
Abstract 

Many drugs are known to be ineffective for some patients, carrying certain non-synonymous 

single nucleotide variants (nsSNV). But understanding the biophysical rationales of nsSNVs’ 

implications towards drug efficacy remains difficult. Recent advancements in both population-

level next-generation sequencing (NGS) and high-resolution protein-drug co-crystal 

determination provide a way to address this challenge. In this study, we developed a supervised 

learning method referred as GenoDock to predict nsSNVs which may lead to protein-drug 

binding disruptions. Specifically, we collected the protein-drug complexes with high resolution 

structures available and mapped their somatic and germline nsSNVs onto the structures. 

According to whether the nsSNVs can impair the binding, they were further grouped into two 

classes and used as target labels. We integrated genomics, structural and physiochemical features 

from nsSNVs, protein structures and drug ligands and trained GenoDock to do the prediction. 

Cross-validation result shows that the GenoDock can effectively predict disruptive nsSNVs (with 

AUC=0.97). Drug resistance effect towards gefitinib by T790M mutation in EGFR gene was 

applied to validate the prediction of GenoDock as a case study. We make our GenoDock method 

publicly available as a web interface at http://genodock.molmovdb.org/.  
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Introduction 

In recent years, the immense growth of both genetic variation [1] and protein structure 

datasets [2] which benefit from great advancement in related techniques has enabled us to study 

in depth the impact of genomic variants onto protein structures and functions [3]. People have 

taken great efforts to get the insights of how genetic variants cause various diseases at a 

population level in order to potentially enhance drug effectiveness in the era of personalized 

medicine [4-6]. Variant annotation tools such as SIFT, Polyphen-2, CADD, and GERP are some 

examples of such achievements, which mainly focus on sequence conservation within and across 

species to assign general impact of a non-synonymous single nucleotide variant (nsSNV) [7-10]. 

In general, studies for this purpose are usually limited due to the lack of variation data as well as 

the corresponding high resolution protein or protein-drug complex structures [11]. Recently, with 

more variant and structural data are available, many efforts have been made to relate genomic 

variants with protein crystal structures to better bridge the increasing gap between genomic 

variation and protein structure, and to better understand how certain protein function alterations 

origin from genomic variants [12-16].  

Linking protein 3D structures and genomics, i.e. genetic diversity across large population, 

using computational models has been proved to be a powerful and innovative approach for 

precise medicine [16]. This association will help accumulate evidence as guidance towards 

clinical practice. Here, we choose protein-drug interactions as our primary focus. We aim to 

investigate the mechanism of how a nsSNV potentially perturbs the interaction between the 

associated protein and drug ligands [12, 17]. Studies have shown that many drugs are effective 

towards only a limited fraction of individuals due to different responses from patients to specific 

drugs [18-20]. One of the reasons of loss of efficacy for drugs arises from genetic variants that 

each patient carries [20, 21]. Thus, a patient’s genetic-centric prescription may be a reasonable 

approach to address the problem of drug ineffectiveness since recent advances of sequencing 
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techniques make it more practical and affordable for high-throughput personal genomic analysis. 

Once personal carried genetic variants are identified, the focus can then be shifted to how single 

point alternation of protein residues caused by nsSNVs would influence drug efficacy. Thus, a 

well-constructed database that directly links genetic variants to reliable human drug-protein co-

crystal structures is in great need. Also, there is a call for a systematic pipeline to accurately 

predict if a nsSNV of interest would destabilize protein-drug binding activity.  

To embody this idea, we develop a pipeline, GenoDock, to bridge nsSNVs on a large 

population scale and protein-drug co-crystal structures in the study. Our primary focus is to 

investigate how and how likely a given variant would affect protein-ligand binding affinity. We 

first construct our database by mapping germline and somatic variants onto their associated 

protein residues and drug molecules present in that protein structure. We then examined the 

binding affinity change (∆𝐵𝐴) between the native and mutated protein structures associated with 

each nsSNV in our database through molecular docking-based method. We grouped the variants 

based on whether they would lead to a positive shift in binding affinity (∆𝐵𝐴 > 0) or not (∆𝐵𝐴 ≤

0). The former class of SNVs is our main focus in this study due to their high potential to cause 

drug-resistance activity. Among different types of nsSNVs in our database, we find that the 

portion of nsSNVs that would cause a positive ∆𝐵𝐴 increase from common (6%), rare (7%), 

passenger (9%) to driver (15%) groups. Next, we describe a novel supervised learning model 

based on random forest algorithm to predict the probability of a given nsSNV to destabilize 

protein-drug binding by integrating genomic, structural and physiochemical features from nsSNV 

annotations, protein structures and drug ligands. Finally, we present GenoDock program suite 

together with a web interface (http://genodock.molmovdb.org/), which can be used to rapidly and 

efficiently prioritize nsSNV candidates that disrupt protein-drug binding.  

 

Results 

http://genodock.molmovdb.org/
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GenoDock database and toolkit 

Figure 1a shows our strategy to construct the database that is publicly available from our 

GenoDock website (http://genodock.molmovdb.org/). The database contains 10,283 non-

synonymous SNVs (nsSNV) from 228 proteins in Homo sapiens, and 113 FDA-approved drug 

ligands, which have co-crystal structures with at least one protein. We screen all the human 

proteins with high resolution (<3.0Å) X-ray-solved protein PDB structures 

(https://www.rcsb.org/) [22] and keep these with at least one FDA approved drug ligand in the co-

crystal structures. After removing the structural redundancy based on the result of sequence 

alignment, we map the germline nsSNVs from Exome Aggregation Consortium (ExAC) [23] and 

the somatic nsSNVs from The Cancer Genome Atlas (TCGA) dataset [24-26] to these 228 protein 

structures according to BioMart-derived human gene and transcript ID [27]. In total, we collected 

8,565 nsSNVs in 166 PDB structures for ExAC germline variants, and 1,718 nsSNVs in 135 PDB 

structures for TCGA somatic mutations. The nsSNVs, protein structures, and drug ligands form 

SNV-Ligand-PDB 3-tuple entries in our database. For each SNV-Ligand-PDB entry, as visualized 

in Figure 1b, we use Modeller program suite [28] to generate the mutated structure using 

homology modelling. We then use Auto Dock Vina [29] to calculate the binding affinity score for 

wild type protein and the corresponding ligand (∆𝐺𝑊𝑇) and that after the residue is mutated 

(∆𝐺𝑀𝑈𝑇) in order to get the score change (∆𝐵𝐴) in kcal/mol (∆𝐵𝐴 = ∆𝐺𝑀𝑈𝑇 − ∆𝐺𝑊𝑇). The ∆𝐵𝐴 

value set serve as the reference set for GenoDock program suite. 

