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Abstract  
Our molecular-level understanding of how genomic variants relate to brain disorders is limited.  
Addressing this challenge, the PsychENCODE consortium has generated ~5,500 genotype, 
transcriptome, chromatin, and single-cell datasets from 1,866 individuals and, by uniformly 
processing and analyzing them together with publically available data, has developed a 
comprehensive resource for the adult brain (available via Adult.PsychENCODE.org). In 
particular, we deconvolved the gene expression of bulk tissue using single-cell data, finding that 
differences in the proportions of cell types explain >85% of the cross-population variation 
observed. Moreover, using chromatin and Hi-C data from reference prefrontal-cortex samples, 
we found ~79,000 brain-active enhancers and linked them to genes and transcription factors in 
an extended regulatory network. We identified ~2.5M eQTLs (comprising ~238K linkage-
disequilibrium-independent SNPs) and many additional QTLs associated with chromatin, 
splicing and cell-type-proportion changes. We, also, leveraged our QTLs, Hi-C data and 
regulatory network to connect more genes to GWAS variants for psychiatric disorders than 
possible before (e.g., 304 for schizophrenia). Finally, we developed a deep-learning model 
embedding the regulatory network in a framework connecting genotype to observed traits. Our 
model achieves a ~6X improvement in disease prediction over an additive model, highlights key 
genes for disorders, and allows imputation of missing transcriptome information from genotype 
data alone. 

  
Introduction 
Disorders of the brain affect nearly one fifth of the world’s population (1). Decades of research 
has led to little progress in our fundamental understanding of the molecular causes of 
psychiatric disorders. This contrasts with cardiac disease, for which lifestyle and 
pharmacological modification of environmental risk factors has had profound effects on 
morbidity, or cancer, which is now understood to be a direct disorder of the genome (2-5). 
Although genome-wide association studies (GWAS) have identified many genomic variants 
associated with psychiatric disease risk, for the vast majority we have little understanding of the 
molecular mechanisms affecting the brain (6). 
 
To this end, a number of studies have begun to elucidate the molecular steps on the path from 
genomic alteration to risk. For instance, the Psychiatric Genomics Consortium (PGC) has 
recently identified 142 GWAS loci associated with schizophrenia (7). Many of these lie in non-
coding regions (7), suggesting roles in gene regulation. Other consortia have annotated non-
coding regions using expression quantitative-trait loci (eQTLs) from the Genotype-Tissue 
Expression (GTEx) project and enhancers from the ENCODE and Epigenomics Roadmap 
projects. However, none of these projects have specifically tailored their efforts toward the brain. 
The initial work focusing on identifying brain-specific genomic elements has provided greater 
insight into brain-specific functional genomics (8, 9), but could be enhanced with larger sample 
sizes from both healthy and diseased samples. Moreover, many new assays for functional 
elements have been recently developed, such as Hi-C and single-cell sequencing, which have 
yet to be fully integrated with brain genomics data, at scale (10-13).  
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Hence, the PsychENCODE Consortium has generated a large-scale dataset for providing 
insights into the adult human brain and psychiatric disorders, including data derived through 
genotyping, bulk and single-cell RNA-seq, ChIP-seq, ATAC-seq, and Hi-C using brains from 
1866 individuals (14). All raw and uniformly processed data at both tissue and single-cell level 
have been placed into a central, publically available resource for brain functional genomics, that 
also integrates relevant re-processed data from other related projects, including ENCODE, 
CommonMind (CMC), GTEx, Epigenomics Roadmap, with nearly ~12,000 data samples in total. 
By leveraging this resource, we were able to identify functional elements and QTLs specific to 
the adult brain, including novel psychiatric GWAS and gene linkages. Moreover, we combined 
these elements to build an integrated deep-learning model. This tool can utilize the richly 
structured data of the resource to identify interactions between genotype and molecular 
phenotypes at multiple layers, as well as predict high-level traits.  
 

Resource construction  
We designed the resource Adult.PsychENCODE.org to provide coherent structure to a large 
amount of data on brain functional genomics (1). Broadly, it organizes data hierarchically, with a 
large base of raw data files (many of which have restricted access, such as individual 
genotyping and raw next-generation sequencing of transcriptomics and epigenomics), a middle 
layer of uniformly processed and easily shareable results (such as open chromatin regions and 
gene expression quantifications), and a compact cap that consists of an integrative model 
based on imputed regulatory networks and QTLs. As shown in Fig. 1, to build the base layer we 
included all the adult data from PsychENCODE (~5,500 datasets derived from 1,866 individual 
brains) and merged these with relevant data from ENCODE, CMC, GTEx, Roadmap, and recent 
single-cell studies (~5,000 additional datasets) (11, 13). These data cover a representation of 
phenotypes and psychiatric disorders including Schizophrenia (SCZ), Bipolar (BPD), Autism 
Spectrum Disorder (ASD). Furthermore, the PsychENCODE project developed a specific 
"reference brain" project on adult prefrontal cortex (PFC) utilizing many matched assays on the 
same set of brain tissues, which we used (below) to develop an anchoring annotation (15). 
 

Transcriptome analysis: bulk and single-cell  
To identify the genomic elements exhibiting transcriptional activities specific to the brain, we 
used the ENCODE pipeline to uniformly process RNA-seq data from PsychENCODE, GTEx and 
Roadmap. Using these data, we identified a wide variety of interpretable brain functional 
elements, such as non-coding regions of transcription, and sets of differentially expressed and 
co-expressed genes - e.g., 12,080 genes were transcribed in the brains of 95% of the 
individuals surveyed and over 16,000 protein-coding and 9,000 non-coding genes were 
detected in total (15, 16). 
 
