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In Brief

The extracellular RNA Atlas resource includes 5,309 exRNA-seq and exRNA qPCR profiles generated primarily from five body fluids (CSF, saliva, serum, plasma, and urine). Computational deconvolution reveals four major exRNA cargo profile types detectable across human body fluids, three of which correspond to previously isolated and profiled vesicular and non-vesicular exRNA carriers. We demonstrate the potential of this knowledge and the web tools integrated within the exRNA Atlas resource to empower study of extracellular RNA communication.
 
Main points
-        The exRNA Atlas resource provides access to 5,309 exRNA-seq and exRNA qPCR profiles from 20 different studies, including samples from 5 biofluids, and an extensive set of web-accessible data analysis and visualization tools.	Comment by William Thistlethwaite: Need to figure out a way to rephrase this, as samples in the Atlas come from 7 biofluids in total, but the paper focuses on 5 biofluids. Something like the "generated primarily" from the In Brief above.
-        Computational deconvolution explains a significant fraction of the variation in exRNA Atlas profiles as variation in the proportions of constituent cargo profiles within each sample. 
-        The constituent cargo profiles across all studies and biofluids cluster into four cargo types, three of which correspond to LD exosomes, HD exosomes, and HDL particles, respectively.
-        These findings and the computational resources associated with the exRNA Atlas will improve the power of exRNA case-control studies by enabling investigators to minimize sample-to-sample variability and enhance interpretation by tracing exRNA differences to specific cargo types.
Summary
To promote the discovery of exRNA biomarkers in disease and health, the use of exRNAs as therapies, and to expand the knowledge regarding the role of exRNAs in cell-cell communication, the NIH Extracellular RNA Communication Consortium (ERCC) has created the Extracellular RNA Atlas resource. The resource currently includes 5,309 exRNA-seq and qPCR profiles from 20 studies, encompassing samples of five body fluids (CSF, saliva, serum, plasma, and urine). Extensive metadata, uniform processing, and standardized data quality criteria enabled assessment of the relative abundances of miRNA, tRNA, Y RNA, piRNA, snRNA, snoRNA, and lincRNA biotypes for each biofluid. Computational deconvolution of the profiles reveals cargo profiles that were highly concordant across different biofluids and belong to one of four distinct cargo types (denoted CT1-4), with CT1 corresponding to profiles of previously isolated LD exosomes, CT2 to HDL particles, and CT4 to HD exosomes. All four cargo types were detectable across multiple body fluids, computationally predicting cargo profiles within the vesicular and non-vesicular exRNA carriers. These cargo types were validated in an independent dataset including exRNA-seq profiles from unfractionated and density gradient-fractionated serum and plasma samples. The deconvolution tool is integrated within the exRNA Atlas resource, enabling investigators to improve the power of future exRNA case-control studies by minimizing sample-to-sample variability and to enhance their interpretation by tracing exRNA differences to specific cargo types. In summary, the exRNA Atlas provides a new cross-study perspective on the diversity of exRNA cargo in human body fluids and offers web-accessible resources that enhance interpretation of individual exRNA profiling studies from this new perspective. The exRNA Atlas is publicly available at http://exrna-atlas.org.	Comment by William Thistlethwaite: Same issue as above - at least six body fluids are included in the Atlas, and it's seven if you count the conditioned media samples. However, the paper certainly focuses on the five mentioned.

Introduction
The Extracellular RNA Communication Consortium (ERCC) aims to realize the potential of exRNAs as disease indicators and therapeutic molecules, and to define the fundamental principles of their biogenesis, distribution, uptake, and function [RFA]. In the context of this overall effort, the ERCC has developed the Extracellular RNA Atlas, a reference catalog of exRNAs present in human body fluids. The current version of the Atlas provides access to 5,309 exRNA-seq and exRNA qPCR sample profiles from 20 different studies primarily involving CSF, saliva, serum, plasma, and urine. A suite of web-accessible tools enables users to analyze exRNA-seq profiles from the Atlas, process and analyze their own exRNA-seq data, and  contribute their data and analysis results to the Atlas, thus creating a virtuous cycle of knowledge creation by the ERCC and the wider exRNA research community.
To establish a set of exRNA profiles that may serve as stable references for detecting disease-associated perturbations, the large variability currently observed across exRNA profiling studies had to be addressed. Toward this goal, the exRNA-seq profiles were quality-controlled and uniformly processed using the exceRpt pipeline (Rozowsky et al., 2018). However, this workflow failed to eliminate a large amount of residual variability across the studies and biofluids represented in the Atlas. 
We reasoned that much of the variability that could not be addressed by quality control and uniform data processing may be due to the heterogeneity of exRNA carriers and their exRNA cargo. Specifically, various types of relatively conserved RNA cargo profiles may be represented in highly variable proportions in different human biofluids and may even be variably sampled by the diversity of rapidly evolving experimental protocols. To explore this hypothesis, we started from the results of previous studies showing that different carriers of extracellular ncRNAs, including High-Density (HD) and Low-Density (LD) exosomes and High Density Lipoprotein (HDL) particles, show characteristic ncRNA profiles. To uncover the contributions of the ncRNA cargo of these known carriers, as well as potential unknown carriers, to the profiles within the exRNA Atlas, we applied a computational deconvolution algorithm. Based on the Atlas exRNA-seq profiling data, the algorithm estimated multiple constituent cargo profiles for each significantly large (>40 samples) study within the Atlas. Subsequent clustering of the constituent cargo profiles revealed four cargo types (denoted CT1-4), which are present across individual studies and different biofluids. The four cargo types were confirmed by a subsequent independent profiling experiment. Three of the four CTs include profiles of the three previously isolated carriers: CT1 for LD exosomes, CT2 for HDL particles, and CT4 for HD exosomes. CT3 is distinct, consists of multiple subtypes, and is not associated with a known carrier. We show that cargo types show preferences for specific ncRNA biotypes, with a subtype of CT3 being particularly enriched for Y RNAs compared to all other cargo types.
Because computational deconvolution separates the variation of ncRNA abundances within constituent cargo profiles from the variation of their relative abundance in each sample, it has the potential to enhance interpretation of individual case-control exRNA profiling studies. To enable application of the deconvolution method to individual studies, we have extended the Atlas exRNA-seq data processing pipeline to include the deconvolution step. Using a previously published exercise challenge study as an example, we demonstrated the power of the deconvolution tool to detect physiologically relevant pathway activations that could not be detected by comparing bulk profiles. 