The binding affinity change between the native and the point mutation structure with their 

drug ligand is the target label that GenoDock aims to predict based on a random forest classifier. 

As shown in Figure 1c, we category ∆𝐵𝐴 values for each SNV-Ligand-PDB entry into two 

classes: if ∆𝐵𝐴 is positive, we tag it as “Class 1”; if ∆𝐵𝐴 is non-positive, we tag it as “Class 2”. 

A positive shift in binding affinity indicates that it requires less energy to break the binding 

between the protein and the ligand, and thus the point mutation plays a disruptive role that could 

potentially cause drug resistance if the protein serves as a drug target. We integrate selected 

http://genodock.molmovdb.org/
https://www.rcsb.org/
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genomic, structural and physiochemical features of SNVs, PDBs, and ligands to train the 

classifier: SNV annotation features include allele frequency, SIFT [10], PolyPhen-2 [30], and 

GERP [8] score; ligand features include molecular weight, hydrogen-bond donor and acceptor 

count, rotatable bond count and polar surface area of the ligand; protein structure features include 

binding site, side chain polarity and volume change, and distance of the mutated residue from 

ligand (see ‘Methods’ for details of random forest model construction and feature selection; 

Figure 1, Figure 4 and Supplementary Figure 1 & 2).  

 

Amino acid mutation landscape in GenoDock dataset   

After the construction of GenoDock dataset, we then analyze the mutation landscape of 

TCGA somatic and ExAC germline variants in our dataset which provides us with the opportunity 

to analyze known amino acid changes and mutation trends that are under high selective 

constraints or potentially lead to human disease. As depicted in Figure 2a, the two most abundant 

mutations recorded in our GenoDock database are arginine to cysteine and arginine to histidine. 

This is within our expectation. First, arginine is the most frequently occurred amino acid among 

the somatic mutations and germline variants that can be mapped on to a PDB structure in our 

protein pool (14% in wildtype distribution, see Figure 2a); second, arginine to cysteine mutation 

is also found to be the most common mutation that cause human disease in disease-associated 

variant datasets such as Human Gene Mutation Database (HGMD), the Online Database of 

Mendelian Inheritance in Man (OMIM), and ClinVar [31-34]; third, arginine to histidine is also 

identified as a mutation signature that is very enriched in cancers. These observations are of 

similar landscape described in Szpiech et al. [35].  

Analyzing the mutation landscape of our database is very useful for our following study of 

how a point mutation affects drug efficacy, which is further tailored to how side-chains interact 

with ligand differently before and after the replacement. This drives us to focus on certain 

physicochemical properties of side-chains such as volume change and polarity change between 
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the pool of wildtype residues with mutated ones (see ‘Methods’ for details). We observe that ~ 1/3 

of somatic nsSNVs lead to point mutations from a charged amino acid residue to a polar one; 

whereas among the germline variants, the most frequently occurred mutations are between two 

hydrophobic amino acids (Supplementary Figure 3). Previous literature also shows that the cancer 

mutation signature, arginine to histidine mutation, can confer protein pH sensitivity to the mutant 

and thus alters protein function leading to diseases [35-37]. Due to the cancer-associated nature of 

the somatic mutations in our database, further bio-physical and biochemical studies on how a 

nsSNV might alter protein functions provides valuable insights towards cancer drug responses 

from patients. 

 

Distributions of ∆𝑩𝑨 in different groups of nsSNVs 

With those ExAC germline nsSNVs in our dataset, our interest is to see whether there is a 

significant difference between the rare and the common nsSNV groups in terms of drug-binding 

destabilization. Rare and ultra-rare nsSNVs are in general interpreted as more likely to be 

deleterious than those common ones. The allele frequency values in population level studies also 

indicate varying degrees of constraint during natural selection. Similarly, we divide the TCGA 

somatic nsSNVs into highly deleterious driver nsSNVs and neutral passenger nsSNVs to 

investigate different impacts of the two groups on drug binding. Recognizing driver SNVs from a 

larger body of passenger nsSNVs remains a big challenge in cancer genomics [38] (see ‘Methods’ 

for details regarding common, rare, passenger and driver SNV tagging).  

In Figure 2b, we visualize the distributions of binding affinity change for each group, 

especially for “Class 1” nsSNVs that positively shift ∆𝐵𝐴, which contribute to 6.0% and 8.9% of 

all nsSNVs in our ExAC and TCGA data source (Supplementary Figure 4). Though we do not 

observe a significant difference in ∆𝐵𝐴 distributions between common and rare nsSNVs, when 

we bring together the top common and rare germline nsSNVs with positive ∆𝐵𝐴 (the “outlier” 

region in the boxplot), top rare nsSNVs have a significantly higher ∆𝐵𝐴 than those common 
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ones. It implies that rare nsSNVs pool contains more extremely deleterious samples in terms of 

disrupting drug-protein binding than those from common nsSNV pool (e.g. the top 50 group has 

p-value = 1.4e-4 from two-sample Wilcoxon t-test; Supplementary Figure 5). This observation is 

intuitively consistent with our expectation as rare variants tend to have greater impacts on protein 

stability as a result of higher selective constraints.  