Brain tissues are composed of a variety of cell types, including neuronal and non-neuronal cells. 
Previous studies have suggested that gene expression changes at the tissue level may be 
associated with changing proportions of basic cell types (17-21). However, studies have not 
systematically revealed how differing cell types can quantitatively contribute to population-level 
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expression variation. Here, we address this question for expression over our cohort of 1,866 
individuals. 
  
We used two complementary strategies. First, we used the standard pipeline to uniformly 
process single-cell RNA-seq data in PsychENCODE, in conjunction with a number of other 
single-cell studies on the brain (11, 13), in order to assemble a list of brain cell types for the 
project. This includes previously identified neuronal types, major non-neuronal types, and a 
number of additional cell types involved in development (15). The results constitute a matrix, C 
of expression signatures, mostly concordant with what has been published (Fig. S2.4 and 
Conclusion). A number of genes had expression levels varying more substantially across these 
cell types than they did across individuals in a population (e.g., dopamine receptor DRD3, Fig. 
2A). This implies that the changes in bulk expression can readily result from cell fraction 
variations. 
  
To explore this further, we used a second strategy: an unsupervised analysis to identify the 
primary components of bulk expression variation as they relate to cell types. We decomposed 
the bulk gene-expression matrix, B from our resource using non-negative matrix factorization 
(NMF), B≈VH, and then determined whether the top components capturing the majority of 
covariance (NMF-TCs, columns of V) were consistent with the single-cell signatures (Fig. 2B 
and C) (15). We found that a number of NMF-TCs highly correlated with neuronal, non-
neuronal, and development-related cell types, demonstrating that an unsupervised analysis 
derived solely from bulk data roughly matches the single-cell signatures, partially corroborating 
them. 
  
We then tried to understand how variation in proportions of cell types contributes to variation in 
bulk expression. In particular, we de-convolved the expression matrix of tissue, B using the 
single-cell signatures, C to estimate the cell-fractions W, solving the equation B≈CW (15) (Fig. 
2B). As validation, our estimated fractions of NEU+/- cells matched the experimentally 
determined fractions from the reference brain samples (Median error = 0.04, Fig. S2.9). We also 
compared our results with previous deconvolution methods (15). Overall, we found that single-
cell expression signatures could explain much of the population-level variation (Fig. 2D, i.e., 
across tissue samples from different individuals 1-||B-CW||2/||B||2>85%) (15). 
 
Finally, we found that cell-fraction changes were associated with different observed phenotypes 
and disorders (Fig. 2E, S2.6 and S2.7). For example, particular excitatory and inhibitory neurons 
exhibited different fractions between male and female samples (i.e., Ex3 and In8). The fraction 
of Ex3 was also reduced in ASD (p=0.0077), where non-neuronal cells (e.g., oligodendrocytes) 
were represented in greater abundance. Another interesting association was with age. In 
particular, the fractions of neuronal types Ex3 and Ex4 significantly increased with age; by 
contrast, some non-neuronal types (e.g. oligodendrocytes) decreased (Fig. S2.8). These 
changes are potentially associated with differentially expressed genes. For example, 
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Somatostatin (SST) expression decreases with age whereas its promoter methylation 
increases; other genes (e.g. EGR1 and CP) exhibit different trends (Figs. 2F, S2.10 and S2.11) 
(15).  
 

Enhancers 
Using an approach consistent with ENCODE, we used chromatin modification signals to identify 
enhancers active in the brain (15). We based this on the reference brain (see above), 
supplemented by the DNase and ChIP-seq data of the same brain region from Roadmap 
Epigenomics. Overall, we annotated a reference set of 79,056 enhancers active in PFC, 
enriched in H3K27ac and depleted in H3K4me3 (Fig. 3A). 
  
Assessing the variability of enhancers across individuals and tissues is more difficult than 
performing the analogous comparison for gene expression. Not only does the chromatin signal 
change across the population, but the boundaries of enhancers grow and shrink, sometimes 
disappearing altogether (Fig. 3A). To investigate chromatin variability across the population, we 
uniformly processed the H3K27ac data from PFC, temporal cortex (TC), and cerebellum (CB) 
on a cohort of 50 individuals (15). Aggregating ChIP-seq data across the cohort resulted in a 
total of 37,761 H3K27ac "peaks" (enriched regions) in PFC, 42,683 in TC, and 26,631 in CB -- 
each of them present in more than half of the population. Comparing aggregate sets for these 
three brain regions, the PFC was more similar to TC than CB (~90% vs 34% overlap in 
H3K27ac peaks), consistent with previous reports (22). 
  
We also examined the overlap of the reference brain enhancers with H3K27ac in each of the 
individuals. As expected, not every active enhancer in the reference annotation was active in 
every individual in the cohort. In fact, on average ~70% ± 15% (~54,000) of the enhancers in the 
reference brain were active in another individual in the cohort (Fig. 3B). As expected, only a 
core set of reference enhancers was ubiquitously active in every person, with a larger fraction 
(~68%) being active in more than half of the population. To estimate the total number of 
enhancers in PFC, we calculated the cumulative number of active regions across the cohort 
(Fig. S3.2). This number increased dramatically for the first 20 individuals sampled, but 
saturated at the 30th. Thus, we hypothesize that pooling the identified PFC enhancers from 30 
individuals is sufficient to cover nearly all potential enhancers in PFC, estimated at ~120,000. 
  