Results
Overview of the exRNA Atlas Resource                                                                                     
The exRNA Atlas resource is the data repository of the Extracellular RNA Communication Consortium (ERCC) and integrates tools, web services, and pathway knowledge relevant for collaborative extracellular RNA research. Version 4P1 of the Atlas contains 5,309 exRNA profiles (2,270 exRNA-seq and 3,039 qPCR) from 20 different studies. Most samples come from five biofluids (serum, plasma, saliva, CSF, urine), and samples span 23 health conditions (Figure 1A). Each profile contains extensive metadata describing the associated sample, the donor of the sample, and the experimental protocol used to collect the sample. The vast majority (5,306) of source samples are human, while a small number (3) are from mouse biofluids. Metadata are rigorously modeled using GenboreeKB, a MongoDB-based database service, and values for many metadata fields are ontologically controlled by the BioPortal service (Whetzel et al., 2014) via ontologies such as National Cancer Institute Thesaurus (NCIT), SNOMED CT, and Human Disease Ontology (DOID). A summary of Atlas contents is available on the landing page (Figure 1B).  	Comment by Andrew Su: Specify what scale is used in the legend. Also, a reviewer is likely to ask why there are so many "unknown" samples for Condition.
The exRNA Atlas’ suite of available tools allows users to process their own exRNA-seq data  (Figure 2A), as well as analyze existing exRNA-seq profiles in the Atlas. Any user can upload their own exRNA-seq profiling data, process it using the exceRpt pipeline, and perform subsequent computational deconvolution (described in Section X). Atlas studies may be visualized as precomputed principal component analysis (PCA) (Abdi and Williams, 2010) / t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction plots (van der Maaten and Hinton, 2008). Pairwise differential expression analysis may be performed via DESeq2 (Love et al., 2014). Pathway enrichment analysis for differentially expressed ex-miRNAs can be performed in the context of the Extracellular RNA section of WikiPathways. Summary plots may be generated for any set of up to 900 exRNA-seq profiles from the Atlas. Click-throughs to BioGPS provide information about expression levels of individual miRNAs within Atlas studies. Information on the expression of specific miRNA species across human biofluids is shared via WikiData. Users can also analyze their own exRNA-seq data using the Genboree Workbench (Figure 2B), a web-based software, which hosts several exRNA-seq-based bioinformatics tools. The Workbench allows users to upload and store their own sample data and results and share them privately with collaborators (Amin et al., 2015) prior to sharing them publicly through the Atlas. 

Uniform processing and quality characterization of RNA-seq profiles

To minimize variability and facilitate integrative analyses across studies, all exRNA-seq data in the Atlas have been uniformly processed using the extra-cellular RNA processing toolkit (exceRpt), an exRNA-seq processing pipeline created by members of the ERCC (Rozowsky et al., 2018). A total of 23.43 billion reads from 2,270 samples have been processed through exceRpt for Version 4P1 of the Atlas. The pipeline first performs a series of pre-processing and filtering steps designed to remove contaminants and prepare the samples for processing by removing 3’ adapter sequences, sequences that map to a pre-specified oligo spike-in library, and 45S, 5S, and mitochondrial rRNAs. Next, the remaining reads are aligned in parallel to the host genome and transcriptome (miRNAs, tRNAs, piRNAs, GENCODE annotations, and circular RNAs). Finally, any remaining reads are aligned to exogenous miRNAs and rRNAs, and then to all exogenous genomes in ensembl and NCBI (bacteria, plants, fungi, protists, viruses, and certain vertebrates expected to be present in a human and/or mouse diet). All alignments in exceRpt are performed using the Spliced Transcripts Alignment to a Reference (STAR) software (Dobin et al., 2013), other than alignment to oligo spike-in libraries, which is performed using Bowtie 2 (Langmead and Salzberg, 2012)). A set of quality measures agreed upon by members of the ERCC (Rozowsky et al., 2018) are generated for each profile, and the small number of profiles not passing quality thresholds were marked as such.

Content and download of exRNA profiles

The exRNA-seq profiles in the Atlas contain the full set of endogenous and exogenous data and metadata described above and can be obtained using several download options. First, each exRNA-seq profile has a “core results” archive associated with it. This archive contains read count information on an RNA-species level for all of the RNA libraries referenced above, quality pass/failure status, and NCBI taxonomy trees generated from exogenous rRNA and genomic reads. If data associated with a given sample is available in an open-access public repository (e.g., GEO or SRA), users can also download the original sequence data (FASTQ) as well as read alignment files (BAM) generated from the various alignment steps detailed above. Each qPCR profile on the Atlas contains a list of target ncRNAs as well as Ct values for those ncRNAs. Users can access the experimental protocol metadata for any given RNA-seq or qPCR profile to learn more about the specific techniques used to generate that profile’s target data.
 
