold stan-

dard (h(SG | SF)) and the information from the incorrectly identified genotypes (i.e FDR, h(SF |

SG)) and normalizes it with the joint information of called variants and gold standard variants (h(SF ,SG)

as;

npmi(SF ;SG) =
pmi(SF ;SG)

h(SF ,SG)
=

pmi(SF ;SG)

h(SG | SF)+ pmi(SF ;SG)+h(SF | SG)
(6)

To be able to get a fit for the relationship of npmi(SF ;SG) = f (dF ,bF ,βF), we used Gaussian

Process Regression (GPR) [37] to fit 40 training data points and achieved a root mean square
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error (RMSE) of 2.60 with the values ranging between [0,100] (Figure 6d). We used five separate

data points as a test set and achieved an RMSE of 2.47 was acheieved (Figure 6d). We performed

regression learning using a ten-fold cross-validation to protect against overfitting. This toy model

represents a conceptual theoretical framework limited to the small sample space available. It shows

that the amount of leaked data from functional genomics experiments can be estimated without the

need of performing time-consuming genotyping calculation.

2.8 Unique combination of common variants contribute significantly to the

information leakage and linking accuracy

We next analyzed whether a linking attack can be prevented by removing rare variants from

the datasets as their contribution to the information is the highest. We first speculated that the

removal of the variants that are unique to NA12878 might be enough to prevent linking. A total

of 11,472 variants along with their genotypes were observed only in NA12878, which we refer

as “singletons” (Figure 6a). Please remember that we used the terminology variant not only for

the location and minor allele of the SNV but also the genotypes (homozygous or heterozygous).

Therefore number of singletons in this context are more than the number of de novo variants.

After the removal of singletons from the NA12878 variant set, we calculated the gapNA12878. Sur-

prisingly, the linking accuracy was affected minimally compared to using the all of the NA12878

variants (Figure 6b). We then created another set (doubletons, Figure 6a), that included the vari-

ants observed in NA12878s genome as well as one more individual in the 1000 genomes genotype

panel (total of 16,305 genotypes). We again found that the individual was extremely vulnera-

ble to linking attacks (gapNA12878 > 2,Figure 6b). We then relaxed our cut-off further to remove

the genotypes that are observed in NA12878’s genome as well as at most 1.5% of the popula-

tion (“rare genotypes”, total of 124,093 genotypes, Figure 6a). This also did not affect the overall

linking (gapNA12878 > 2,Figure 6b).
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These rare genotypes were observed in 64 or less individuals including NA12878. A practical

solution to the re-identification problem using functional genomics data would be masking or re-

moving such rare genotypes from the reads. However, as iteratively shown here, although rare

variants are extremely informative and sufficient enough to achieve re-identification through link-

ing attacks, their removal is not sufficient to prevent re-identification. That is, not only the rare

genotypes but also the unique combination of common genotypes are identifiers of the genetic

make-up of an individual. To further support this calculation, we added the genotypes of the par-

ents of NA12878 to the panel and found that we could still link NA12878 to the correct genotypes

successfully with an extreme vulnerability (gapNA12878 > 2, SI Figure 3).

We then analyzed the contribution of small indels to the naive information and whether accurate

linking was possible when we removed all the single nucleotide mutations from the data and kept

the indels. Figure 6d shows the information contribution of the indels. Although naive pmi from

indels were much smaller compared to single nucleotide mutations, a high linking accuracy could

be achieved by using only indels even at small coverage (Figure 6d). This linking attack is done

using one of the noisy data set we have (total RNA-Seq) to make linking more difficult.

2.9 Privacy-preserving file formats for read alignments from functional ge-

nomics experiments and relation to k-anonymity

Sharing raw read alignments (to the reference genome) from functional genomics experiments

is extremely important in developing analysis methods and discovering novel mechanisms about

the human genome. Ideally, one would share the maximal amount of information with minimal

utility loss while largely maintaining an individual’s privacy. As a privacy metric, we aimed to

prevent leakage of any variant as well as any quasi-identifier that can lead to identification of the

position of variants in the genome. We introduced a user-identified privacy-utility balance that

can be adjusted according to the patients consents and institutions policies. By using the concept
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of k-anonymity [10], we applied a privacy-preserving transformation to the alignment files such

that calling variants from transformed files is largely prevented while quantifications related to the

functional genome is possible with minimal error (Figure 8a).