Consistent comparison: transcriptome and epigenome  
As we uniformly processed the transcriptomic and epigenomic data across PsychENCODE, 
ENCODE, GTEx, and Roadmap datasets, we could compare the brain to other organs in a 
consistent fashion and also to compare across transcriptome and epigenome. We tried several 
approaches, including PCA, t-SNE, and reference component analysis (RCA) for an appropriate 
comparison. Although popular, PCA de-emphasizes local structure and can be easily influenced 
by outliers; in contrast, t-SNE preserves local relationships but “shatters” global structure (15). 
RCA is a compromise: it projects gene expression in an individual sample against a reference 
panel, and then reduces the dimensionality of the projections. 
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For gene expression, our comparison revealed that the brain separates from the other tissues in 
the first component (Fig. 3E). Inter-tissue differences were larger than intra-tissue ones (Fig. 
S4.1-4). A different picture emerged for chromatin: comparison showed that the chromatin 
levels at all regulatory positions were, overall, less distinguishable between brain and other 
tissues (Fig. 3C) (15). At first glance, this is surprising as one expects great differences in 
epigenetics between tissues. Note, however, our analysis compares chromatin signals over all 
non-coding regulatory elements from ENCODE (including enhancers and promoters), which is 
consistent with our expression comparison across all protein-coding genes (Fig. 3F vs. 3C). The 
total number of regulatory elements is much larger than brain-active enhancers (~1.3M vs. 
~79K), so there are proportionately fewer brain-active regulatory elements than protein-coding 
genes (6% vs. 60%).  
 
Our analysis focused on inter-tissue differences in annotated regions (i.e., genes, promoters, 
and enhancers). However, in addition to the canonical expression differences in protein-coding 
genes, we also found differences in unannotated non-coding and intergenic regions. In 
particular, testes and lung have the largest amount of transcriptional diversity overall for protein-
coding genes (i.e., the most genes transcribed, Fig. 3D); however, when we shift to unannotated 
regions, brain tissues, such as cortex and cerebellum, now have a greater extent of transcription 
than any other tissue. 
 

QTL analysis  
We used the PsychENCODE data to identify QTLs affecting gene expression and chromatin 
activity. In particular, we calculated expression, chromatin, splicing-isoform, and cell-fraction 
QTLs (eQTLs, cQTLs, isoQTLs and fQTLs, respectively). For eQTLs, we adopted a standard 
approach, adhering closely to the established GTEx pipeline. In PFC, we identified ~2.5M cis-
eQTLs (~238K independent SNPs after linkage-disequilibrium (LD) pruning) and ~33K eGenes 
(including non-coding ones) with FDR<0.05 (Fig. 4). We found ~1.3M SNPs involved in these 
from 5,297,875 tested in a 1 Mb window around genes. This conservative estimate has a 
substantially larger number of eQTLs and eGenes than previous studies and reflects the large 
PsychENCODE sample size (15). The number of eGenes, in fact, is approaching the total 
number of genes expressed in brain. We evaluated the similarity of GTEx and CMC eQTLs to 
our eQTL set using the π1 statistic (23), finding a high replication rate (Fig. 4A). We also applied 
the same QTL pipeline to splicing, identifying ~160K isoQTLs (15). 
 
For cQTLs, the situation is more complicated: no established methods exist for calculating these 
on a large scale, although there have been a variety of previous efforts (24, 25). To identify 
cQTLs, we focused on our reference set of enhancers and then examined how H3K27ac 
chromatin activity varied in these across 292 individuals (Fig. 4B) (15). Overall, we identified 
~2,000 cQTLs in addition to the 6,200 identified using individuals from the CMC cohort (26). 
 
Next, we determined if any SNPs were associated with changes in the relative fractions of cell 
types across individuals (fQTLs). In total, we identified 1672 distinct SNPs constituting 4199 
fQTLs (Fig. S5.3). Of these, the proportions of excitatory neuron Ex4 and Ex5 were associated 
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with the most. After factoring out these cell-type differences, we identified 200,729 SNPs 
significantly associated with gene expression changes across individual tissues; these "residual 
trans-eQTLs" represent variant-expression associations largely unexplained by changing 
proportions of cell types. 
 
To further dissect the associations between genomic elements and the QTLs, we intersected 
our QTL lists with each other and a set of genomic annotations (Fig. 4D). As expected, eQTLs 
tended to be enriched at promoter regions, and cQTLs, at enhancer and TF-binding regions; 
fQTLs were spread over many different elements. Also, an appreciable number of eQTLs were 
enriched on the promoter of a different gene than the one regulated, suggesting e-promotor 
activity (27). For the overlap among different QTLs, we expected that most cQTLs, isoQTLs and 
fQTLs would be a subset of the much larger number of eQTLs; somewhat surprisingly, an 
appreciable number of these did not overlap (Fig. 4C). We calculated π1 statistics to evaluate 
the sharing among eQTLs with other QTLs. We found that the eQTL sharing with cQTLs was 
the highest while that with fQTLs was lowest (0.89 vs 0.11). Moreover, the shared cQTLs often 
suggested that the expression-modulating function of an eQTL derived from chromatin changes 
(for example for the MTOR gene, Fig. 4C). Finally, there were 119 SNPs that functioned as 
QTLs in more than 3 different capacities (e.g. as eQTLs, cQTLs and isoQTLs), which we 
dubbed multi-QTLs.  
 

Regulatory networks 
We next integrated the genomic elements described above at the regulatory-network level. We 
created a network revealing how the genotype and regulators relate to target gene expression. 
We first processed a Hi-C dataset for adult brain in the same reference samples used for 
enhancer identification, providing a physical basis for interactions between enhancers and 
promoters (Fig. 5A) (10, 15). In total, we identified 2,735 topologically associating domains 
(TADs) and ~90K enhancer-promoter interactions (Fig. S6.1). Our adult Hi-C dataset 
substantially differed from an earlier fetal-brain Hi-C dataset (e.g. only ~31% of the interactions 
were detected in the fetal dataset) (10), highlighting the importance of the developmental stage 
for chromatin (Fig. S6.2 and S6.3). 
  
As expected, ~75% of enhancer-promoter interactions occurred within the same TAD, and 
genes with more associated enhancers tended to have higher expression (Fig. 5B and S6.1). 
We next integrated the Hi-C data with the eQTLs and isoQTLs. Surprisingly, QTLs involving 
SNPs distal to the eGene but linked by Hi-C interactions showed significantly stronger 
associations than QTLs involving SNPs on the exons and promoters of the eGene (Fig. 5C and 
S6.4). 
  