Data navigation and search

The Atlas provides users with the ability to effectively navigate sample profiles using a rich set of metadata. Four different search methods are supported. First, the faceted charts on the landing page allow users to select profiles based on some desired combination of health conditions, biofluids, exRNA source materials, and/or RNA isolation experimental kits of interest (Figure 1A). Next, two different biosample partition grids allow users to select cross-sections of Atlas data based on a biofluid vs health condition as well as a biofluid vs assay type display. Third, users can select specific sample profiles via a tree selector that branches out based on anatomical location, biofluid, and health condition. Finally, users can visit the Datasets page to view sample profiles associated with a particular study of interest (Figure 1C). Each dataset is represented as a “card” which links to a metadata-centric view of the sample profiles associated with that dataset. Furthermore, users can use the dataset cards to view associated publications via PubMed, visit associated dataset pages on external public data repositories (e.g., GEO, SRA, and dbGaP), and download dataset summary files generated by exceRpt for exRNA-seq datasets. Summary files include a series of plots describing profiles in the dataset, such as read count distributions; heatmaps for fraction of aligned reads for each alignment step of exceRpt; QC results; biotype distributions and read counts; miRNA abundance distributions; and exogenous genomic taxonomy hierarchical clustering plots. In addition to the tools hosted within the Atlas, users can also visualize miRNA read expression for a given dataset via BioGPS (Wu et al., 2016), a gene annotation portal which contains interactive gene expression barcharts for exRNA-seq datasets in the Atlas.

Contributing to the Atlas

A number of tools and detailed instruction materials are provided for data submitters. By lowering the amount of effort and communication required, these tools stimulate community contribution to the Atlas. To date, 13 different labs have contributed a total of 20 different studies. Several of the contributions required only minimal involvement of Atlas administrators. Many users have also analyzed thousands of exRNA-seq profiles privately using the Genboree Workbench (Figure 2). 

An overview of the submission process is in Figure 2. All exRNA-seq data in the public Atlas were submitted via an FTP data submission pipeline. Each submitting lab is given its own private area on the FTP server where submissions can be uploaded for processing. A given submission consists of 3 separate files: a data archive, a metadata archive, and a manifest file. The data archive contains all sample sequencing files as well as an optional oligo spike-in file. The metadata archive contains six different tab-delimited metadata files, each describing a different aspect of the submitted samples. The manifest file provides important supplementary information and connects each sample data file with its respective metadata.
 
Before processing occurs, automated validation is performed on a step-by-step basis to ensure the integrity of each submitted file. All submitted metadata is validated against the relevant metadata models stored in GenboreeKB, our MongoDB-backed metadata tracker and database system, and any errors are reported to the user via email. After validation is complete, sample data files are submitted in parallel for processing through exceRpt. After all sample files have been processed, accompanying metadata for successfully processed samples are uploaded to GenboreeKB. Data and metadata then become available through the Atlas website after deployment. The process for submitting qPCR data to the Atlas resource is almost identical to the above - more detail is given in STAR Methods.
 
Deconvolution explains a significant fraction of the variance within Atlas studies
 
Despite the uniform processing by the exceRpt pipeline, exRNA-seq profiles in the Atlas largely clustered by study and biofluid (Supplemental Figure 1), suggesting large amount of variability across different studies. To address potential sources of this variability, we started from the results of previous studies showing that different carriers of extracellular ncRNAs, including High-Density (HD) and Low-Density (LD) exosomes (Lässer et al., 2017) and High Density Lipoprotein (HDL) particles (EXR-KVICK1oIp40e-AN), possess characteristic ncRNA profiles. We reasoned that certain features of these profiles (high or low abundances of specific ncRNAs) may be relatively invariant across all studies in the Atlas, and that the excess variability of these features in bulk profiles may be explained by sample-to-sample, study-to-study, and/or biofluid-to-biofluid variation in the relative proportions of the constituent cargo profiles, with the relative proportions varying due to technical and/or biological factors.
To address this hypothesis, we adapted a computational deconvolution algorithm that we previously developed for highly heterogeneous human tumors (Onuchic et al., 2016). Based on the profiling data, and without any human intervention, the algorithm estimates the number of major cargo profiles in any given set of samples, the abundances of each of the thousands of ncRNA genes within each cargo profile, and the relative abundance of each cargo profile within the bulk profile of any given sample (Figure 3). 
The algorithm requires as an input a list of ncRNAs that are informative (i.e. that vary) among CTs. By comparing ncRNAs from exRNA profiles of previously isolated vesicular (HD and LD exosomes, (Lässer et al., 2017)) and non-vesicular (HDL particles, (Atlas Dataset Accession ID: EXR-KVICK1oIp40e-AN)) carriers, we identified a total of 81 (p-value < 0.000015) differentially expressed ncRNAs [miRNA, piRNA, tRNA, YRNA, lincRNA, snoRNA, snRNA] (Supplemental Figure 2). To minimize any biotype-related confounding, the ncRNAs were balanced across biotypes (i.e. a similar number of up- and down-regulated ncRNAs for each biotype and carrier type were selected). 
We next applied the deconvolution algorithm to analyze the exRNA profiles of 2,138 biofluid samples within the Atlas. The 2,138 samples were divided into 21 datasets, based on a single disease state for a single biofluid for which we had a sufficient number of samples (>40). The datasets covered 5 biofluids (cerebrospinal fluid (CSF), saliva, serum, plasma, and urine) and 9 disease states: Healthy, Gastric Cancer, Carcinoma (Colon, Prostate, Pancreatic), Parkinson’s Disease, Alzheimer’s Disease, Subarachnoid Hemorrhage, Intraventricular Brain Hemorrhage, Myocardial Infarction, and Nephrotic Syndrome (Table 1; Data Accession ID). Stage 1 of the deconvolution algorithm estimated the constituent cargo profiles and their relative proportion within each sample. As an input to Stage 1, reads per million mapped reads (RPM) values were transformed using quantile normalization and--to eliminate overfitting of outliers and equalize measurements--mapped to the [0,1] range using a negative exponential function (STAR Methods). The algorithm determined the number of constituent cargo profiles (k) in the model independently for each of the 21 datasets using a stability criterion (STAR Methods). This resulted in k = 3 or 4 constituent cargo profiles for each the datasets (Table 1; Total CTs).
We next measured the variance that is explained by the sample-to-sample variation in proportions of the constituent cargo profiles by computing the difference between sample-to-sample variance in bulk profiles and the residual variance after deconvolution (the residual variance after a multiple regression fit using the constituent profiles obtained by deconvolution). We estimated the explained variance for both the core set of informative ncRNAs and for randomly selected sets of same size and matching biotype. As expected, for most studies, the explained variance for informative ncRNAs was higher than for randomly selected sets (Supplemental Figure 3).
Deconvolution has the potential to improve interpretation of exRNA profiling studies   