A release of data possesses the k-anonymity property if the information for each person con-

tained in the release cannot be distinguished from at least k − 1 individuals whose information

also appear in the release. Although this concept was developed for the release of datasets with

individuals, we can think of a raw alignment file (BAM) as a dataset, where information for each

read is contained. Let’s assume a BAM file is a dataset D, where each entry is a read. The desire

is to release dataset D in a form (say D∗) such that it does not leak variants from the reads, but in

the mean time any calculation f based on D and D∗ retrieves almost the same result. There are

two general methods to achieve k-anonymity for some value of k: suppression and generalization.

If every column in D is an attribute (such as read length, cigar, sequence, quality value, etc.), then

replacing an attribute with an asterisk(*) is suppression and changing an attribute with a more

general value is generalization. For example, in our file format transformation, we can replace se-

quence and sequence quality attributes with asterisk (suppression), and transform the cigar of the

read from partially mapped to fully mapped (generalization) to achive 3-anonymity with respect

to attributes sequence, sequence quality and cigar (see SI Methods for details). Now let’s say the

privacy-preserving transformation is done through a function PQ,r such that PQ,r(D) = D∗. Q is the

operation such as ‘’removal of small indels”, “removal of mismatches”, “removal of large indels”

or “removal of all variants”. r is the amount of reads to be manipulated given the operation Q. A

calculation f can be signal depth profile calculation, TF binding peak detection or gene expression

quantification (Figure 8a). Then, we can reconstruct an equation for each unit i as

f (D)

f (D∗)
= eεi , (7)
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where a unit i can be a single basepair, an exon or a gene depending on the function f . In turn,

εi can be calculated as the log fold change between the results derived from two datasets. This is

also a quantity commonly used to compute differential gene expression [38] or ChIP-Seq binding

enrichment over controls [39], and can be used as analogous in this context, where log-fold change

is the differential signal depth or expression when the manipulated data is used as an input.

Note that | εi | is a measure of error of the new dataset D∗. We then calculated the distribution

of | εi | values over every unit and found the mean | ε | per unit as the overall error. The level of

privacy is controlled by the function PQ,r, where Q determines the type of entries and r determines

the number of entries of the given operation Q that are manipulated. For any particular operation,

the obvious threshold could be the size of the indels, Minor Allele Frequency (MAF), or the depth

of a particular unit. These thresholds can be converted into fraction of the reads affected. For

example, if Q is the removal of indels and r is the reads that contain indels with MAF < 0.50, then

only reads that have indels with MAF < 0.50 will be manipulated in the transformed D∗.

We constructed the privatized file format pBAM from data D∗ as follows. The reads from the

BAM files were categorized as perfectly mapped reads and reads with mismatches, insertions,

deletions, soft- and hard-clipping. PQ,r replaces the sequence of all of the reads with asterisk and

manipulates the cigars, alignment scores (AS tag) and the strings for mismatching positions (MD

tags) of the reads that are defined in Q and r. pBAM files can be thought of as scrubbed privacy-

preserving binary alignment files and the operation Q and amount r as the level of scrubbing.

pBAM files can also be created from BAM files that are obtained by mapping sequences to the

transcriptome coordinates, which is essential for gene quantification. Our transformation function

PQ,r is general and can be applied to any alignment file types such as SAM, CRAM and MRF

to create a privatized new file format. These files will be concordant to use with tools such as

samtools, cramtools and mrftools.
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We calculated the signal depths of each basepairs in the genome using an NA12878 polyA RNA-