Based on remarkable efforts made in characterization of cancer genomes [24, 25, 39], people 

have validated the important roles of driver nsSNVs in driving cancer progression [40, 41]. These 

facts motivate us to probe the impacts of nsSNVs from driver genes on perturbing interactions 

between associated protein residues and drug ligands. Indeed, our analysis shows a significant 

difference between passenger and driver nsSNVs. Those cancer-associated driver nsSNVs tend to 

destabilize protein-drug binding to a bigger extent compared with neutral passenger ones (p-value 

= 3.60e-4 from two-sample Wilcoxon test). In Figure 2b, we also plot the percentage of nsSNVs 

that lead to a non-positive ∆𝐵𝐴 (“Class 2”) together with the percentage of nsSNVs that do not 

change the binding affinity upon point mutation (∆𝐵𝐴 = 0). We find that the portion of nsSNVs 

that would cause a non-positive ∆𝐵𝐴 decrease from common (94%), rare (93%), passenger 

(91%) to driver (85%) groups. This indicates that in the driver nsSNV group there is a heavier 

portion of variants that impair drug binding compared with the other groups. Next, we conduct 

further analysis to see more difference in Class 1 and Class 2 variants in terms of genomic, 

structural and physiochemical properties. Specific properties with different responses from the 

two classes of variants will serve as features in our later learning method to separate binding-

disruptive nsSNVs from the rest.  

 

Differential effects of features on drug-resistant and non-drug-resistant nsSNVs 

 The GenoDock project aims to provide a pipeline that could efficiently distinguish variants 

that destabilize protein drug binding activities (“Class 1”) from the rest (“Class 2”). Genomic, 
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structural and physicochemical properties (features) of variants, proteins and ligands are playing 

important roles in discerning the two classes of variants. Thus we extract and define a list of 

features that discriminate the “Class 1” nsSNVs from those in “Class 2” and serve as training 

reference in our classifier (see ‘Methods’ for details on feature selection and construction). For 

each ‘SNV-Ligand-PDB’ in GenoDock database, we construct three groups of features（Figure 3; 

Supplementary Figure 6): SNV annotation features (Figure 3a); protein structure features (Figure 

3b), and drug ligand features (Figure 3c) to see if these features are sensitive to differentiate the 

two classes of nsSNVs.  

 In Figure 3a, we use SIFT and Polyphen-2 scores to show whether the nsSNVs associated 

with protein residues are intra-species conserved across a population [7, 10, 30, 42]. A lower 

SIFT score indicates a greater chance that a nsSNV being “deleterious” due to high inter-species 

residue conservation and high selective constrains [43]. Similarly, a higher Polyphen-2 score 

denotes a greater likelihood that a nsSNV being “possibly damaging” [30]. We also employ 

GERP score to measure whether the point mutation is on inter-species conserved [44-46], 

indicated by a higher GERP score [8]. We observe nsSNVs in “Class 1” have a significantly 

lower mean SIFT score (mean = 0.101 and mean = 0.149, respectively) and a significantly higher 

Polyphen-2 score (mean = 0.665 and mean = 0.516, respectively) than those from “Class 2” (p-

value for SIFT is 1.21e-6 and p-value for Polyphen-2 is 2.20e-18; both from two-sample Wilcoxon 

test), indicating that nsSNVs with a lower SIFT or a higher Polyphen-2 score are more likely to 

cause a positive shift on ∆𝐵𝐴. The median GERP scores for the two classes also differ 

significantly (p-value = 0.0101 from two-sample Wilcoxon test). nsSNVs that cause positive ∆𝐵𝐴 

are likely to be mapped onto more conserved regions on protein structure (mean = 3.32) than the 

other group (mean = 2.99). 

 In Figure 3b, we show the box plot distributions of the two classes of nsSNVs regarding 

protein structure features. Distance between mutated amino acid residue and drug molecule is 
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perhaps the most direct feature to tell whether a point mutation would be likely to affect ligand 

binding. We observe that more nsSNVs that impair binding activity are in the binding pocket 

(mean = 6.29Å) than the other class (mean = 19.8Å, p-value = 1.27e-143 from two-sample 

Wilcoxon test). If the distance is bigger than our threshold (8Å), the mutation is less likely to 

affect the protein and drug ligand binding due to the weaker van der Waals interaction. Another 

important physical property affecting drug binding is side-chain volume change between wildtype 

and mutated residue. Upon our definition of volume change index, we observe that nsSNVs 

which disrupt ligand binding are more likely to result from a decreased side chain volume (mean 

= -0.177, see “Methods” for definition of volume change index), whereas on average the nsSNVs 

that lead to a non-positive ∆𝐵𝐴 have a bulkier side chain volume (mean = 0.0343; p-value = 

1.68e-20 from two-sample Wilcoxon test). Side chain polarity change is another feature in context 

of ligand-protein interaction. For example, side chain polarity decreasing from a charged residue 

to a hydrophobic one may break the hydrogen bond network or salt bridge between the wild type 

residue to drug ligand (see “Discussion” for detailed case analysis) [47-50]. Here we observe the 

two groups of nsSNVs have a significant difference in this feature as well (p-value = 0.0217 from 

two-sample Wilcoxon test). 

 Figure 3c depicts the difference from the drug ligand in the co-crystal protein structure that 

nsSNVs are mapped to. In order to study nsSNVs’ impacts towards protein-ligand binding, ligand 

properties are also an important part. We extract five features among various of physicochemical 

properties for each drug molecule in our database (Figure3a; Supplementary Figure 6). We 

observe that those nsSNVs with a positive ∆𝐵𝐴 reside in a protein structure with a heavier drug 

ligand (mean = 361g/mol) than the other group (mean = 341g/mol), and this difference is 

significant (p-value = 2.14e-3 from two-sample Wilcoxon test). Also, we notice that the polar 

surface area of the drug ligands with a nsSNV that lead to positive ∆𝐵𝐴 tend to be smaller 

(mean = 94.6Å2), compared with the other group (mean = 105Å2; p-value = 5.13e-5 from two-
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sample Wilcoxon test). One reason may arise from the sensitivity of a heavier ligand and of a 

ligand with smaller polar surface area is higher in response to the side chain volume or polarity 

change upon point mutation. 

 These genomic, structural and physiochemical properties that act differently for “Class 1” 

SNVs and “Class 2” SNVs shown in Figure 3 provide good training feature candidates for our 

learning method to prioritize SNV candidates that lead to a positive protein ligand binding 

affinity change. We find SNV annotation scores including Polyphen-2, SIFT and GERP; ligand 

molecule properties such as polar surface area, and protein structural alteration including side-

chain volume change are all promising input features to our GenoDock classification model 

present below. 