We next explored the potential of the deconvolution method to improve interpretation of exRNA profiling studies. We reasoned that because the method factors out (biological or technical) variance due to sample-to-sample variations in relative abundance of constituent cargo profiles, it may help reveal biological signals that might otherwise be obscured by high variance. Moreover, the method assigns any ncRNA differences to specific constituent cargo profiles, thus providing more specific testable hypotheses about the biological nature of any detected differences. For these reasons, we have extended the Atlas data processing pipeline to optionally include the deconvolution step and deconvoluted current the studies in the current Atlas.
Deconvolution of Atlas studies revealed that the proportions of constituent profiles varied from sample to sample, but in most studies, there were no systematic differences in proportions between cases and controls (Supplemental Figure 4). One exception was the Exercise challenge study [ref], which compared post- and pre-exercise (Bruce treadmill test protocol) exRNA profiles of human plasma--here, the deconvolution revealed post- vs. pre-exercise differences in constituent profile proportions and in ncRNA abundances within the constituent profiles (REF: shah et al). Because both types of differences could be demonstrated within a single study, we chose it as an example to comprehensively illustrate the power of deconvolution to reveal relevant biological signals.
The deconvolution output for the Exercise challenge study is illustrated in Figure 4 panels. The first panel of the figure (Figure 4A) contains the constituent cargo profiles, their correlation scores with all other constituent profiles in the Atlas (currently numbered 1-75), and their assignment to one of the four cargo profile types (CT1-4, to be discussed in the next Section). The second panel (Figure 4B) shows proportions of the constituent profiles within each sample. The third panel (Figure 4C) contains the abundances of ncRNA biotypes and individual ncRNA genes for each constituent profile. These first three panels are based on deconvolution of the total set of samples, including both the pre- and post-exercise samples. Subsequent panels compare the post- vs. pre-exercise profiles; differences in the abundance of constituent profiles pre- and post-exercise (Figure 4D); differences in miRNA composition of corresponding constituent profiles in pre- and post-exercise samples (based on independent deconvolution of pre- and post-exercise samples, Figure 4E); lists of miRNAs differentially expressed in corresponding constituent profiles in pre- and post-exercise samples (Figure 4F); and pathways enriched for differentially expressed miRNAs (Figure 4G).
The output of deconvolution revealed large changes - in particular, we see an increase in a constituent profile of the CT4 type (Figure 4D). When pre- and post-exercise miRNAs abundances were compared for each constituent profile, a total of 27 differences were observed in the profile of the CT4 type, 16 of which were also detectable from bulk comparisons and 11 detectable only after deconvolution (pink circle in the Venn diagram in Figure 4F). Strikingly, the four most significant pathways affected by the differentially expressed miRNAs were those relating to striated muscle contraction and cell motility (pink highlights in Figure 4G). The constituent profiles of the CT2 type showed miRNA changes consistent with an energy metabolism challenge (yellow highlights in Figure 4G). While these results by themselves do not lead to any unambiguous biological interpretation, the pathways do point to a physiologically relevant response to physical challenge. In contrast, previously published analysis of the same dataset without deconvolution did not reveal any pathways that were directly related to physical activity (Shah et al., 2017). Taken together, these results illustrate the potential of the deconvolution method to improve the interpretation of an exRNA profiling study.

Comparison of constituent profiles reveals four cargo types present across human body fluids
We reasoned that constituent cargo profiles obtained by deconvolution of different studies may show similarity due to the possible similarity of exRNA cargo of carriers present in different biofluids. To explore this possibility, we performed hierarchical clustering of constituent profiles based on their pairwise correlations. As indicated in Figure 5, the deconvoluted profiles clustered into four groups which we refer to as cargo profile types  and denote CT1-4  (Figure 5 and in the rightmost columns in Table 1; the constituent cargo profiles themselves are numbered 1-75 and correspond to rows in the figure and are grouped by cargo profile type in rightmost columns of the table). Remarkably, all four cargo types could be detected across multiple body fluids (Figure 5).
We next performed deconvolution on the whole of the Atlas, anticipating improved resolution compared to individual studies. Indeed, a total of 11 constituent profiles (indicated by the light blue bar on top of 11 columns in Figure 5) were inferred. Because the 11 profiles correlate with subtypes of the 4 major cargo types, we conclude that the deconvolution of the Atlas yielded results concordant with the results of the deconvolution of individual studies. The higher resolution--11 constituent cargo profiles--indicates deep heterogeneity of cargo types, which will likely be better understood as more exRNA profiling data accumulates.
As indicated in Table 1, the previously isolated carrier profiles were also included in the clustering of Atlas samples in Figure 5. Three of the four cargo types include profiles of the following previously isolated carriers: CT1 includes LD exosome profiles; CT2 HDL profiles; and CT4 HD exosome profiles. To better visualize similarities between these isolated profiles with other constituent profiles of the same type, Figure 5 includes additional columns marked gray (HD and LD exosome profiles) and purple (HDL profiles). Note that CT3 does not correlate with the cargo profile of any previously isolated carrier and appears to be the most heterogeneous cargo type, consisting of at least three distinct subtypes denoted CT3A, B, and C.
Independent validation of cargo types CT1-4