Seq (see SI Table I) BAM file using STAR [40]. We then converted the BAM file into pBAMs with

different Qs and calculated the signal depth of each basepair. Figure 8b shows the number of

basepairs with εi > 0 with respect to the number of base pairs with no change between BAM and

pBAM. We did the same calculation by averaging signal over exons as well (Figure 8b). Further-

more, we created pBAM files for the BAM files that are mapped to the reference transcriptome and

compared the gene quantification with the gene expression levels calculated from original BAM

files by using RSEM for gene quantification and STAR for transcriptome alignment [40, 41]. We

found no difference between the gene expression levels calculated using original BAM files and

pBAM files (see Figure 8b and SI Methods for how we treated transcriptome alignments). Overall,

when we removed all the variant leak from the BAM files, we found 0.18% difference at the base-

pair resolution, 0.27% difference at the exon resolution, and 0% difference at the gene level. When

we removed leak associated with the mismatches, we did not see any difference (see SI Methods).

When we removed leak associated with indels, we found 0.0016% difference at the base pair res-

olution, 0.0011% at the exon resolution, and 0% difference at the gene level. When we removed

leak associated with split reads, we found 0.17% difference at the basepair resolution, 0.26% at

the exon resolution, 0% difference at the gene level. Figure 8c shows the change in ε with respect

to increasing r for different operations Q. When the mismatches are manipulated, the resulting

signal profiles are not affected. Hence, the manipulated dataset will retrieve the same results as

the original dataset regardless of the number of reads (r). However, manipulating indels and split

reads will result in changes in the utility of the new file formats. This is particularly useful as for

example the ENCODE consortium adopts processing pipelines, in which split reads are discarded.

The pBAM file format contains necessary information to be used in functional genomics pipelines

such as gene expression quantification and TF binding peak calling. The difference between the

results of the ENCODE Chip-Seq TF binding peak calling pipeline (MACS2 [39]) is even more
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negligible when BAM and pBAM were used as input (SI Figure 6). We then created a .diff file

format that contains the original information that was manipulated in the pBAM file. With the

motivation of keeping the size of private file formats relatively small, we report only differences

between BAM and pBAM in the .diff file by avoiding printing any sequence information of the

reads that can be found in the reference human genome (see SI Methods). The .diff files are private

files that require special permission for access. A user is able to retrieve the original BAM file

when they have access to the .diff file by using our collection of scripts called “p-tools” that can

convert pBAM + .diff + reference genome into the original BAM file (Figure 8d).

2.10 Comparison of private information leakage from different layers of

data stack of RNA-Seq

To demonstrate the extend of leakage in raw alignment files, we reviewed all the known sources

of information leakage from different points of data summarization process (Figure 1a,b). As

we showed throughout this study, the most obvious leakage is directly from the reads, and can

be largely avoided by converting the BAM files into pBAM format. The next source of leakage is

from the signal profiles, which we studied extensively [21]. The next source of leakage comes from

the quantifications of expression values. Given a population of individuals, these gene expression

values can be related to variants through eQTLs, hence can create leakage [20].

In Figure 1c, we calculated the potential number of variants one can obtain from a typical RNA-

Seq experiment: (1) In the read level, we can potentially observe all the SNVs on the exons,

however only a fraction of them is accessible through RNA-Seq depending on which gene is ex-

pressed in which cell line/type. (2) In the pBAM level, the information leakage will vary based

on the operation Q. In the highest level of privacy, we theoretically remove all the variants that

can be observed from the reads. However, we do not discard the possibility of discovering leakage

from pBAMs using more complicated algorithms. (3) In the signal profile level, we can potentially
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observe all the deletions on the exons. However, only a fraction of them is accessible to the ex-

periment depending on the expressed transcripts in the given cell type/line. Therefore, following

the genotyping described in ref. [21], we calculated the number of deletions that can be genotyped

from the signal profile of polyA RNA-Seq experiment of the individual NA12878 as the accessible

deletions in Figure 1c. (4) In the gene expression quantification level, the potential number of vari-

ants that can be observed are all the eQTLs connected to the genes. However, in reality, to be able

to observe an eQTL leakage, the gene expression level of the individual should be significantly

different than the gene expression level of a population of individuals. We calculated the accessi-

ble variants through gene expression quantification as the average number of eQTLs per individual

based on the calculations in ref. [20], (see SI Methods for details).