 

Performance evaluation of GenoDock toolkit in classifying binding affinity change 

 In this study, we present GenoDock classifier to predict binding affinity score change upon 

point mutations based on docking calculations as gold-standard set for ∆𝐵𝐴, aiming to help with 

potential nsSNVs that cause ligand-binding disruption and drug resistance. We implemented a 

machine learning approach to achieve this purpose with additional steps integrated into our 

pipeline for evaluating our predictions. To make sure our evaluation towards GenoDock classifier 

is unbiased, we design a method which involves a cross-validation step to pick up the best 

performed model among a set of chosen learning methods; a grid-search-based model selection 

step to optimize the parameters for learning model construction, and an evaluation step using an 

independent test set isolated from the learning set (Supplementary Figure 7; see “Methods” for 

details). As we provide four independent models depending on information availability (SNV 

annotations only; SNV annotations + Structure; SNV annotations + Ligand; SNV annotations + 

Structure + Ligand), we apply the procedure above onto each model to make our pipeline a 
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uniform one. Our tryout for different learning methods shows that random forest classifier is the 

best one (Supplementary Figure 8; see “Methods” for model selection). During our preparation of 

training data, we tune the number of samples of “Class 1” (nsSNVs cause positive ∆𝐵𝐴) and 

“Class 2” (nsSNVs cause non-positive ∆𝐵𝐴) to be 1:1 in our training set to avoid potential bias 

from imbalanced sample volume of two classes, while keeping the original sample ratio of two 

classes unchanged in the test set. For the models in which only one of PDB structure or ligand 

molecule is present, we evaluate the classification performance with “Bind Site” feature included 

and excluded during the training process, separately. As depicted in Figure 4a, we test the 

classifier with default setting that all nsSNVs are mapped onto binding site residues for an upper 

limit of probability that the nsSNVs of interest to be disruptive towards ligand binding (in 

GenoDock web interface, users can also choose “Bind Site” to be “False” when nsSNV of interest 

is out of binding pocket). The area under the receiver-operator characteristic curve (AUC of 

ROC) for predictions of four models are 0.73 (SNV annotations only), 0.92 (SNV annotations + 

Structure), 0.96 (SNV annotations + Ligand), and 0.97 (SNV annotations + Structure + Ligand), 

respectively. If whether target nsSNVs are in binding pocket or not remain unknown, the 

performance of GenoDock is shown in Figure 4b, with “Bind Site” feature excluded during 

training and test process for “SNV + PDB” and “SNV + ligand” model. AUC values here for 

these two models become 0.76 and 0.79, respectively. After all, as we feed the GenoDock 

classifier with more and more features, the performance of predictions keeps improving: when 

input integrates all of the three feature groups, our method is able to identify most of the nsSNVs 

that lead to a positive shift towards binding affinity with an AUC of 0.97. Using the same 

learning pipeline, we compare the performance of GenoDock with some other nsSNV impact 

annotation tools from our model including SIFT, Polyphen-2 and GERP, together with another 

tool that is not used in our model, the Combined Annotation Dependent Depletion (CADD) [9]. 

GenoDock gives the highest AUC value among these tools since it is specifically developed for 

addressing the impact of nsSNVs on ligand-binding affinity change instead of a general 
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annotation towards potential benign or deleterious influences onto protein function 

(Supplementary Figure 9).    

 We then apply Gini distance to identify relevant importance of different features during the 

decision-making process, as shown in Figure 4c. The Gini distance helps visualize the relative 

importance of each feature in different models [51]. We observe that the relative importance of 

the repeating features such as the nsSNV annotations and binding site remain stable across 

models, revealing the robustness of our method. The relative importance across genomic and 

structural features under a uniform learning pipeline provides us a reasonable way to draw 

insights on how a nsSNV would make impacts towards ligand binding. Thus, we further apply C5 

[52] decision tree algorithm to construct a knowledge model using significant features identified 

by Gini distance analysis in order to explain the classification result of GenoDock. The 

knowledge model also helps prioritize features that we should consider when determining 

whether a given nsSNV could cause ligand binding destabilization ( see ‘Methods’ for decision 

tree construction; Supplementary Figure 10 and Figure 5a-5b). We observe that whether the 

protein residue associated with target nsSNV on binding site or not initiates the top branch of the 

tree, followed up by distance between mutated residue and ligand, side chain volume change, and 

GERP score etc., leading to the classification result of a given nsSNV. Whether an nsSNV is 

associated with a binding pocket residue is the most important factor to determine its effect on 

binding affinity. 

Based on our performance evaluation results, we have shown that by integrating features 

from SNV annotations, protein structures and drug ligand properties, GenoDock can clearly 

identify nsSNVs that lead to a positive ∆𝐵𝐴 shift from the rest candidates with high accuracy. 

From our C5 knowledge model, relative importance of different features provides some 

reasonable insights of how some of these variants contribute to protein-ligand binding 

disruptions. We then run GenoDock classifier on certain SNV-PDB-Ligand entries to validate the 

reliability of prediction based on established clinical experiment results. We also identify new 
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nsSNV candidates that will potentially impair protein-drug binding.    

 

GenoDock helps identify known and unknown nsSNVs that disrupt protein-ligand binding  

Figure 5a depicts the decision-making process that GenoDock reaches to the prediction that 

T790M mutation (rs55181378) from human epidermal growth factor receptor (EGFR; PDB ID: 

2ity) is very likely to impair the binding between one of its tyrosine kinase inhibitors (TKIs), 

gefitinib, and the kinase domain (possibility of ∆𝐵𝐴 > 0 is 64%). Through molecular and 

clinical studies, people have shown that the resistance towards gefitinib arise from the 

substitution of a bulkier methionine residue for threonine at position 790 in the kinase domain 

[53-57]. Further studies on the EGFR-gefitinib co-crystal structure show that the larger 

methionine residue lead to steric hindrance of the aromatic moieties of gefitinib molecule, 

preventing the accessibility of gefitinib to the binding pocket of EGFR kinase domain [53, 54, 57, 

58]. We show our knowledge model to visualize the decision making logic behind GenoDock 

prediction result in Figure 5a. From the top level, the mutated residue is mapped in the binding 

pocket of the kinase domain, and the side chain volume is increased by 1/3 from threonine to 

methionine, which may potentially block the interaction of the ligand to the binding pocket. 