To validate the four identified cargo types, we generated an independent set of 78 RNAseq profiles from four fractions (corresponding to HD exosomes, LD exosomes,  light particles, and total biofluid) from serum and plasma from five healthy adult male and five healthy adult female donors (Supplemental Figure X). We then applied the same deconvolution algorithm as previously applied to the Atlas.	Comment by oscar m: Pending	Comment by oscar m: Schematic of how the four fractions were isolated?
Because the core set of 81 ncRNAs used for Atlas analysis explained a much smaller fraction of the variance for this new set, a new, more informative set of 80 ncRNAs was derived by comparing profiles of the four fractions (explained in STAR Methods). Since the independent set of RNA-seq profiles included a much larger proportion of lincRNA reads (as discussed in the next Section), this new informative set included a larger number of lincRNAs than the original set.
Deconvolution of the independent set revealed four constituent cargo profiles. Despite differences in the informative ncRNA sets, Stage 2 of deconvolution provided abundances of all ncRNAs for each constituent profile, thus enabling correlation with Atlas profiles over the 81 ncRNAs originally used to deconvolute the Atlas. Correlation results (four pink columns in Figure 5) suggest a one-to-one correspondence between the four constituent cargo profiles from the validation set and the four cargo types (CT1-4) from the original deconvolution analysis. Each of the four constituent profiles also corresponds either to one of the three fractions or to the bulk serum sample (Supplemental Figure Y). Taken together, these findings suggest that both the samples in the Atlas and in the validation set may be modeled as a mixture of cargo profiles belonging to one of the four cargo types.	Comment by oscar m: Pending
Results of deconvolution
A census of abundant miRNAs and of ncRNA biotypes
While the physiological role of miRNAs in human biofluids is still poorly understood, we reasoned that the miRNAs that are highly abundant in relevant body fluids may also be physiologically relevant. To identify such miRNAs, for each biofluid, we developed a census of miRNAs that are represented at >10 mean RPM in at least 50% samples for that biofluid within the Atlas. We then identified miRNAs that met these thresholds in multiple biofluids. As illustrated in Figure 6A, a total of 44 miRNAs were abundantly expressed across all biofluids and 94 across all five biofluids except urine. Complementing these static results, a tool is available on the Atlas landing page to calculate a census of miRNAs and other ncRNAs based on user-selected thresholds using Atlas data. We also examined distribution of these 94 abundant miRNAs across the cargo types. As illustrated in (Figure 6B), they are represented at variable levels in CT1-4. 
Finally, we expanded our analysis beyond just the abundant miRNAs to all ncRNA biotypes. By calculating the sum of all estimated Reads Per Million (RPM) for each ncRNA gene within each RNA biotype, we estimated the fraction of ncRNA contributed from each biotype to each cargo type. While each cargo type showed distinct proportions (Supplement Figure 7A), large variation in the proportions was observed across Atlas studies (Supplement Figure 7B). Our own independent profiling study discussed in the previous section also deviated from the averages, showing amounts of lncRNAs that far exceed average lncRNA abundances within the Atlas. This variability be due to different generations of library preparation kits and other experimental methods. Notably, despite this large variation, certain patterns stand out such as the much higher abundance of Y RNAs within the CT3B subtype compared to all other cargo types, consistent with previously observed abundance of Y RNAs in whole body fluids compared to the amounts of Y RNA observed in currently isolated fractions [ref].
Discussion