In summary, the amount of private information leakage from raw alignment files are almost

∼ 1000 times more than the amount of leakage from the signal profiles and gene expression levels.

This shows the extent to which pBAMs protect the sensitive information while allowing sharing of

such large amount of data.

2.10.1 Implementation

Conversion of BAM files to pBAM and pBAM+.diff files back to BAM files are implemented as a

series of scripts in bash, awk and Python. .diff files are encoded in a compressed format to save disk

space. For convenience, pBAM files are saved as BAM files with manipulated content and with a

p.bam extension. That is, any pipeline that uses BAM as an input can take p.bam as an input as well.

CPU times (calculated using a single 2.3 GHz AMD Opteron processor) and associated file sizes

for alignments from RNA-Seq experiments and ChIP-Seq experiments are documented in Table 1.

Our file format manipulation has been adopted by the ENCODE Consortium Data Coordination

Center. Codes for the calculation of information leakage, scripts for file manipulation as well as

examples of BAM, pBAM, and .diff files can be found at privaseq3.gersteinlab.org.
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Table 1: p-tools performance and associated file sizes

Experiment Total RNA-Seq PolyA RNA-Seq ChIP-Seq (CTCF) ChIP-Seq (H3K4me1)

BAM size

(bytes)
42,833,835,295 18,394,473,842 285,068,500 1,220,248,527

pBAM size

(bytes)
7,049,078,124 3,747,104,948 100,690,055 413,710,488

.diff size

(bytes)
22,953,435,346 9,470,880,178 76,742,518 393,118,845

BAM to pBAM

compression
16.5% 20.4% 35.3% 33.9%

BAM to pBAM+.diff

CPU time
14:29:44 9:24:38 0:38:17 0:43:09

pBAM+.diff+hg to BAM

CPU time
0:29:27 1:25:43

3 Discussion

Functional genomics experiments using large-scale, high-throughput, sequencing-based assays

provide a large amount of biological data. Although these experiments aim to answer questions

related to genomic activities such as gene expression, TF binding, or the 3D organization of the

genome, public sharing of sequencing data from these experiments can lead to recovery of geno-

type information and, in turn, raise privacy concerns. The systematic quantification of private

information content of the functional genomics BAM files and open access to such data without

compromising individuals identity have not been well studied. Current policies regarding public

sharing of functional genomics BAM files are ad-hoc. The experiments that require a high depth

of sequencing such as Hi-C and sometimes RNA-Seq are considered to be private, whereas rela-

tively low-depth BAM files such as those from ChIP-Seq are often shared publicly. In this study,

we derived information theory-based measures to systematically quantify the sensitive information

leakage in the BAM files of functional genomics experiments in low- and high-depth experiments.

Instantiation of linking attacks by genotyping of partial or complete functional genomics data

showed that even at low coverage of low-depth experiments such as ChIP-Seq, linking individuals

25



to the databases can be done without error. When we compared the linking accuracy to the false

discovery rate, we found that it is easier to link individuals to the databases than genotyping them

accurately using functional genomics experiments. The implication is that noisy quasi-identifiers

(i.e., low-quality SNP calling) can be used to link the data to the high-quality genotypes. For

example, according to our calculations, reads from single-cell RNA-Seq data carry the largest

amount of noise. This is likely due to the bias towards expressed genes in such small amounts

of cells, mapping issues of splice sites, false positives from RNA editing sites, and amplification

bias. However, the noisy genotypes called from a small amount of cells, even when the number

of reads is only a million, are quasi-identifiers that result in very high linking accuracy. This is

worrisome in terms of biomedical data sharing as the number of individuals in genotype databases

is increasing exponentially with the decreasing cost of sequencing. Furthermore, rich information

about an individual’s identity and his/her sensitive phenotypes can also be inferred by combining

the reads from low-depth functional genomics experiments and through genotype imputation.