Furthermore, the functional annotations of the nsSNV associated with T790M mutation indicate 

that this variant is highly likely to be deleterious and the mutated residue resides in a highly 

conserved region, which strengthens the confidence that this variant would impair the protein-

ligand binding. Together with the next fact that the side chain polarity decreases from the polar 

threonine to the hydrophobic methionine, GenoDock classifies this nsSNV to be very likely to 

cause a positive shift towards binding affinity.  

In figure 5b, we show the process of our knowledge model showing how GenoDock helps 

identify novel mutations that could potentially lead to drug resistance. Farnesyl diphosphate 

synthase (FPPS) is an important target for the bisphosphonate class of drugs such as zoledronate 
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(ZOL). ZOL targets FPPS as an immunomodulator which alters macrophages from a tumor-

promoting to a tumor-killing phenotype [59-64]. ZOL is a highly hydrophilic binder to FPPS via 

electrostatic and hydrogen bond interactions [65]. We visualized the interaction between ZOL and 

FPPS (PDB ID: 4p0w) in Figure 5b, in which ZOL ligand is binding to ARG112A via a “salt 

bridge” between the positive charged guanidium with the negative charged sulfate group of ZOL. 

However, with the mutation R112H (rs155317993), this binding network no longer exists. 

GenoDock classifies this nsSNV as ∆𝐵𝐴 > 0 with a probability of 99.8%, followed by a similar 

decision-making pipeline discussed in the previous case. This prediction indicates a novel 

mutation that could very likely impair the inhibitor effectiveness. We validate this prediction 

using AutoDock Vina, which gives a positive binding affinity shift, 0.31kcal/mol. More biological 

functional assays can be performed in the future in addition to the computational validation.  

 

GenoDock web interface 

To make our pipeline accessible to the public, we provide a web interface, the GenoDock 

web server (http://genodock.molmovdb.org/). We tailored GenoDock into four individual models 

based on the accessibility of input features to broaden the application landscape of our tool, with 

different level of prediction accuracy. The users can import their sample data using our 

GenoDock graphic user interface with different feature set combination: SNV annotation info 

only; SNA annotation and PDB info; SNV annotation and ligand info; SNV annotation, PDB and 

ligand info. The predicted result will be feedback in form of a HTML webpage. The calculation 

page can be reached at http://genodock.molmovdb.org/calculation/0. Users can also download our 

open source python code for four GenoDock models through GitHub 

(https://github.com/gersteinlab/GenoDock_local) to run large scale inputs on local computers or 

on HPC clusters.  

http://genodock.molmovdb.org/
http://genodock.molmovdb.org/calculation/0
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Discussion 

In this study, we developed a high-throughput computational pipeline to bridge nsSNVs with 

their annotations from different sequencing datasets onto high resolution protein structures for 

downstream analysis; a highly sensitive classification model to prioritize nsSNV candidates that 

could potentially cause protein drug binding disruption based on integration of genomic 

annotations and structural properties, and a user-friendly GUI, the GenoDock server, that rapidly 

provides predictions of binding affinity change for nsSNVs of interest.  

For the construction of GenoDock database, we employ nsSNVs from ExAC Consortium 

and TCGA project as our germline variant and somatic variants feed, respectively. From a pool of 

~2.5M ExAC germline variants and ~1M Pan-Cancer somatic mutations, we successfully map 

~10K nsSNVs onto ~0.3K human proteins binding with FDA-approved drug ligands which are 

solved as high resolution co-crystal structures. We identified 735 nsSNVs that lead to a positive 

shift towards binding affinity, present in 123 protein structures, covering 85 drug ligands (see 

“Additional File: table 1”). For prioritization of nsSNVs that would cause binding disruption, we 

demonstrate GenoDock is an efficient classifier with 0.97 AUC when all features are available. 

With investigations of relative feature importance, we provide reasonable insights of how 

genomic, structural and physiochemical features affect a given nsSNVs impacts towards the 

interaction dynamics of the associated protein residue with its surroundings, particularly, a drug 

ligand that binds to it. 

While our approach can identify novel nsSNV candidates that potentially impair protein-

drug binding with a rapid yet accurate manner, the method is still limited by two aspects. First, 

the lack of high-resolution co-crystal structures of proteins and their associated drug ligands. The 

unbalanced availability of structure data and variant data leads to only 1% of the SNVs mapped 
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from our SNV data source onto the protein-drug co-crystal structures. Fortunately, as protein 

characterization techniques such as NMR, electron microscopy and cryo-electron microscopy 

(cryo-EM) [66] advance, we can foresee that more and more highly reliable protein-drug 

structural data will be available. In addition, remarkable progress in putative 3D protein-drug 

interaction models based on homology modelling techniques may also potentially expand the 

structure pool [67, 68]. Together with tremendous progress in revealing the mutational landscape 

of human genomes via large-scale sequencing projects such as The UK 10,000 Project and the 

International Cancer Genomics Consortium, we will periodically include new SNV-Ligand-PDB 

entries into our classification pipeline for better prediction accuracy, and for nominations of 

additional novel nsSNV candidates that cause protein-drug binding disruptions. Second, our 

binding affinity change data is based on docking calculations at current stage, which limits the 

upper boundary of our prediction accuracy. So far, it is not practical to obtain or conduct 

experimental binding affinity change results between wild-type and mutant ligand-protein 

complex by ligand binding assays (LBA) [69] for each SNV-Ligand-PDB entry in our database. 

Therefore, we construct our gold-standard ∆𝐵𝐴 reference set based on AutoDock Vina, which is 

well established and wildly used in pharmaceutical research projects. We further validate the 

consistence of the ∆𝐵𝐴 results for each SNV-Ligand-PDB entry via AutoDock to get confidence 

towards the quality of our gold-standard set (Supplementary Figure 11). If we have LBA data 

later on, we plan to update the ∆𝐵𝐴 reference values with experimental results under the same 

pipeline to further enhance the reliability of GenoDock predictions. Third, we fix the protein 

backbone while conducting docking calculations to avoid concerns and problems raised from 

protein flexibilities, which makes it hard to probe influence towards binding activities by protein 

motions or conformational changes. 