The web-accessible tools and content of the exRNA Atlas resource has incentivized the sharing of exRNA profiles by the ERCC members and the wider exRNA research community.  The uniform processing of the shared exRNA profiles and a novel computational deconvolution method helped identify four distinct cargo types detectable across human body fluids and across individual studies. The fact that not all the ncRNAs are equally informative for deconvolution across all studies may at least in part be explained by differences in the ascertainment of specific ncRNAs by different library preparation methods [ref-ERCC paper from Galas et al.]. Additional evidence corroborating this is the large variation in relative amounts of ncRNA biotypes that we observe across different studies. Overall, however, the patterns required for deconvolution were not completely overshadowed by this variability that we could not address. 
While three of the four cargo types correspond to previously isolated and profiled vesicular and non-vesicular exRNA carriers, our study is the first to identify the same cargo types across different human body fluids. In particular, the LD exosome and HD exosome cargo types have previously been identified only in a cell-line model. The newly discovered cargo type CT3 does not correlate with the cargo profile of any previously isolated carrier and appears to be the most heterogeneous, consisting of multiple subtypes. The CT3B subtype shows much higher abundance of Y RNAs compared to all other cargo types, consistent with previously observed abundance of Y RNAs in whole body fluids compared to the amounts observed in currently isolated fractions [ref].
Our findings suggest that the four cargo types may correspond to distinct carriers of exRNAs across human body fluids. However, other interpretations may not be excluded. For example, the cargo types may reflect different mechanisms by which exRNA carriers are loaded: the same mechanism may be responsible for loading multiple carriers; also, multiple mechanisms may be responsible for loading a single carrier. Finally, cargo type of the same carrier may vary by cell or tissue type. While future research will be required to address these possibilities, we anticipate that the cargo types inferred from the Atlas will provide important reference points for future mechanistic studies.
Finally, we demonstrate the potential of the data, tools, and knowledge incorporated within the exRNA Atlas resource to empower study of extracellular RNA communication: as the exercise challenge study demonstrate, deconvolution helps uncover physiologically relevant biological signals that may not be detected by comparing bulk profiles. By enhancing interpretation of exRNA profiling data from individual studies, the exRNA Atlas resource further incentivizes creation of new knowledge through data sharing. By catalyzing this virtual cycle of knowledge creation, the exRNA Atlas is lowering the barriers toward the discovery of the biological principles of extracellular RNA communication and is helping realize the potential that exRNAs may have as disease indicators and therapeutic molecules.
Figure Legends
Figure 1. exRNA Atlas Resource
(A) Faceted charts for selecting exRNA profiles from the Atlas. Chart metadata categories include health condition, type of biofluid, RNA isolation kit, and exRNA source material. Certain facets may contain metadata subcategories - for instance, multiple preeclampsia conditions are collapsed under the Preeclampsia facet. If facets are selected from multiple charts, matching profiles must include one facet from each chart. The size of each slice (representing a profile count) has been log-transformed. Condition of unknown samples are protected by the study design.
(B) Bar charts describing the contents of the Atlas.
(C) Example of dataset “card” on the Datasets page of the Atlas. Users can view sample profiles, download dataset summary files, view associated publications via PubMed, and visit associated dataset pages on external public data repositories.

Figure 2. Overview of exRNA Atlas Data Submission Process
(A) Workflow for submitting data to the exRNA Atlas. Submissions consist of three different types of files: data files, metadata files, and a manifest file. All files are processed through an FTP-based data submission pipeline, with exRNA-seq data being uniformly processed through exceRpt. After a deployment process, all data and metadata are made available through the Atlas website.
(B) Workflow for submitting data to Genboree group for private analysis. Submissions consist of exRNA-seq data files (FASTQ) and are processed via exceRpt on the Genboree Workbench. After processing is completed, results can be shared privately with collaborators.   

Figure 3. Description of Deconvolution Method
Representation of the model associated with stage 1 and 2 of deconvolution. For stage 1, the transformed gene expression (STAR Methods) profiles of complex biofluid samples (S1 to Sn ; sample matrix) over a set of informative ncRNAs (transcript 1 to transcript m) selected in stage 0 are used as the input.  Deconvolution estimates the average gene expression profiles of constituent cargo types (P1 to Pk; cargo types matrix) and the proportion of the constituent cargo type in each sample (S1 to Sn; per-sample proportions matrix) through an iterative algorithm for constrained matrix factorization using quadratic programming. For input to stage 2, deconvolution requires the cargo type proportions estimated in stage 1 and the gene expression profiles of complex biofluids samples in either read counts or reads per million (RPM) depending on the desired output. The output is the gene expression profiles of each constituent cargo profile in read counts or RPM.

Figure 4. Deconvolution of Exercise Case Study
(A) Heat map representing the correlation between the 3 constituent cargo profiles modeled for Atlas Dataset Accession ID: EXR-SADAS1EXER1-AN and the constituent cargo profiles estimated from individual Atlas datasets.	Comment by Andrew Su: William, can you email me to make 100% sure we have this data set in BioGPS?
(B) The Deconvolution algorithm estimates the proportion of each constituent cargo profile in the Exercise study.
(C) Abundance of each ncRNA biotypes (sum of reads per million) assigned to each sample across the 3 constituent cargo profiles.
(D) Difference in abundance of each constituent cargo profile between baseline samples and post-exercise samples (*p-value = 0.001).
(E) Abundance of miRNA counts assigned to each sample cohort (baseline, post-exercise) across the 3 constituent cargo profiles.
(F) Number of differentially expressed miRNAs within each constituent cargo profiles. DESeq2 was used to identify differentially expressed miRNAs in the exceRpt-processed Exercise dataset samples. For methodological details see STAR Methods.
(G) mirnaPath was used to identify pathway enrichment for miRNAs differentially expressed in the profile: 59 (CT4), 20 (CT2). Yellow highlighted boxes indicate pathways related to energy metabolism. Pink highlighted boxes indicate pathways related to muscle contraction and cell motility. For methodological details see STAR Methods.

Figure 5. Deconvolution of exRNA Atlas Datasets
Left self-self-heatmap represent the correlation scores of the 68 estimated constituent cargo profiles and 7 reference profiles (75 total) from the deconvolution of 21 individual exRNA Atlas datasets. Based on the dendrogram, we can observe 6 top level clusters, which we termed Cargo Types: CT1, CT2, CT3A, CT3B, CT3C, CT4. Center table indicates the detection of each CT across multiple body fluids. Light blue heatmap represents the correlation scores of the 75 predicted constituent cargo profiles and the 11 estimated constituent cargo profiles deconvoluted from the combined Atlas datasets. Gray heatmap indicates the correlation scores between the 75 predicted constituent cargo profiles and the HD and LD exosomes profiles used as references (Lässer et al., 2017). Purple heatmap represents the correlation scores between the 75 predicted constituent cargo profiles and the HDL reference profiles (Atlas Accession ID: EXRKVICK1oIp40eAN). Pink heatmap represent the correlation scores between the 75 predicted constituent cargo profiles and four predicted constituent cargo profiles deconvoluted from an independent biofluid dataset consisting of 78 samples (STAR Methods).

