
HIGHLIGHTS IN YELLOW ARE CURRENTLY IN PROGRESS 

 

-- Ref1.0 – General comments – 

Reviewer’ comment: 

 0 - Neither the software nor a test instance was available 

for review. 

Author’s response: 

  

-- Ref1.1 – General comments – 

Reviewer’ comment: 

 1 - The abstract is vague. In my view, the authors lose a 

critical opportunity by not reporting the significance of 

previously studied cases of genetic variants that affect 

RBP function or how their new method can help to sort the 

important genetic variants from the rest (DNA vs RNA). 

Author’s response: 

 

JL2JZ&MG: need to discuss this comment and make changes to abstract. Do we need 

more analysis? 

 We thank the reviewer for pointing this out. We agree that it should 

be further emphasized how genetic variants affecting RBP function 

are an important part of studying disease. To this end, we have 

revised our abstract to reflect how our method, RADAR, explores 

mutations in the RBP regulome and how they can be separated 

from mutations affecting DNA. 
 

 

-- Ref1.2 – General comments – 

Reviewer’ comment: 



 2 - What is the rational to only show comparison among 

RADAR, FunSeq2 and CADD? See for example, 

https://www.ncbi.nlm.nih.gov/pubmed/29340599(A benchmark 

study of scoring methods for non-coding mutations). 

Please motivate your choice. 

Author’s response: 

[JZ2JZ: need to add this FATHMM-MKL later] 

The reviewer makes a valid point. To address this concern, we include two points on the 

motivation for comparing to FunSeq2 and CADD below. In addition, we also include a further 

comparison to FATHMM-MKL. 

- RADAR vs FunSeq2: the idea to use Shannon entropy in our scoring scheme for RADAR is 

adapted from FunSeq2. However, FunSeq2 primarily uses annotations such as TFBS, DHS, 

enhancer, etc. while RADAR focuses on the RBP regulome. We believe that RADAR is therefore 

complementary to FunSeq2 and that by comparing them, we can see that RADAR is able to 

pinpoint variants not prioritized by FunSeq2 (two examples in the manuscript). 

-  RADAR vs CADD: we make the comparison between these two scores in order to show that 

while RADAR does consider coding regions intersecting the RBP regulome, it also considers 

many of the noncoding regions no prioritized by CADD. 

-- Ref1.3 – General comments – 

Reviewer’ comment: 

 3 - The relevance of RBPs on RNA splicing is not 

considered at all. 

Author’s response: 

We thank the reviewer for making the suggestion to include RNA splicing considerations in our 

manuscript. However, there are xxx splicing factors inside the RBP list already. We want to further 

highlight several points here:  

To this end, we have: 

1 We Included a table in our supplement (shown below) categorizing each RBP by their function, 

many of which are splicing related. 

·      Included a download link on our website of eCLIP data annotated by each RBPs specific 

function, which can easily be filtered for splicing related RBPs. 

·      Updated Figure 2, with a heatmap showing the clustering of RBPs by the similarity of their 

target gene sets. Splicing and non-splicing RBPs are seen to form clusters, perhaps due to 

functional similarity. This heatmap is shown below in Figure R.XXX. 

https://www.ncbi.nlm.nih.gov/pubmed/29340599
https://www.ncbi.nlm.nih.gov/pubmed/29340599
https://www.ncbi.nlm.nih.gov/pubmed/29340599


·      Included a motif similarity diagram between RBPs of splicing functionality (Figure R.XXX). 

  

Figure R.XXX. Similarity of target genes of splicing and non-splicing RBPs. 

 

  

Figure R.XXX. Motif similarity between different splicing RBPs. 



  

-- Ref1.4 – General comments – 

Reviewer’ comment: 

 4-  The basic and tissue-specific scoring is not well 

explained. The method section is mixed with results (eg. In 

Regulatory Power from Linear Regression). Please separate 

results from methods. I would like to see a clear 

presentation on how a RADAR score is computed for a given 

variant from basic and user-specific contributions in 

mathematical terms. 

Author’s response: 

We thank the reviewer for this suggestion. We have restructured our manuscript to remove any 

results in the methods section. The methods section now contains specific details on scoring a 

variant for each component of the score (6 basic, 3 user-specific). Equations used in each part of 

the score have been carefully added to the appropriate sections. 

  

To further clarify the scoring of a given variant, we also provide a flowchart for scoring, shown 

below in Figure R.XXX. 

Figure R.XXX. Schematic flowchart of scoring a variant. 



  

  

  

-- Ref1.5 – General comments – 

Reviewer’ comment: 

 5 - Please assess the individual relevance of the 

features listed in Table 1 for RADAR. Especially, the 

data types that are not modelled by the preceding 

software FunSeq2 (see Figure 1). 