In addition to Hi-C and QTLs, we tried to predict further regulatory relationships based on 
directly relating the activity of transcription factors (TFs) to target genes (Fig. 5A). In particular, 
for each potential target of a TF, we required that (i) it has a "good binding site" (matching the 
TF's motif) in open chromatin regions near a gene (either in promoters or brain-active 
enhancers) and that (ii) it has a high coefficient in a regularized, elastic-network regression 
relating TF activity to target expression (15). Overall, we found the subset of interactions 
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meeting these criteria could predict the expression of 8,930 genes with MSE< 0.05 (mean-
square error, Fig. S6.5). For example, we could predict the expression of the ASD risk gene 
CHD8 with MSE=0.034 (15). Moreover, the subset of these interactions involving TFs binding to 
enhancers, necessarily instantiated a third set of putative enhancer-to-gene links. 
 
Collectively, we generated a full regulatory network, linking enhancers, TFs, and target genes. It 
contained ~43k proximal linkages (TF-to-target gene via promoters), and ~37k distal linkages 
(enhancer-target-gene) that are supported by at least two of the three evidence sources (Hi-C, 
QTLs, or activity relationships)(15). 
 

Linking GWAS variants to genes 
We used our above regulatory network to connect non-coding GWAS loci to potential genes. 
We exploited all three possible evidence sources including Hi-C, QTLs, and activity 
relationships. For the newly identified 142 schizophrenia GWAS loci (28), we identified a set of 
1,097 putative schizophrenia-associated genes, covering 119 loci (hereby referred as "SCZ-
genes," Fig. 5E). 304 of these constitute a “high-confidence” set supported by more than two 
evidence sources (e.g., QTL and Hi-C, Figs. 5D-F and S7.1), exemplified by CACNA1C, which 
is regulated by multiple neuronal TFs via enhancers. The SCZ-genes represent a substantial 
increase from the previously reported 22 genes across 19 loci based on a smaller QTL set (8, 
28) and also a much larger number than can be linked by simple genomic proximity (176, Fig. 
5D). The majority of SCZ-genes were not in linkage disequilibrium with index SNPs (734 genes 
[~66%] with r2<0.6, Fig. S7.1), consistent with previous observations that regulatory 
relationships often do not follow linear genome organization (10).  
  
We then looked at the characteristics of the SCZ-genes. As expected, they shared many 
characteristics with known schizophrenia-associated genes. In particular, they were enriched for 
genes intolerant to loss-of-function mutations (28), translational regulators, cholinergic 
receptors, calcium channels, synaptic genes, and genes that are known to be differentially 
expressed in schizophrenia (Fig. S7.1). Next, we integrated SCZ-genes with single-cell profiles 
and found that they are highly expressed in neurons with the highest expression in excitatory 
neurons (Fig. 5G).  
 
Finally, in a more general context, we found aggregate associations between our eQTLs and 
many brain-disorder GWAS variants, not just those for schizophrenia. In particular, compared to 
the GWAS-SNPs for non-brain related disorders, we found more significant enrichment for cis-
eQTL SNPs and GWAS SNPs for many brain disorders (Fig. 4E). We find a similar, and, in fact, 
stronger enrichment for our brain-active enhancers (Fig. 4E). 
  

Integrative deep-learning model 
The full interaction between genotype and phenotype involves many levels, beyond those 
encapsulated in the regulatory network. We addressed this by embedding our regulatory 
network into a larger multilevel model. For this purpose, we developed an interpretable deep-
learning framework, a Deep Structured Phenotype Network (DSPN) (15). This model combines 
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a Deep Boltzmann Machine architecture with conditional and lateral connections derived from 
the gene regulatory network. As shown in Fig. 6A, traditional classification methods such as 
logistic regression predict phenotype directly from genotype, without inferring intermediates 
such as the transcriptome. In contrast, the DSPN (Fig. 6B) is constructed via a series of 
intermediate models that add layers of structure; these include intermediate molecular 
phenotypes (i.e., gene expression and chromatin state) and defined groupings of these (cell-
type marker genes and co-expression modules), multiple higher layers for inferred groupings 
(hidden nodes), and a top layer for observed phenotypes (psychiatric disorders and other traits). 
Finally, we used special types of connectivity, including sparsity and lateral, intra-level 
relationships, to integrate our knowledge of QTLs, regulatory networks, and co-expression 
modules from sections above. By using a generative architecture, we ensure that the model is 
able to impute intermediate phenotypes, as well as provide forward predictions from genotypes 
to observed phenotypes.  
 
Using the full model with the genome and transcriptome data provided, we demonstrated that 
the extra layers of structure in the DSPN allowed us to achieve substantially better prediction of 
diseases and traits than traditional additive models; further, the transcriptome carries additional 
information, which the DSPN is able to extract (Fig. 6D). For instance, a logistic predictor was 
able to gain a 2.4X improvement when using the transcriptome vs. the genome alone (+9.3% for 
transcriptome vs. +3.8% for the genome, above a 50% random baseline). In comparison, the 
DSPN was able to gain a larger 6X improvement (+22.9% vs. +3.8%), which may reflect its 
ability to incorporate non-linear interactions between intermediate phenotypes. Moreover, the 
DSPN also allows us to perform joint inference and imputation of intermediate phenotypes (i.e., 
transcriptome and epigenome, Fig. S8.1) and observed traits from just genotype alone, 
achieving a ~3.4X improvement over a logistic predictor in this context (Fig. 6D). These results 
demonstrate the usefulness of even a limited amount of functional genomic information for 
unraveling gene-disease relationships and show that the structure learned from such data can 
be used to make more accurate predictions of observed traits even when absent. 
  