Figure 6. Census Analysis of Abundant miRNAs
(A) Venn diagram representing the overlap between highly abundant miRNAs expressed greater than 10 mean RPMs in at least 50% samples for that biofluid within the Atlas. Black circle indicates the 44 miRNAs abundantly expressed within the 5 biofluid intersect. Gray circle indicates the 50 miRNAs expressed with the 4 biofluid intersect that excludes urine. 
(B) Heatmap representing the RNA expression (log10) level of the 94 highly abundant miRNAs across the predicted CT1-4. Color bar indicates if the miRNA was present in all 5 biofluid (black 44) or across 4 biofluids excluding urine (gray 50). 

STAR METHODS
KEY RESOURCES TABLE
	REAGENT or RESOURCE
	SOURCE
	IDENTIFIER

	Critical Commercial Assays
	 
	 

	miRNeasy Kit
	Qiagen
	

	Deposited Data
	 
	 

	Raw and analyzed RNA-seq data
	This paper
	http://exRNA-Atlas.org

	Isolated LD and HD exRNA profiles
	(Lässer et al., 2017)
	BioProjectID PRJNA343960

	exRNA Atlas samples
	exRNA-Atlas
	http://exRNA-Atlas.org

	Biofluid Samples for Physically Isolated Fractions
	This paper
	

	Software and Algorithms
	 
	 

	GenboreeKB
	 
	 

	exceRpt
	 
	 

	DESeq2
	 
	 

	t-SNE
	(van der Maaten and Hinton, 2008)
	 

	Epigenomic Deconvolution
	(Onuchic et al., 2017)
	https://github.com/BRL-BCM/EDec

	mirnaPath
	(Cogswell et al., 2008)
	10.18129/B9.bioc.miRNApath



CONTACT FOR REAGENT AND RESOURCE SHARING
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Aleksandar Milosavljevic (amilosav@bcm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS
exRNA Atlas Sample Datasets
We utilized the following datasets from the exRNA Atlas (http://exRNA-Atlas.org), Accession ID: EXRKJENS1WBaSro-AN (n = 523), EXRKJENS1RID1-AN (n = 428), EXRKJENS1sPlvS2-AN (n = 345), EXRKVICK1oIp40e-AN (n = 266), EXRDWONG1qf3tcS-AN (n = 198), EXRMTEWA1cHYLo6-AN (n = 197),  EXRTPATE1OqELFf-AN (n = 192), EXRKJENS12WGutU-AN (n = 70), EXRSADAS1EXER1-AN (n = 62), EXRSADAS1UJ0CzW-AN (n = 43).
High-Density and Low-Density exRNA Profiles
We utilized the High-Density (SRX2191757, SRX2191758) and Low-Density samples (SRX2191759, SRX2191760) from Lässer et al., RNA Biology 2017. Raw data was downloaded from SRA (BioProjectID PRJNA343960) and reprocessed with exceRpt.
High-density Lipoprotein exRNA Profiles
We utilized the High-density lipoprotein (Healthy Control) small RNA-Seq samples deposited into the exRNA-Atlas by Kasey Vickers from Vanderbilt University School of Medicine (EXRKVICK1oIp40eAN). Samples were collected from plasma and RNA was isolated utilizing the miRNeasy (Qiagen) kit.
Biofluid Samples for Physically Isolated Fractions
Human Subjects
250 ml whole blood was collected from five adult female and five adult male donors using 19G needles using 60 mL syringes containing either no additive (for serum) or 440 uL 0.5 M  K2EDTA pH 8.

METHOD DETAILS
RNA-Seq Data Submission to Atlas	Comment by oscar m: William, can you expand on this section?


qPCR Data Submission to Atlas
Users upload two files, a data archive and metadata archive, to their respective lab’s private area. Importantly, qPCR metadata includes Ct values for target ncRNAs. Next, an automated pipeline checks the validity of all metadata and then uploads that metadata to GenboreeKB, where it becomes available through the Atlas website after deployment by Atlas administrators. All qPCR data currently in the Atlas was submitted before the automated pipeline was in place and thus was manually curated.
Physically Isolated Fractions
Serum and Plasma Samples
250 ml whole blood was collected from five adult female and five adult male donors using 19G needles using 60 mL syringes containing either no additive (for serum) or 440 uL 0.5 M  K2EDTA pH 8. The blood was then transferred into 50 mL polypropylene tubes and allowed to sit at room temperature 10-60 minutes. The tubes were then spun at 2,000 xg for 20 minutes at room temperature. The clear supernatant was transferred to a fresh tube and centrifuged again at 2000 xg for 10 min at room temperature. The serum or plasma was then aliquoted into 1.5ml tubes and stored at -80 degrees C.
Optiprep Cushion Procedure
1 mL of each serum and plasma sample was mixed with xxx mL of PBS, placed into a xxx mL ultracentrifuge tube, and underlaid with 2 mL 60% iodixanol. This was spun at 100,000 xg for 2 hours at 4 degrees C. The bottom 3 mL (2 mL iodixanol cushion + 1 mL supernatant was removed, mixed, and underlaid under a 5%-10%-20% iodixanol gradient. This was spun at 100,000 xg for 18 hours at 4 degrees C. Twelve 1 mL fractions were then collected, starting from the top of the gradient. 
RNA Preparation
RNA from unfractionated serum and plasma samples (500 uL each) was isolated using the miRNeasy micro kit (Qiagen) and concentrated using a Zymo RNA clean and concentrator-5 kit with a final elution volume of 7 uL. From each Optiprep gradient, we combined fractions 1-3 (numbered from the top of the gradient) to form the light fraction, fractions 4-7 for the low-density fraction, and 9-12 for the high-density fraction. RNA was isolated from 500 uL of each of these combined fractions using the miRNeasy micro kit (Qiagen) and concentrated using a Zymo RNA clean and concentrator-5 kit with a final elution volume of 7 uL. 
Sequencing
4 uL of each RNA sample was dried in a SpeedVacTM. The dried RNA was then resuspended in 1.2 uL of water and used to generate a small RNAseq library using the NEBNext Multiplex small RNA Library Prep kit. The library reactions were performed at ⅕ scale using a Mosquito HTS liquid handler. The 80 libraries were combined into 2 pools, which were size-selected using a Pippen Prep with a cutoff of 117-180 bp. Each size-selected pool was run on one lane of a HiSeq4000.