Another implication of the false discovery rate of genotyping in privacy is the relationship be-

tween the accuracy of the genotypes and the amount of information gained from the genotypes.

For example, if the query individual is not in the genotype panel, any genotypes of the query that

are not in the panel will be de novo variants and will greatly contribute to the information gained.

However, these de novo variants can be rich in artifacts and sequencing errors. Conversely, any

common genotype of the query will be highly accurate while poor in information. Consequently,

from an adversarys perspective, the most valuable genotypes will be the rare genotypes in the panel

to make accurate inferences about the querys identity and sensitive phenotypes, despite the fact that

most information is gained from the de novo variants by definition. One way to correct for this

is to count any de novo variant genotyped as a false discovery, which changes the false discovery

rate values in Figure 4 greatly for different functional genomics experiments and is presented in SI

Figure 8.
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In this manuscript, we also discuss the concept of a set point in determining the data production

steps, where sensitive information leakage and utility of the data are balanced (Figure 1). Set-

ting a set point is possible by systematic genotyping and quantification of information. Although

it is obvious that any DNA read contains variants, it is not trivial to understand the amount and

the quality of sequencing to perform accurate genotyping. Moreover, we showed that genotyping

accuracy of a functional genomics sample and the ability to link individuals to the databases using

the same sample are not necessarily correlated. It is easier to link individuals to the databases

and infer their complete variant sets than genotyping a sample with accuracy and minimal false

discovery. For example, a complete set of variants from HeLas genome may not be obtained by

genotyping HeLa BAM files from functional genomic experiments. However, using only a small

number of reads from the same BAM files, accurate linking attacks are plausible. That is, noisy and

incomplete genotyping from partial sequencing experiments can serve as strong quasi-identifiers,

which is not straightforward to predict at first. Nevertheless, policies governing the public sharing

of HeLa genome versus HeLa functional genomics reads is ad-hoc and contradictory. Therefore,

it is essential to quantify the information in samples and determine the set point accurately. Im-

portantly, functional genomics experiments advance our understanding of health and disease by

revealing functions of the genome under different conditions. The quantification, analysis, and

interpretation of functional genomics data is still an evolving field; hence, extensive public sharing

of functional genomics data will accelerate collaborative research and reproducibility by removing

the complexities associated with data accession procedures.

The increasing incentive to share data for the advancement of biomedical research and the cor-

responding increasing privacy concerns have led researchers to look for more complex solutions

to overcome the bottleneck between data-sharing and privacy preserving means. Solutions such as

differential privacy have been proposed [42, 43, 44]. Studies have shown that retrieving summary

information from private statistical databases without revealing some amount of an individual’s
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information is impossible [45]. Furthermore, an entire database can be inferred by using a small

number of queries. Differential privacy ensures a high level of privacy such that an adversary

retrieves a similar result with or without the addition of the individual’s data to the database by

adding perturbations or noise to the queries [45]. We further studied if the concept of differential

privacy can be utilized to create leakage-free raw functional genomics data (see SI Methods). Al-

though such a concept is useful for sharing summary statistics of functional genomics data from

multiple individuals, it is conceptually hard to apply to the raw mapped read sharing from func-

tional genomics experiments taken from a single individual. Although further research will be

fruitful on how to extract useful information from genomics data that are noisy and perturbed, we

envision there will be more applications of privacy concepts like differential privacy in genomics

data sharing such as releasing population-based genotype-phenotype data.