We demonstrate that GenoDock is a useful tool to predict nsSNV candidates that could 

potentially disrupt protein-ligand binding activities, which could be further employed as a metric 
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to gain valuable mechanistic insights into drug resistance activities and to design personalized 

disease therapies for individual patients accordingly. Though our random forest classifier is very 

successful at predicting binding affinity change associated with an nsSNV and at estimating the 

relative importance of our features, the classifier is an ensemble of 10000 decision trees, which is 

vague to learn the decision making process explicitly. To further explain the predictions by 

GenoDock, we apply C5 [52] decision tree algorithms to generate our knowledge model, which is 

a consensus tree depicting an universal decision-making process. Compared with C4.5 [70] and 

ID3 [71] algorithms, C5 is faster and tends to generate simple and clean trees. C5 also reduces 

overfitting and tends to use high relevant features affecting the ligand protein binding process 

with reduced-error pruning [52]. Though this decision tree cannot guarantee to identify global 

optimum, the decision rules extracted from our C5 tree truthfully reflect the biophysical 

knowledge and mechanistic insights of binding affinity changes predicted by GenoDock. 

GenoDock framework integrates genomic, structural, and physicochemical features for 

predictions of nsSNV impacts towards drug response. Particularly, to cater the fast growing 

variant and structural data, GenoDock is an efficient and reliable toolkit to prioritize and filter 

variants into a subset of highly promising candidates for downstream analysis, for example, drug 

resistance studies of a target system. We believe that GenoDock will continuously help to better 

understand and to predict the impacts of variants as more datasets, advanced molecular docking 

software, and LBS experimental data being used into our method.                                     

               

 

Methods 

GenoDock Database preparation 
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Germline variants were collected from Exome Aggregation Consortium(ExAC) release 1[23] 

(download source: ftp://ftp.broadinstitute.org/pub/ExAC_release/release1/). Somatic variants 

came from The Cancer Genome Atlas (TCGA) network (http://cancergenome.nih.gov; download 

source: http://portal/gdc.cancer.gov/repository). “Simple Nucleotide Variation”, “Masked Somatic 

Mutation” and “MuTect2 Variant Aggregation and Masking” were served as filters for “Data 

Category”, “Data Type”, and “Workflow Type”, respectively. The list of FDA approved drug 

ligands was directly obtained from DrugBank [72]. Human protein PDB structures with a 

resolution higher than 3.0 Å were downloaded from the Protein Data Bank 

(https://www.rcsb.org/) [22]. A careful curation to filter out PDB that contains FDA approved 

drug molecules was conducted. The mapping of the variants from both the ExAC and TCGA 

datasets to the curated co-crystal PDB structures was done using a modified version of a 

previously published method [17] (See Supplementary Method for detailed steps of mapping 

SNVs onto PDB structures).     

 

Mutant structure and binding affinity change calculation 

 For each “SNV-Ligand-PDB” entry recorded in our database, we generated a mutant 

structure associated with that nsSNV based on homology modelling via Modeller (ver. 9.18) [28]  

using the mutant sequence and the native protein structure. During the modelling process, 

adjustments were made to the target residue under stereo-chemical and homology-derived 

restraints, followed by a minimization step of the restraints to deliver the final mutant structure. 

In this project, 10,283 mutant PDB structures were generated in total.      

 For each native-mutated protein structure pair, we used AutoDock Vina [29] to evaluate the 

drug ligand binding affinity change: ∆𝐵𝐴 = ∆𝐺(𝑀𝑈𝑇) − ∆𝐺(𝑊𝑇), in kcal/mol, where 

∆𝐺(𝑀𝑈𝑇) and ∆𝐺(𝑊𝑇) are binding affinity of the mutated and native protein-drug complex 

evaluated by AutoDock Vina, respectively. During the calculation, we fixed the protein structure 

to avoid concerns from protein flexibility. “Local optimization” was applied for ligand binding 

ftp://ftp.broadinstitute.org/pub/ExAC_release/release1/
http://cancergenome.nih.gov/
http://portal/gdc.cancer.gov/repository
https://www.rcsb.org/
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model, and “Vina score” was set as the scoring function. Due to the lack of experimental LBS 

data, we validated the calculations of Vina by applying the same procedure with AutoDock Tools 

(ver. 6.2.6) [73] to check the consistency of the two methods. If for a given structure pair, ∆𝐵𝐴 

values calculated by two scoring methods were of the same sign (both positive, indicating both 

tools assigned a drug binding disruptive role to the SNV; or both non-positive), then we regard 

the result as consistent. The two methods achieved a consistency of 84%. Also, the two sets of 

results from Vina and AutoDock Tools reached a Pearson product-moment correlation (PMCC) of 

0.89 (Supplementary Figure 11), indicating a strong consistency.        

 

Features extraction and construction for machine learning method 

 SNV annotation features including SIFT score, Polyphen-2 score for somatic and germline 

nsSNVs in our study are directly extracted from the “INFO” column of VCF files from ExAC 

consortium and TCGA project. GERP scores were retrieved directly from Sidow lab 

(http://mendel.stanford.edu/SidowLab/downloads/gerp/index.html) [8]. 

Ligand features including molecular weight, H-bond donor and acceptor count, rotatable 

bond count, and polar surface area for each drug molecule in our database are extracted from 

PubChem database [74].  

We construct structural and physicochemical features as following. Amino acid side chain 

volume change index is defined as ∆𝑉𝑖𝑛𝑑𝑒𝑥 = 𝑙𝑜𝑔2(
𝑉𝑀𝑈𝑇

𝑉𝑊𝑇
), where VMUT and VWT stand for van der 

Waals volume [75] of mutant and wildtype protein residue, respectively. For each amino acid, we 

assign a polarity index. Positive charged including ARG and LYS has an index of 1; polar 

residues including GLN, ASN, HIS, SER, THR, and TYR has an index of 0.5; hydrophobic 

residues including ALA, ILE, LEU, MET, PHE, VAL, PRO, and GLY has an index of 0; negative 

http://mendel.stanford.edu/SidowLab/downloads/gerp/index.html
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charged residues including GLU and ASP has an index of -1. Amino acid side chain polarity 

change index is defined as ∆polarity = polarity(mutant) − polarity(wildtype). The distance 

between a protein residue to a ligand is defined as the shortest distance of a heavy atom of that 

residue to a heavy atom of the associated ligand. If a residue has a distance less than 8Å from the 

target ligand in the co-crystal structure, we consider that this residue is in the binding pocket, 

which forms the “binding site” feature. For the other two models where only one of drug ligand 

or protein structure is available, we assign the mutated residue to be in the binding pocket by 

default (SNV annotation + PDB), or we assume that the nsSNV will be mapped onto binding site 

once the co-crystal complex structure is available (SNV annotation + Ligand). In this way, we are 

able to predict the maximal probability of the target nsSNV to be ligand-binding disruptive. Users 

are also free to choose “binding side” to “OFF” if they want the prediction for the protein 

residues of associated variants are not in binding sites. 