QUANTIFICATION AND STATISTICAL ANALYSIS
exceRpt Sequence Processing
The exceRpt small RNA-seq Pipeline is for the processing and analysis of RNA-seq data generated to profile small exRNAs. The pipeline is highly modular, allowing the user to define the libraries containing small RNA sequences that are used during RNA-seq read-mapping, including an option to provide a library of spike-in sequences to allow absolute quantitation of small-RNA molecules. It also performs automatic detection and removal of 3' adapter sequences. The output data includes abundance estimates for each of the requested libraries, a variety of quality control metrics such as read-length distribution, summaries of reads mapped to each library, and detailed mapping information for each read mapped to each library.
After the pipeline finishes processing all submitted samples, a separate post-processing tool (processPipelineRuns) is run on all successful pipeline outputs. This tool generates useful summary plots and tables that can be used to compare and contrast different samples. 
Deconvolution
A redesigned method of deconvolution based on Onuchic et al., 2017 was applied to the exRNA-Atlas datasets (n = 21) listed on Table 1. Where appropriate, the Figure Legends detail the statistical test and paraments used to analyse the data corresponding to that Figure. Statistically significant can be observed when p < 0.05.
Gene Expression Transformation
For the first stage of the deconvolution algorithm, reads per million mapped reads (RPM) values are transformed using quantile normalization across each ncRNA independently. Additionally, expression values are fit to a range of [0,1] using negative exponential modeling:

Identifying informative ncRNAs
We began with our set of references that include samples for each group: HD exosomes, LD exosomes (Lasser et al., 2017) and HDL protein complexes. To select informative ncRNAs, we performed t-tests comparing the transformed expression levels over each RNA between each group of references against the rest of the reference methylation profiles. We selected those RNAs that showed significant differences (p-value < 0.000015) in the comparison of each group against the rest of the reference samples. Due to the greater similarity between HD exosomes and LD exosomes, we performed a specific t-test comparing only the samples in those two groups and included in our final set of probes those that had a significant difference (p-value < 0.003). Because of overlap between the RNA sets in each comparison, the final set contained 81 probes. 
Selection of appropriate constituent k 
Each Stage 1 deconvolution requires the number of constituent cargo profiles to be provided for the model. In order to select the appropriate number of profiles, k, we generated 3 datasets using a randomly selected 80% of the samples. Deconvolution was then performed with the number of constituent cargo types varying from 3 to 6. We compared the estimated profiles and proportions across the overlap in samples between each of the 3 subsets. The model that provided the highest correlations was selected. This process is fully automated in the EDec (Onuchic et al., 2017) R package.
Deconvolution Stage 1
Deconvolution is modeled after Onuchic et al., 2016. Instead of using methylation beta values


Explained variance is calculated 1 - residual sum of squares.

Deconvolution Stage 2
Calculation for each RNA biotype

Identifying differential proportions of CTs between Case/Controls
Wilcoxon test

Differential expression of miRNAs between Case/Controls in Exercise Study
T-test
DESeq2
Expression of 86 differentially expressed miRNAs detected from exRNA Atlas and DESeq2 across all three CTs (Supplemental Figure 8).

Pathway Analysis
miRNApath
We utilized the miRNApath: Pathway Enrichment for miRNA Expression Data (Cogswell et al., 2008) R package available on Bioconductor to identify miRNA-Gene-Pathway enrichment. miRNA-Gene association tables were downloaded from miRTARBase (interactions other than weak were filtered out) and provided to miRNApath. Gene-Pathway association tables are provided by miRNApath. Enrichment was performed on 3 sets of miRNAs (CT2, CT3B, CT4) using the default settings (Composite = TRUE, Permutations = 0). Pathways are indicated as significant if p.value < 0.05. Figure 4G only includes pathways with a significance greater than 0.01.
Pathway Finder
We have integrated a tool, Pathway Finder, for viewing miRNAs in context of biological pathways, as a collaboration with the WikiPathways team. WikiPathways (Slenter, et al.) is an open, collaborative pathway curation platform that publishes its data in a format readable by both humans and machines. Pathway Finder is an in-browser tool that takes as input a user-specified list of miRNAs, combines that input with pre-processed miRNA-to-gene mapping data, and produces as output a list of pathways that contain one or more miRNAs from the user-specified list and/or one or more genes that are targeted by one or more of the miRNAs from the user-specified list. The results are displayed in a table format, with one pathway per row. Selecting a pathway from the table brings up a Pathway Widget (diagram view of the result from WikiPathways), with each miRNA and/or gene target highlighted. Recent upgrades to the tool have improved performance and usability.

DATA AND SOFTWARE AVAILABILITY
Accession numbers for Atlas data. 
Lasser et al.,
Raw data for Atlas
Deconvolution algorithm
Precomputed results

Supplemental Information
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