We transformed our results to the liability scale for comparison with narrow-sense heritability 
estimates (Fig. 6D) (15). Prior studies have estimated that common SNPs explain 25.6%, 
20.5%, and 19% of the genetic variance for SCZ, BPD and ASD, respectively (29). These may 
be taken as upper bounds for additive predictive models, given unlimited common-variant data; 
by contrast, non-linear predictors can potentially exceed these limits. Our best liability scores 
(based on just the genotype at QTL-associated variants) are substantially below these bounds, 
implying that additional data will be beneficial. In contrast, the variance explained by the full 
DSPN model exceeds that explained by common SNPs (32.8%, 37.4%, and 14.4%, 
respectively for the three conditions), possibly reflecting the influence of rare variants and 
epistatic interactions; the degree to which this variance may be captured through improved 
imputation however is limited by the proportion of total variance in the imputed variables which 
is genetically determined (Fig. S8.2). 
  
A key aspect of the DSPN is its interpretability. In particular, we examined the specific 
connections learned by the DSPN between intermediate and high-level phenotypes. We 
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included known co-expression modules in the model (DSPN-mod) and examined which of these 
the DSPN prioritized, as well as new sets of genes associated with latent nodes that were 
uncovered at each hidden layer (Fig. S8.3 and Table S8.1) (15). We provide a full summary of 
the enrichment analysis for the prioritized modules and highlight some of the associations found 
using the schizophrenia model (Fig. 6C and S8.4). Overall, we show the modules prioritized by 
the DSPN were enriched for known SCZ and BPD GWAS variants (Fig. S8.5). In particular, 
among the highest schizophrenia-prioritized modules and higher-order groupings, we found 
enrichments for (i) glutamatergic-synapse pathway genes, (ii) calcium-signaling pathways and 
astrocyte-marker genes, and (iii) complement cascade pathway genes including C4A, C4B, and 
CLU -- confirming and extending previous analyses (30). Furthermore, for groupings prioritized 
for aging, we found enrichment in Ex4 cell-type genes and the specific gene NRGN (in a module 
associated with synaptic and longevity functions), both consistent with differential expression 
analysis (Fig. S8.4 and S2.10). 
 

Conclusion 
Here, we uniformly integrated PsychENCODE datasets with other datasets, developing a 
comprehensive resource for functional genomics of the adult brain. Overall, our study identified 
a set of eQTLs several fold greater than previous studies, achieving close to saturation for 
protein-coding genes. Our data are consistent with the stage and tissue specific nature of gene 
regulation, indicating that it will be valuable to profile different regions and developmental stages 
at similar scale. It also indicates that increasing individual sample size and quality of chromatin 
data, such as identifying enhancers via STARR-seq, will help with cQTLs. More fundamentally, 
one-dimensional fluctuations in chromatin signal reflect changes in three-dimensional changes 
in architecture and new metrics beyond cQTLs may need to be developed to measure 
chromatin variation better. In addition, some other epigenetic marks might exhibit 
distinguishable patterns in the brain, e.g. the methylation landscape. Likewise, inter-tissue 
expression comparisons might be boosted by including microRNAs. Nevertheless, using current 
approaches, we were able to identify over 300 high confidence SCZ risk genes, implicated by 
142 published genome wide significant loci and supported by at least two independent methods. 
This is more than an order of magnitude higher number of SCZ-genes than identified in previous 
studies, highlighting the power of our sample size and integrative approach. 
 
Another area for future development is single-cell analysis. In this study, we found that varying 
proportions of basic cell types (with different expression signatures) could explain a large 
fraction of expression variation across the human population. This assumes that expression 
signatures, at least for biomarker genes, are fairly constant over same cell types. Larger-scale 
single cell studies will allow us to examine this assumption in greater detail, perhaps quantifying 
and bounding environment-associated transcriptional variability. In addition, current single-cell 
techniques suffer from low capture efficiency; thus, it remains challenging to reliably quantify 
low-abundance transcripts (12, 31). This is particularly the case for specific cell sub-structures 
such as axons and dendrites (12).  
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Further, we envision how our DSPN deep-learning approach can be readily extendable to 
modeling genotype-phenotype relationships involving other kinds of intermediate phenotypes 
(e.g., from brain imaging); we can naturally embed new types of QTLs and phenotype-
phenotype interactions. Comparison of the variance explained in terms of liability when 
particular intermediate phenotypes are imputed versus known provides natural bounds on the 
variance in observed traits mediated by these phenotypes. Finally, although our focus has been 
on common SNPs, the DSPN may be capturing the effects of rare variants through their 
influence on intermediate phenotypes; the interpretable structure of the model may help identify 
such variants by their association with prioritized phenotypes and higher-order groupings. 
 
In summary, our integrative analyses here and with respect to the disease and developmental 
transcriptome (16, 32) demonstrate that functional annotation of gene regulatory elements is 
useful for unraveling molecular mechanisms in the brain. 
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Figures 