 

Training, testing, and evaluating the performance of machine learning method          

 GenoDock dataset is separated into training set (70%) and test set (30%) in a random 

manner. We also prepare a validation set for specific case studies so that samples of interest are 

separated from the training and testing pipeline. To avoid potential bias raised from imbalanced 

composition of two classes of samples in our dataset (735 entries from “Class 1”; 9458 entries 

from “Class 2”), we count the number of samples from “Class 1” (∆𝐵𝐴 > 0) and randomly select 

equal number of samples from “Class 2” (∆𝐵𝐴 ≤ 0) to make up the balanced training set. Scikit-

learn package [76] is used for learning model development. We test classification methods 

including Lasso Regression (LR), Support Vector Machine (SVM), Random Forest (RF) and 

Gradient Boosting Decision Tree (GBDT). We train each learning model through a 10-fold grid-

search cross-validation process. For each training, the rest 30% data is tested for performance 
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evaluation. Based on the AUC values, RF has the highest AUC among all methods 

(Supplementary Figure 8). Compared with RF, LR and SVM heavily rely on assumptions that 

target dataset have linearly separable patterns by line or hyperplane; GBDT requires strict 

parameter tuning in order to perform well. In addition, we pick up RF because we can easier gain 

mechanistic insights based on feature significance along the decision-making process to better 

explain how nsSNVs affect ligand-protein binding activity. Feature selection is performed by 

evaluation of AUC for each feature respectively. If the selection power of a feature is near or 

worse than random selection, we remove it from our feature pool (e.g. allele frequency). With the 

same procedure, we trained and optimized a random forest model for each of the four feature 

combinations (SNV annotations only; SNV annotations + Structure; SNV annotations + Ligand; 

SNV annotations + Structure + Ligand) for GenoDock. All source code and scripts are free to 

download at https://github.com/gersteinlab/GenoDock_local.          

 

Construction of knowledge model to explain GenoDock prediction result 

 C5 decision tree is generated using “C50” package in R to explain GenoDock predictions. 

We selected highly ranked features (side chain polarity and volume change, GERP, distance 

between mutated residue and drug ligand, polar surface area of ligand, and bind site) based on 

Gini distance metric to construct the tree.  

 

Protein-ligand complex visualization  

 All figures regarding protein-ligand complex are generated by the PyMOL molecular 

graphics system, Version 2.0 Schrödinger, LLC. [77]  
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Main Figure Captions and main Figures 

Figure 1. Framework of the GenoDock Project – from dataset preparation to model 

construction. 

(a) A flowchart for collecting, cleaning and processing raw data to construct GenoDock database 

from the protein structure data source (RCSB PDB), SNV data source (ExAC and TCGA), and 



 30 

drug ligand data source (PubChem Compound).  

(b) Illustration of protein-ligand binding affinity change upon point mutation. In this case, the 

MET on chain A resides in the catalytic domain of human phosphodiesterase 4B (PDB ID: 1xos; 

Ligand ID: VIA, sidelnafil) and is mutated to CYS by an nsSNV (rs66368865). The uncharged 

CYS demonstrates weaker binding to the ligand, indicated by a positive shift of binding affinity 

change (0.07, by AutoDock Vina). 

(c) Construction of the random forest model to predict the direction of protein-ligand binding 

affinity change (∆𝐵𝐴 > 0 𝑜𝑟 ∆𝐵𝐴 ≤ 0). Several SNV annotation features (i.e. SIFT, GERP, 

Polyphen-2), ligand features (i.e. molecular weight, hydrogen bond donor/acceptor count), and 

structural features (i.e. binding site, side chain volume and polarity change) are combined to 

predict the direction of protein-ligand binding affinity change. 

 

Figure 2. Heat map for amino acid mutation landscape and boxplot of ligand binding 

affinity changes for different types of SNVs in GenoDock 
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(a) Heat map for amino acid mutation landscape in GenoDock database. X-axis and y-axis refers 

to types of mutated amino acids and wild type amino acids, respectively. Different counts for each 

mutation pair is colored from white to cyan. Percentage distribution in wildtype and mutated 

amino acid pools are shown on top the heat map in green and purple, respectively. In the heat 

map, the two most abundant mutation pairs are arginine to cysteine and arginine to histidine, 

which are referred as “mutation signatures” in previous literatures.   

(b) An overall comparison of common, rare, passenger and driver SNVs in terms of binding 

affinity change from GenoDock data source. nsSNVs that cause ∆𝐵𝐴 > 0 are plotted in order to 

compare the extent of destabilization towards ligand binding activities by each nsSNV group. The 

mean values for those SNVs leading to ligand-binding disruption for common, rare, passenger, 

and driver SNVs from ExAC and TCGA dataset are 0.117kcal/mol, 0.129 kcal/mol, 0.159 

kcal/mol, and 0.236 kcal/mol, respectively. The difference in common and rare SNVs from ExAC 

dataset is not significant; the difference of passenger and driver SNVs from TCGA is significantly 

different, with a p-value of 3.60e-4 from two-sample Wilcoxon test, where driver nsSNVs have a 

bigger extent in disrupting ligand binding compared with other groups. The green-dot line and 
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pink-dot line in the figure show the percentage of SNVs from each group that lead to non-positive 

shift of binding affinity(∆𝐵𝐴 ≥ 0; 94%, 93%, 91%, 85%, respectively), and those that do not 

change the binding affinity (∆𝐵𝐴 = 0; 88%, 87%, 87%, 77%, respectively). It is clear that cancer 

driver nsSNVs have a greater probability to result in a positive binding affinity change compared 

with the other three groups .  