 

 

 

 

 

 

 

Author’s response: 

 In our model we use a total of 6 features in the baseline score and 3 features in the user-specific 

score. Of the baseline features, five of them are different. All three tissue specific features are 

unique to RADAR and not included in FunSeq2. The overarching difference of RADAR in 

comparison to other variant prioritization methods is that RADAR considers only regions 

intersected by eCLIP peaks. In FunSeq, the main goal is to prioritize noncoding regions 

associated with TFBS, DHS, and enhancer regions. However, 47% of eCLIP peaks are do not 

intersect those regions. So while funseq may prioritize variants associated with transcriptional 

regulation, RADAR focuses on variants associated with the post-transcriptional regulation. 

 

More specifically, our features also differ technically from those in FunSeq. A summary of these 

points is below: 

 

Although we share a similar entropy scoring scheme to FunSeq2 for some of our features, RADAR 

improves on the methodology through its correction of GC bias as well as its focus on the RBP 



regulome. Also, we include RNA structure as a feature, which considers the 3D structure of 

binding. For our network hubs, we go a step further than previous models by showing its positive 

correlation with selection pressure, rather than simply making the assumption that network hubs 

correlate with functional significance. We also include knockdown data from shRNA-seq to show 

the important regulatory effects that RBP can have on genes.  

 

One of the most important aspects that RADAR differs from many other methods, such as 

FunSeq2, is its incorporation of tissue specific components. In particular, the tissue components 

consider the differential expression of tumor to normal samples from TCGA, tissue specific 

mutational burden on eCLIP elements, and regression based methods to determine the regulatory 

effects of RBPs on its target genes in specific tissues. These data and features are not covered 

in FunSeq and we believe are what make our method, RADAR, unique. 

-- Ref1.6 – General comments – 

Reviewer’ comment: 

 6 - Please use the cell-line specific aspect of ENCODE to 

assess the performance of your method. I believe that cell-

specific information for K562 and HepG2 cell lines are 

available, such as shRNA-seq, eCLIP. Variant information 

might be also available for both cell lines as I have seen 

whole genome sequencing data in NCBI's SRA. 

Please train / build the model on one cell type ("Baseline) 

and evaluate on the other ("specific component"). This could 

be as convincing as an experimental validation. 

Author’s response: 

 

We have completed built the RADAR model using the two different cell specific data, creating a 

HepG2 and K562 score (baseline and tissue specific in each). We give two examples below to 

show how using cell type specific data could influence the RADAR score. 

Example 1: JL working on new analysis here 

 

Example 2: We compare the HepG2 and K562 scores for a set of Liver cancer variants 

available publicy from the Alexandrov et al paper. Here we see that variants that fall in 

CTNNB1, a well known cancer driver gene unique to liver cancer are scored much higher when 

using the HepG2 version of the score compared to the K562 version. As a control, we look at 

the scores of variants falling in TP53, a well known cancer driver, but not specific to liver cancer. 

The results are shown in Figure R.XXX below. 

 



Figure R.XXX. Difference in RADAR cell type specific score (HepG2 and K562) when scoring 

liver cancer variants in CTNNB1, a known driver gene unique to liver cancer, and in TP53, 

considered to be a driver in multiple cancer types. 

 

 

-- Ref2.0 – General comments – 

Reviewer’ comment: 

 One major concern appears to be whether the observed results 

are reflective of true biology or simply artifacts of various 

algorithms. For example, figure 2 and lines 21-32 discuss 

the overlap between eCLIP peaks and annotations. However, 

the description of the CLIPper algorithm in Lovci et al 

(2013) used in the ENCODE pipeline suggests that clusters 

are identified only within transcripts, which would then 

trivially localize all eCLIP peaks to transcript annotations. 

Similarly, although the 'RBP regulome' appears smaller than 

that for TFs, it is unclear whether this is simply because 

the average peak size for eCLIP is significantly smaller than 

the average CHIP-seq peak due to differences in method and 

peak callers (likely, as most known RBP and TF motifs are of 

similar sizes). 

Author’s response: 

We thank the reviewer for the comments and address the reviewer in a point by point fashion 

below: 

“For example, figure 2 and lines 21-32 discuss the overlap between eCLIP 

peaks and annotations. However, the description of the CLIPper algorithm 

in Lovci et al (2013) used in the ENCODE pipeline suggests that clusters 

are identified only within transcripts, which would then trivially 

localize all eCLIP peaks to transcript annotations.” 



 

We agree with the reviewer that the eCLIP peaks are in fact localized to the transcript regions. 

While the eCLIP peaks does show some overlap with previous transcript annotations such as 

TFBS, DHS, and enhancer regions, 47% of the eCLIP peak annotations do not intersect any of 

the previous ENCODE2 annotations and are unique to the RBP regulome. To illustrate this point 

better, we have modified our Figure 2 in the main figure pack, and extracted panel A, shown below 

as Figure R-2A. 

 

Figure R-2A. Updated panel of Figure 2 showing eCLIP data as having a higher resolution than 

ChIP-Seq annotations, allowing for more accurate biological definitions of binding events. 

 
 

“Similarly, although the 'RBP regulome' appears smaller than that for 

TFs, it is unclear whether this is simply because the average peak size 

for eCLIP is significantly smaller than the average CHIP-seq peak due 

to differences in method and peak callers (likely, as most known RBP and 

TF motifs are of similar sizes).” 