To enable public sharing of raw alignments from functional genomics experiments, we de-

signed a privacy-preserving transformation and created privacy-preserving binary alignment files

(pBAM). We developed a framework with which researchers can tune the level of privacy and util-

ity balance they want to achieve based on the policies and consents of the donors. pBAMs enable

researchers to share the mapped reads, which are largest data product of functional genomics ex-

periments. To ease the challenges associated with moving and storing large special-access files,

we created a lightweight .diff file format that consists of the differences between pBAM and BAM

files in a compact format. This allows us to not repeat the sequence information in the human refer-

ence genome files in .diff files and reduces the size of the private files significantly. The presented

framework can be used for quantification of sensitive information from the raw reads of functional

genomics experiments and conversion of raw files to privacy-preserving file formats. We address

the most obvious leakage and provide solutions for quick quantification and safe data sharing.

However, it is useful to review all the sources of information leakage from functional genomics

experiments. For example, the next source of leakage is from the signal profiles in RNA-Seq,
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which was addressed elsewhere [21]. There is also leakage from gene expression quantifications,

which was shown to be connected with variants through the eQTLs [20]. We also anticipate more

leakages to be discovered as new functional genomics experiments are developed. Combined with

the increasing attention to genomic privacy, we expect future studies will lead to novel privacy-

preserving solutions in an open data-sharing mode.

4 Figure Legends

Figure 1: Schematic of data types from the progressive summarization of functional genomics

experiments. (a) The data summarization flow for RNA-Seq data processing from mapped reads

to the gene quantifications. Mapped reads to the reference genome are stacked together to cre-

ate the signal profiles. Signal profiles are then averged over exons to calculate the gene expression

quantification. Darker color indicates a larger privacy leaks for that particular data type. (b) Differ-

ent layers of data produced from functional genomics experiments. Raw reads from the sequencer

that are stored as fastq are mapped to the reference genome. These are the data types that leak the

greatest amount of sensitive information, while also possesing the highest utility. Moving upwards

through the pyramid levels, there is less privacy concern but also the utility and the amount of data

largely decreases. Although modified reads have a large amount of data and utility, their privacy

leak can be minimal depending on the amount and the operation of the modification. The purple

line denotes the set point, where the privacy and utility trade-off is balanced. (c) The quantification

of the number of leaked variants and the sensitive information leakage in different layers of the

data stack of RNA-Seq data processing. The varinats in the 1000 genomes panel are overlapped

with exons to calculate the number of potential leaking variants. The average and maximum in-

formation from these variants are quantified. The number of variants that can be genotyped from

a typical RNA-Seq experiment is calculated as the number of accesible variants. The number of

accesible variants are then multiplied with the average leakage per variant to quantify the total

amount of leakage. This procedure is repeated to calculate the leakage from other sources such

as signal profiles and gene expression quantifications. Raw reads leak approximately 1000 times

more information then signal profiles, while the amount of leakage from signal profiles and gene

expression quantifications are comparable.
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Figure 2: Comparison of naive information measure with information with LD considera-

tion and sample size correction. (a) The process of sampling reads from functional genomics

experiments for the calculation of pointwise mutual information between 1000 genomes gold stan-

dard variants and called variants from functional genomics reads at different coverage. c amount

of reads are sampled and genotyped using GATK. These genotypes are then compared against

the gold standard 1000 genomes genotypes. The venn diagrams show the relationship between

different information measures used to quantify the leakage. The self-information of the gold stan-

dard genotypes that are called from the functional genomics reads (true positives) is the pointwise

mutual information. The gentoypes that are called from functional genomics reads but are not

in the gold standard variants are the false positives and the genotypes that are in the gold stan-

dard but are not called from the functional genomic reads are false negatives. (b) The variants

are grouped based on their self-information. For each group the maximum LD (mLD) score is

averaged. These averaged mLD scores are plotted against the self-information calculated using

naive approach (blue dots) and the self-information with LD consideration (pink dots). The av-

erage mLD score for high self-information variants are small, while low self-information variants

have larger mLD correlation. As the overall information quantification is dominated by high self-

information variants, consideration of LD in the information quantification makes a negligible

difference. (c) The individuals from 1000 genomes panel sampled in the increasing fraction from

10% to 100%. The genotyping frequencies are calculated for each sampled sub-population and

information calculated based on those frequencies based on naive approach. The naive informa-

tion vs. 1/sampled− fraction (e.g., 1/10 for 10%) is plotted. y-intercept is extrapolated from the

fitted curve and denotes the information when the population size is infinite (i.e., 1/inf=0). Error

bars are calculated using 100 times bootstrapping. (d) Difference between the naive information,

information with LD consideration and extrapolated information when population size is infinite.