 
Figure 1. Comprehensive data resource for functional genomics in the adult brain. The 
functional genomics data generated by the PsychENCODE consortium (PEC) constitute a 
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multidimensional exploration across tissue, developmental stage, disorder, species, assay, and 
sex. From this larger corpus of PEC samples, we focused on adult datasets, integrated with 
those from consortia such as GTEx, the Roadmap Epigenomics Consortium, ENCODE, CMC 
and Human Brain Collection Core studies, and previously published single-cell transcriptomic 
data. The central data cube represents the results of this integration for the three dimensions of 
disorder, assay, and tissue, where only the numbers of datasets used in the current analysis are 
depicted. Projections of the data onto each of these three parameters are shown in graph form 
for assay and disorder, and in schematic form for the primary brain regions of interest. Assay: 
The bars represent datasets across a subset of the assay types, including RNA-seq (N = 2040 
PEC + 1632 uniformly processed GTEx samples), genotypes (N = 1362 PEC + 25 GTEx = 1387 
individuals matched to RNA-seq samples for eQTL analysis), scRNA-seq (N = 932 PEC + 3693 
external datasets), and H3K27ac ChIP-seq (= 408 PEC + 5 uniformly processed Roadmap 
samples). Disorder: The number of individuals under the control category include the 113 from 
GTEx and 926 from PEC, while individuals from PEC provide data on the remaining disorders of 
schizophrenia (SCZ, N = 558), bipolar disorder (BPD, N = 217), ASD (N = 44), and affective 
disorder (AFF, N = 8), resulting in a total of 1,866. Tissue: In this schematic, we focus on the 
datasets derived from three primary brain regions evaluated in our integrative study: the 
prefrontal cortex (PFC, N = 3521), the temporal cortex (TC, N = 2153), and the cerebellum (CB, 
N = 348). See supplement (15) and Adult.psychencode.org for more details. 

 
Figure 2. Deconvolution analysis of bulk and single-cell transcriptomics reveals cell 
fraction changes across the population. (A) Genes had significantly higher expression 
variability across single cells, sampled from different types of brain cells, than equivalent tissue 
samples, taken from a population of individuals. Left: dopamine gene, DRD3. (B) Top: the bulk 

tissue gene expression matrix (B, genes by individuals) can be decomposed by NMF into the 

product of two matrices: an NMF component matrix (V, genes by top NMF components; i.e., 
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NMF-TCs) and a component fraction matrix (H, top NMF components by individuals); i.e., 

B≈VH. Bottom: the bulk tissue gene expression matrix B can be also deconvolved by the single-

cell gene expression matrix (C, genes by cell types) to estimate the cell fractions across 

individuals (the matrix, W); i.e., B≈CW. Three major cell types were neuronal cells (blue), non-

neuronal cells (red), and developmental (dev) cells (green), as highlighted by columns groups in 

C (also row groups in W). (C) The heatmap shows the Pearson correlation coefficients of gene 
expression between the NMF-TCs and single-cell signatures (for N=457 biomarker genes, see 
(15)). For example, NMF-7 is highly correlated with the Ex3 cell type (r=0.66). (D) The estimated 
cell fractions can explain >85% of bulk tissue expression variation across the population; i.e., 1-
||B-CW||2/||B||2>0.85. (E) The cell fractions changed across genders (just control samples) and 
brain disorders. In particular, the neuronal cell types (e.g. In8) had a significantly higher fraction 
in female than male samples (p<1.2e-4). Disorder types that showing significant changes 
compared to control samples after accounting for age distributions are labeled (**). For 
example, Ex3 neuronal cells and oligodendrocytes had lower fractions in ASD than other cell 
types. (F) Across age, changing cell fractions (for Ex3), gene expression (for SST) and promoter 
methylation level (median level, for SST) are shown. Note, the excitatory neuronal cell type Ex3 
had a significant increase with age (trend analysis p<6.3e-10). 

 
Figure 3. Comparative analysis for transcriptomics and epigenomics between brain and 
other tissues. (A) Chromatin features of the reference brain (purple dot) were used to identify 
active enhancers, located in the open chromatin regions (as manifest by ATAC-seq peaks), with 
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strong H3K27ac/H3K4me1 signal and low H3K4me3 signal. Enhancer activity varied among 
individuals, as indicated by the varying H3K27ac peaks at the enhancer region in the 
population. Each row corresponds to an individual in the cohort (green), with the gradient 
showing the normalized signal value for each peak (B) The overlap of individual H3K27ac peaks 
with reference brain enhancers in the population is shown as the Venn diagram. The histogram 
shows the varying percentage of H3K27ac peaks across individuals. (C) The tissue clusters of 
RCA coefficients (PC1 vs. PC2) for chromatin data of any potential regulatory elements are 
shown. Clusters of PsychENCODE samples (dark green ellipses), Roadmap Epigenomics brain 
samples (light green ellipses), and other non-brain tissues (magenta ellipses) are plotted. The 
reference brain is shown as the purple dot (same in E and F). Panels E and F are drawn 
similarly to D, but now for transcription rather than epigenetics. (E) The coefficients (PC1 vs. 
PC2) of RCA analysis for gene expression data of PsychENCODE samples are shown in dark 
green. The brain samples from GTEx are shown in light green, and other tissue samples are 
shown in magenta. (F) The center (cross) and ranges of different tissue clusters (dashed 
ellipses) are shown on an RCA scatterplot of (E). Finally, (D) The transcriptional diversity for 
coding (circle) and non-coding (triangle) regions among the tissue samples (inter-sample on x-
axis) is shown compared to the diversity on cumulative tissue samples (y-axis) for select tissue 
types including cerebellum, cortex, lung, skin, and testes, using PolyA RNA-seq data. 