 

Fig. 3. Boxplot distribution between “Class 1” nsSNVs (positive binding affinity shift) and 

“Class 2” nsSNVs (non-positive binding affinity shift) regarding different features groups:  

(a) PolyPhen-2, SIFT and GERP score as SNV annotation features. We observe that Polyphen-2, 

SIFT, and GERP scores for the two groups of SNVs are all significantly different with p-values 

smaller than 0.05 from two-sample Wilcoxon tests. nsSNVs that disrupt ligand protein binding 

have a higher mean Polyphen-2 score (mean Polyphen-2 value: 0.665 and 0.516 for Class 1 and 

Class 2, respectively) and a lower SIFT score (mean SIFT value: 0.101 and 0.149 for Class 1 and 

Class 2, respectively), both indicating a more deleterious role of disruptive nsSNVs on protein 
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function. In terms of GERP score, nsSNVs lead to positive binding affinity change are more 

likely to be associated with protein residues from more conserved regions, indicating by a higher 

mean GERP score (mean GERP value: 3.32 and 2.99 for “Class 1” and “Class 2”, respectively). 

(b) Side-chain volume and polarity change as protein structure features; distance between ligand 

and mutated residue when co-crystal structure is present. Amino acid side chain volume and 

polarity change before and after mutation will directly affect interaction of protein residue with 

ligand. We observe that the mean value of both side chain volume and polarity are statistically 

significant. On average, nsSNVs that destabilize ligand binding have decreased side chain 

volumes compared with the other class of ns SNVs (mean volume change index: -0.177 and 

0.0343 for “Class 1” and “Class 2”, respectively). For side chain polarity change, there is also a 

significant difference between the two classes of nsSNVs (mean polarity change index: 0.0224 

and 0.0856 for “Class 1” and “Class 2”, respectively). When protein-drug co-crystal structures 

present, we directly calculate the distance of the mutated protein residue from the drug ligand. 

Within our expectation, the nsSNVs which will positively shift binding affinity are more likely to 

be mapped on to residues within binding pocket (mean distance from ligand: 6.29Å and 19.8Å for 
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“Class 1” and “Class 2”, respectively). 

(c) Polar surface area and molecular weight as ligand features. Within the context of protein drug 

ligand interaction, physiochemical features of drug molecules play vital roles to interpret nsSNV 

implications. We observe that nsSNVs that disrupt binding affinity, the drug ligands tend to have 

a significant smaller average polar surface area that those corresponded with nsSNVs in the other 

class (mean ligand polar surface area: 94.62Å2 and 105.5Å2 for “Class 1” and “Class 2”, 

respectively). We also observe that the average molecular weight of drug ligands interacting with 

disruptive nsSNVs is significantly higher than those corresponded with the other class (mean 

molecular weight of ligand: 361.0g/mol and 341.2g/mol for “Class 1” and “Class 2”, 

respectively). 

 

Figure 4. Performance and implementation of GenoDock classifier for binding affinity 

change prediction. 

(a) ROC plots for four models with different input feature groups (with “Binding Site” feature 
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included during training process in “SNV annotation + PDB” and “SNV annotation + ligand” 

model). Our classifier achieved AUC of 0.73 (SNV annotations only), 0.92 (SNV annotations + 

Structure), 0.96 (SNV annotations + Ligand), and 0.97 (SNV annotations + Structure + Ligand), 

respectively. For “SNV annotation + PDB” and “SNV annotation + ligand” models, we train the 

model including binding site information, and we test the data assuming those nsSNVs will be 

mapped onto protein residues within binding pocket in order to estimate the upper limit of 

likelihood to disrupt ligand binding activity.  

(b) ROC plots for four GenoDock models with different input feature groups (with “bind site” 

feature excluded during training process in “SNV annotation + PDB” and “SNV annotation + 

ligand” model). Our classifier achieved AUC of 0.73 (SNV annotations only), 0.76 (SNV 

annotations + Structure), 0.79 (SNV annotations + Ligand), and 0.97 (SNV annotations + 

Structure + Ligand), respectively. For “SNV annotation + PDB” and “SNV annotation + ligand” 

models, we train and test the model without “binding site” feature to predict the influence of 

nsSNVs onto binding affinity change in case we cannot tell whether the associated protein residue 

is on binding site or not. In GenoDock web interface, users can switch “binding site” to be known 
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or unknown for predictions of interest. 

(c) Gini distance for relative feature significance in four models. We employ Gini distance as a 

measurement for feature importance in 4 models of GenoDock. We find GERP score, amino acid 

side chain volume change, polar surface area of drug ligand, distance between mutated amino 

acid residue and drug ligand are the most important features in SNV annotation features, PDB 

features, ligand features, and co-crystal structure features, respectively. While more features 

feeding into our classifier, significance of each feature are stable across different models. 

Particularly, binding site is an important feature if there is at least one structural component 

(protein PDB, drug ligand or co-crystal structure) present during the classification process of 

GenoDock. If the protein residue associated with nsSNV of interest is not on binding pocket, the 

probability of this nsSNV to disrupt the drug-protein binding is much smaller than those nsSNVs 

that are associated with binding pocket residues.  

 

Fig.5. Case study: GenoDock identifies known and unknown drug-resistance mutations.   
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(a) Identification of T790M mutation on EGFR with gefitinib-resistant effect. The threonine on 

chain A in human EGFR protein (PDB ID: 2ity) is mutated to methionine by a somatic nsSNV 

(rs55181378). T790M is a well-studied mutation in clinical research. Patients with somatic 

activating mutations in the EGFR gene would develop resistance to tyrosine kinase inhibitors 

(TKIs) such as gefitinib (Ligand ID: IRE). With the T790M mutation, drug resistance arises 

from the steric hindrance of gefitinib binding due to the increased side chain volume of 

methionine, leading to a positive shift to binding affinity. GenoDock correctly predicts this shift 

step by step along its decision-making process.  

(b) Identification of an unknown mutation potentially leading to drug resistance: resistance effect 

towards zoledronate acid by R112H mutation on human ASH1L. The arginine on chain A in 

ASH1L protein (PDB ID: 4p0w) is mutated to histidine by a somatic SNV (rs155317993). Due to 

the breaking of the salt bridge between the ARG side chain and the drug ligand zoledronic acid 

(Ligand ID: ZOL), the resulting uncharged HIS binds to the ligand much weaker, indicated by a 

positive shift of binding affinity change, which is correctly predicted by GenoDock. 
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