There is negligible difference between overall information quantification when comparing the three

approaches.
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Figure 3: The pointwise mutual information calculated for 24 different functional genomics

assays and WGS, WES and SNP ChIP data using NA12878 1000 genomes variants as gold

standard. (a) The pmi values for WGS and three different primary Hi-C experiments plotted at

different coverage. The information contents of the gold standard and SNP ChIP are added for

comparison. The genotyping from Hi-C experiments compared to gold standard is almost same as

genotyping from WGS. (b) The pmi values for WES, total RNA-Seq, polyA RNA-Seq and single-

cell RNA-Seq of two different cells plotted at different coverage. pmi for RNA-Seq experiments

never reach to the level of pmi for WES. WES and Total RNA-Seq cannot capture variants as well

as Hi-C ecperiments.

(c) The pmi values for 20 different ChIP-Seq experiments targeting histone modifications and tran-

scription factor binding plotted at different coverage. pmi for some of the ChIP-Seq experiments

are larger than the pmi for WES and RNA-Seq experiment even at smaller coverage. (d) The pmi

per basepair for different functional genomics experiments. The overall pmi values are normalized

by the amount of coverage to quantify the amount of information gained from genotyping one

nasepair in any functional genomics experiment. The dashed red line is the pmi per basepair of the

WGS for an easier comparison.

Figure 4: False discovery rate of functional genomics experiments at different coverage (a)

FDR comparison for Hi-C and WGS data at different coverage. As the amount of coverage in-

creases, the false discovery rate decreases. Overall, variants from Hi-C consistently has lower

FDR than the variants from WGS until the coverage reaches its maximum,. (b) FDR comparison

for WES and different RNA-Seq experiments at different coverage. In general, there is a decreas-

ing FDR trend with increasing coverage as also seen in panel (a), except for single cell RNA-Seq.

The noise increases for single-cell RNA-Seq experiment as more reads are included. (c) FDR com-

parison for different ChIP-Seq experiments at different coverage. The general trend of decreasing

FDR with increasing coverage is also observed.
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Figure 5: Illustration of a linking attack and the accuracy of linking. (a) The publicly avail-

able ananoymized reads from functional genomics experiments contains a set of variants and HIV

status for the sample that the functional genomics experiment was performed. The panel of geno-

types contains the variants and associated genotypes for m individuals. The attacker links the

called genotypes from functional genomics experiment to the panel of genotypes by using the best

matched pmi(SF ;SDB
j ). The linking potentially reveals the HIV status for the linked individual. (b)

The measure gap is used to quantify the accuracy of linking. Comparison of gap for NA12878 at

different coverage for Hi-C and WGS. NA12878 is more vulnerable to re-indentification through

linking at low coverage using the Hi-C reads than using the WGS reads. (c) Comparison of gap for

NA12878 at different coverage for different RNA-Seq experiments and WES. Although, single-cell

RNA-Seq variants have low pmi and large FDR, NA12878 is still vulnerable to re-indentification

through linking at any coverage. (d) Comparison of gap for NA12878 at different coverage for

ChIP-Seq experiments. Some of the TF binding ChIP-Seq variants provide re-identification as

accurately at Hi-C reads, and more accurately than WES reads at lower coverage.