 
Figure 4. Summary of QTLs in adult brain PFC. (A) Numbers of genes with at least one 
eQTL (eGenes) are shown compared to the sample size in different studies. The number of 
eGenes increased as the sample size increased. The eGenes of PsychENCODE is close to 
saturation for protein coding genes. The estimated replication π1 values of GTEx and CMC 
eQTLs versus PsychENCODE are 0.93 and 0.90 respectively (23). (B) Example of H3K27ac 
signal of individual brains in a representative genomic region showing largely congruent 
identification of regions of open chromatin. Region in the dashed frame represents a chromatin 
QTL; the signal magnitudes of individuals with a G/G or G/T genotype were lower than the ones 
with a T/T genotype. (C) Numbers of identified QTLs, associated elements (eGenes, enhancers, 
and cell types) and QTL SNPs are shown in the left table. *For cQTLs we only show the number 
of top SNPs for each enhancer. Overlap of eQTL, isoQTL, fQTL, and cQTL SNPs and overlap 
of eQTL and isoQTL eGenes are shown. Overlap numbers are shown in heatmaps while 
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overlap percentage are shown with pies. Sharing of the QTLs vs. eQTLs are shown using π1 
values in the orange bar plot indicating the highest sharing is between cQTLs vs. eQTLs. An 
example on the right for the MTOR gene shows the overlapping (based on co-localization 
analysis) of eQTL SNPs for expression of the gene and cQTL SNPs for the H3K27ac signal on 
an enhancer ~50kb upstream of the gene. Hi-C interactions demonstrate that the enhancer 
interacts with the promoter of MTOR, indicating that the cQTL SNPs potentially mediate the 
expression modulation manifest by the eQTL SNPs. (D) Enrichment of genomic regions 
annotations of QTLs is shown. (E) Brain disorder GWAS show stronger heritability enrichment in 
brain regulatory variants (eQTLs) and elements (enhancers) than non-brain disorder GWAS. 
ADHD, attention-deficit/hyperactivity disorder; T2D, type 2 diabetes; CAD, coronary artery 
disease; IBD, inflammatory bowel disease. 

 
Figure 5. Data integration and modeling predicts a gene regulatory network, linking 
additional GWAS genes for psychiatric disorders. (A) A full Hi-C data from adult brain 
reveals the large-scale structure of the genome, ranging from contact maps (top), TADs, and 
promoter-based interactions. We leveraged gene regulatory linkages involving TADs, TFs, 
enhancers, and target genes to build a full gene regulatory network consisting of ~150,000 Hi-C 
interactions, ~2.5 million eQTL-eGene linkages, ~211k TF-to-target and ~448k enhancer-to-
target-promoter linkages based on activity relationships. (B) We compared the number of genes 
(left y-axis, dotted line) and the normalized gene expression levels (right y-axis, boxes) with the 
number of enhancers that interact with the gene promoters. (C) QTLs that were supported by 
Hi-C evidence showed more significant P-values than those that were not. (D) The number of 
schizophrenia GWAS loci and their putative target genes (SCZ-genes) annotated by each 
assignment strategy. SCZ-genes with more than 2 evidence sources were defined as SCZ high-
confidence (high conf.) genes. The overlap between SCZ-genes defined by QTL associations 
(QTL), chromatin interactions (Hi-C), and activity relationships (Activity) is depicted in a Venn 
diagram at the bottom. (E) A gene regulatory network of TFs (cyan), enhancers (purple), and 
304 highly confident SCZ high-confidence genes (blue) as targets, based on TF activity 
linkages. A subnetwork including multiple neuronal TFs targeting the SCZ gene CACNA1C via 
enhancers is highlighted on the left. (F) Evidence depicting that GWAS SNPs that overlap with 
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CHRNA2 eQTLs also have chromatin interactions and activity correlations with the same gene. 
(G) SCZ-genes show higher expression levels in neuronal cell types (particularly excitatory 
neurons) than others cell types.  

 
Figure 6. Deep-learning model predicts genotype-phenotype relations and reveals 
intermediate molecular mechanisms. (A) The schematic outlines the model structures for 
Logistic Regression (LR), conditional Restricted Boltzmann Machine (cRBM), conditional Deep 
Boltzmann Machine (cDBM), and Deep Structured Phenotype Network (DSPN) models. Nodes 
are partitioned into four possible layers (L0-L3) and colored according to their status as (i) 
conditioning nodes visible during training and testing (light blue); (ii) nodes visible during training 
and visible or imputed during testing (dark blue); or (iii) hidden nodes (grey). (B) The DSPN 
structure is shown in further detail, with the biological interpretation of layers L0, L1, and L3 
highlighted. The gene regulatory network (GRN) structure learned previously (Fig. 5) is 
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embedded in layers L0 and L1, with different types of regulatory linkages and functional 
elements shown. (C) Shown are examples of associations found: model traces are shown for 
three co-expression modules and associated higher-order groupings prioritized by the DSPN 
schizophrenia model, along with functional annotations enriched at each level. Genes, 
enhancers, and SNPs associated with each module are shown. (D) The performance of 
different models is summarized, comparing performance (i) across models of different 
complexity, and (ii) using transcriptome vs. genome predictors, corresponding to with/without 
imputation for the DSPN (colors highlight relevant models for each comparison). Performance 
accuracy on a balanced sample is shown first, with variance explained on the liability scale 
shown in brackets. LR-gen and LR-trans are logistic models using the genotype and 
transcriptome as predictors respectively; DSPN-imput and DSPN-full are the DSPN model with 
imputed intermediate phenotypes (genotype predictors only) and fully observed intermediate 
phenotypes (transcriptome predictors) respectively. Differential performance of models is shown 
in terms of improvement above chance, for instance comparing LR-gen and DSPN-imput 
accuracy improves from 53.8% to 62.9%, which can be expressed as a 3.4X improvement 
above chance (+12.9% vs. +3.8%, blue). Corresponding improvements in liability variance 
scores are shown in brackets. Disorders are abbreviated as in the main text, and GEN=Gender, 
ETH=Ethnicity, AOD=Age of death. 
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This document provides an organized reference to support datasets, pipelines, and analyses associated 
with this study. It is presented in a parallel fashion to the main text. It is also connected to the main text 
through the major results presented in the form of main text figures – captions associated with main text 
figures point to relevant subsections within this supplement. In cases where the related supplementary 
section is not readily apparent, we note "see supp. section xyz” to refer to a specific section. 

Large datasets produced by the psychENCODE consortium include over 2,000 human brain samples for 
healthy controls and individuals afflicted by neuropsychiatric diseases. These include full genotyping, 
RNA-seq, ChIP-seq, and single-cell data. It also includes processed data such as expression QTLs and 
chromatin QTLs trait loci, enhancers that are active in different brain regions, in addition to differentially 
expressed genes, transcripts, and novel non-coding RNAs. These are also provided at the resolution of 
brain sub-regions, thereby providing valuable resources for investigating potential underlying factors for 
an array of psychiatric diseases. 