 

We also agree with the reviewer that the nature of eCLIP data is different than that of the TFs, a 

problem that stems from the differnce in eCLIP vs ChIP-Seq technologies. The resolution of ChIP-

Seq is within +/- 300bp while eCLIP aims to give a single nucleotide resolution. Our updated 

Figure 2 shows that the average peak length of RBPs from eCLIP is much smaller than that of 

TFs from ChIP-Seq, and therefore provide a more accurate region of binding of RBPs. We also 

remove the comparison between the total coverage of TFs vs RBPs since we agree with the 

reviewer that it is an unfair comparison. Figure R.XXX below shows a boxplot comparing eCLIP 

and ChIP-Seq annotations. 

 

Figure R.XXX. Boxplots of relative average size of peaks (bp) between eCLIP and ChIP-Seq. 



 
 

“One major concern appears to be whether the observed results are 

reflective of true biology or simply artifacts of various algorithms.” 

 

We show now that RBP binding sites given by eCLIP are a higher resolution than TFBS, and 

therefore are more reflective of the true biology of binding proteins. In our analysis of scoring 

variants, we only rely on eCLIP annotations, and therefore minimize potential artifacts compared 

to scoring methods relying on annotations from ChIP-Seq. We believe one of RADAR’s strengths 

is its usage of high quality eCLIP data to explore an accurate representation of the RBP regulome. 

 

 

-- Ref2.1 – General comments – 

Reviewer’ comment: 

 One major question regards the weighting of eCLIP binding 

sites. The eCLIP data appears to contain not only narrow 

binding proteins, but also broad binding or coating proteins 

(such as POLR2G 

https://www.encodeproject.org/experiments/ENCSR820WHR/). 

Perhaps because of this, the number of significant peaks 

appears to range dramatically between datasets, from less 

than a hundred to tens of thousands. Similarly, knockdown of 

some proteins which are essential cause dramatically more 

gene expression changes than others. It is unclear from the 

manuscript how these are differently weighted in the end, 

and thus whether RADAR is simply reflecting predictions of a 

small number of broadly binding RBPs. 

https://www.encodeproject.org/experiments/ENCSR820WHR/


Author’s response: 

We thank the reviewer for the comments and address the comments in a point by point fashion 

below: 

“The eCLIP data appears to contain not only narrow binding proteins, but 

also broad binding or coating proteins (such as POLR2G 

https://www.encodeproject.org/experiments/ENCSR820WHR/). Perhaps 

because of this, the number of significant peaks appears to range 

dramatically between datasets, from less than a hundred to tens of 

thousands.” 

 

We agree with the reviewer that the large variation in the number of binding peaks could 

potentially bias the results obtained in our analysis. However, we believe that, to the best of our 

knowledge, the eCLIP binding peaks are currently of the highest quality data in determining where 

RBPs will bind. In Figure R.XXX below we show boxplots of the number of binding peaks relative 

to the different CLIP methods. In particular, we can see that eCLIP provides the lowest variance 

in the number of binding peaks. To further minimize artifacts from the eCLIP data, we only select 

the binding peaks with a score of 1000, which are considered to be the most significant peaks. 

We remove any peak that has a low score (200), in hopes to remove any peaks that may be false 

positives. 

 
 

”Similarly, knockdown of some proteins which are essential cause 

dramatically more gene expression changes than others.” 

https://www.encodeproject.org/experiments/ENCSR820WHR/


 

We agree with the reviewer that some proteins that are knocked down result in greater changes 

than others. Variants falling in peaks of an RBP that are linked to genes showing high 

expression change after that RBP is knocked down are currently weighed higher than those 

variants falling in regions not linked to genes with significant changes. Therefore, it is 

appropriate to weigh a variants score higher when they fall in regions with more significant 

changes in expression after KD.  

 

Figure R.XXX. Summary of the KD data. 

 

“It is unclear from the manuscript how these are differently weighted 

in the end, and thus whether RADAR is simply reflecting predictions of 

a small number of broadly binding RBPs.” 

 

When giving a weight to the scores that rely on the eCLIP peaks, we incorporate the Shannon 

entropy as a function of the value f in our manuscript. The value of f is defined to be: 

 

# of 1KG variants in an RBP’s peaks / # of genome-wide 1KG variants 

 

This value of f therefore takes into account the length effect of different RBPs. 

 

Overall, while it is true that different RBPs could have different number of peaks, the eCLIP 

peaks are currently the highest quality data for representation of RBP binding sites, and 

therefore we take variations in the number of peaks between RBPs to be reflective of biology 

rather than artifact. 


	HIGHLIGHTS IN YELLOW ARE CURRENTLY IN PROGRESS
	-- Ref1.0 – General comments –
	-- Ref1.1 – General comments –
	-- Ref1.2 – General comments –
	-- Ref1.3 – General comments –
	-- Ref1.4 – General comments –
	-- Ref1.5 – General comments –
	-- Ref1.6 – General comments –
	-- Ref2.0 – General comments –
	-- Ref2.1 – General comments –