Figure 6: An individual’s full variant list can be assembled and sensitive phenotypes can be

inferred from publicly available data using imputation, and a theoretical framework for pre-

diction of amount of leaked data (a) The comparison between the number SNVs called from

WGS data and from the combiantion of all of the ChIP-Seq and RNA-Seq data together with and

without imputation. Total set of variants of NA12878 can be assembled by combining all the avail-

able ChIP-Seq and RNA-Seq reads together. (b) The variants associated with physical traits and

whether they are present in the called variants from different functional genomics experiments be-

fore and after imputation. Hi-C and total RNA-Seq reads largely reveals sensitive phenotypes even

before imputation. (c) The schematic of the features that are used for the regression learner. The

first feature is the average depth of the sequencing experiment. The number of reads representing

each basepair is calculated as the depth of that basepair. The second feature is the breadth of the

sequencing experiment, which is the number of basepairs that are sequenced at least once (d=1).

The third feature is the bias of the sequencing experiment. This is the deviation from the WGS

data. We first calculated the depth distribution of the reads from functional genomics experiment.

We then assumed a Poisson distribution with the same mean depth and calculated the difference

between the assumed Poisson and the calculated emprical distribution. (d) After using the features

explained in panel (c), we fit a regression model to predict the normalized pointwise mutual in-

formation. This panel shows the prediction accuracy over 40 randomly drawn data points used as

training. Blue data points are from ChIP-Seq, pink data points are from Hi-C and red data point is

from WGS data. The root mean square error for this prediction is 2.60 for the true values ranging

between 0 and 100. The R2 for the correlation between preicted and true values is 0.9. (e) The

prediction accuracy over 5 randomly drawn data points used to make blind predictions by using the

model fitted in panel (d). Blue data points are from ChIP-Seq and pink data points are from Hi-C

data. The root mean square error for this prediction is 2.47 for the true values ranging between 0

and 100. The R2 for the correlation between preicted and true values is 0.9.
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Figure 7: Removal of rare variants and linking (a) Self-information of NA12878 gold standard

variants vs. genotyping frequency of these variants. The pink color code corresponds the number of

variant with a given self-information and genotyping frequency that is observed in NA12878 gold

standard set. We categoried these variants into three vategory: (1) Singleton genotypes, which are

only observed in NA12878 variants, (2) doubleton genotypes, which are observed in at most one

additional individual in the 1000 genomes panel, (3) rare genotypes, which are observed in 1.5%

of the 1000 genomes individuals. (b) The singleton, doubleton and rare genotypes were iteratively

removed from the NA12878 variant set and a linking attack for each iteration is performed. gap

is still large and NA12878 is still vulnerable to re-identification even after removal of all rare

genotypes from their variant set. (c) The pmi of all the variants that are called from total RNA-

Seq reads vs. the pmi of the indels that are called from total RNA-Seq reads. Indels reveal much

less information than the SNVs. (d) Two linking attacks are performed by using all the variants

called from total RNA-Seq and by using only indels called from total RNA-Seq. gap comparison

between these two attacks shows that the individual is vulnerable to re-identification even when

only indels are used for linking.

Figure 8: Privacy-preserving file formats for alignment files from functional genomics ex-

periments. (a) The schematic of the privacy-preserving transformation of an alignment file, the

difference between the signal calculated from original BAM and transformed pBAM files, and the

concept of ε for the error. (b) The difference between the BAM and pBAM files are shown in

the read level, when the reads are mapped to reference genome and reference transcriptome. The

added noise to the depth signals due to the BAM to pBAM transformation is shown in an example

read with deletion, insertion and mismatch. The difference of the depth signal when calculated

from BAM and from pBAM is shown using different operations Q and r values for the polyA

RNA-Seq experiment of individual NA12878. The depth signal is compared between different

file formats at the single basepair resolution, exon resolution and gene resolution. (c) The change

in ε with increasing number of manipulated reads (r) for different operations Q. When Q is the

removal of mismatches, no noise is added to the depth signal. However, when the Q is the removal

of indels, the ε increases with the increasing number of manupilated reads. (d) The schematic of

how p-tools work with different file formats. We focused on BAM to pBAM comparison in this

study, however p-tools can be adopted for transcformation between CRAM and pCRAM (shaded

schematic). Arrows with solid lines demonstrate conversions that are currently within the scope of

p-tools, while arrows with dashed lines indicate the conversion will requeire additional tools.
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