However, the very richness of this data introduces considerable challenges with respect to data 
organization. Our analyses rely on multiple methodologies, the details of which are difficult to include 
within the main text of this paper.  

The data resources may be organized into a pyramid-like structure, with large raw data files at the base, 
and more processed summary data organized at higher levels. The raw data files include datasets from 
PyschENCODE, ENCODE, CommonMind, GTEx, Epigenomics Roadmap, and others. These comprise 
RNA-seq expression quantification data, ChIP-seq signal track qualifications and peak identifications 
using ENCODE standard pipelines, in addition to private data such as imputed genotypes. Further up the 
pyramid, more readily human-interpretable data and descriptors populate the top. These more processed 
datasets include patient metadata and phenotypes (such as disease status), fully processed epigenomic 
signals and peaks, active enhancers, QTLs, differentially expressed genes and transcripts, and regulatory 
networks.  

With the aim of presenting data and results (including software packages) in an organized way, we have 
written about this study in roughly a hierarchical fashion. The main text lies at the top of this hierarchy 
and synthesizes everything in a broad manner. It refers to more detailed descriptions of our methods and 
datasets, as provided in this supplement. Raw data files, which lie at the bottom of the hierarchy (and 
which are hosted as online resources) form the bedrock from which our results are built.  
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S1. Supp. content to main text section 
"Resource construction" 
The PsychENCODE data covers a number of phenotypes on mental health. These include normal controls 
(n=1104), as well as schizophrenia (n=558), bipolar (n=217), autism spectrum disorder, (n=44), and 
affective disorder (n=8) (Fig. 1). There are 1246 males and 685 females. We integrated standard pipelines 
to uniformly process raw sequencing and genotyping data (Fig. S1.1). Details are provided in following 
Sections S2.1, S2.2, S3.1, S5.1, and S6.1-6.2. 
 

 

Fig. S1.1 - Integrated analysis pipeline of PsychENCODE. We used the standard pipelines from ENCODE and 
other large consortia to uniformly processed the raw sequencing data from PsychENCODE, including RNA-seq, 
ChIP-seq and Genotype, and identified functional genomic elements such as brain enhancers, expressed genes and 
eQTLs. We also processed other data types such as Hi-C and single cell and provided details on data processing in 
the following sections. As shown by this flowchart, we then performed the integrative modeling and analysis for 
functional genomic elements in adult brain. 
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S2. Supp. content to main text section 
"Transcriptome analysis” 
S2.1 Data processing 
Note that the data files for this section are described in detail in Section S9 (Resource website). 

S2.1.1 GTEx brain and other tissues 
We used several types of data from the GTEx version 7 dataset (GTEx Consortium, 2017). GTEx version 
7 contains RNA-seq and matching genotype data for 10 brain regions: anterior cingulate cortex, caudate 
nucleus, cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, nucleus 
accumbens, and putamen. We used the raw RNA-seq data to quantify the proportion of the transcribed 
non-coding genome. For eQTL calculations and weighted gene co-expression network analysis 
(WGCNA) analysis, we used individual trusted platform module (TPM) data, and renormalized it using 
probabilistic estimation of expression residuals (PEER) factors calculated in combination with 
PsychENCODE data. Further, for the eQTL calculations, we re-imputed the genotype data from the raw 
genotype calls using the pipeline described below to match the processing of the PsychENCODE data. 

We used data from GTEx7 (GTEx Consortium, 2017) to compare the brain transcriptome to that 
of other tissues. GTEx7 contains RNA-seq data from 34 other tissues. As above, we used the raw RNA-
seq data to quantify the proportion of transcribed non-coding regions. For WGCNA analysis, we used the 
individual TPM data, pre-normalized by the PEER factors calculated in GTEx7 to identify modules in 
individual tissues, and the median TPM data by tissue to identify modules across tissues. 

 

 

Fig. S2.1 Dendrogram of clustering analysis for identifying outliers of gene expression. An example of 
removing 4 outlier samples from a UCLA-ASD study according to hierarchical clustering of the gene expression data. 
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Table S2.1 Summary of dataset. This table provides the number of samples incorporated into the integrative 
analyses in this manuscript, categorized by study, the disease status of the individual from which the sample is 
acquired (CTL = Control, SCZ = Schizophrenia, BPD = Bipolar Disorder, ASD = Autism Spectrum Disorder, AFF = 
Affective Disorder), the source tissue(s), and the downstream analyses conducted as a part of this manuscript. 

Study 
Disease 

Brain Tissue(s) Assay Analyses done No. of 
Samples 

Roadmap CTL 
Dorsolateral Prefrontal Cortex 

ChIP-seq: 
H3K27ac 

Chromatin RCA 1 

 CTL 
Caudate nucleus, Cingulate gyrus, 
Hippocampus, Cortex 

ChIP-seq: 
H3K27ac 

Chromatin RCA 4 

 CTL 
Non-brain tissues: Adipose Tissue 
= 2, Adrenal Gland = 8, Adipose 
Tissue = 2, Blood = 12, Blood 
Vessel = 9, Bodily Fluid = 6, Bone 
Element = 9, Brain Cell = 9, 
Breast = 1, Connective Tissue = 
12, Embryo = 22, Epithelium = 1, 
Esophagus = 5, Extraembryonic 
Component = 1, Gonad = 2, Heart 
= 9, Intestine = 6, Kidney = 3, 
Large Intestine = 15, Limb = 11, 
Liver = 9, Lung = 12, Lymph 
Node = 9, Mammary Gland = 9, 
Mouth = 3, Musculature of Body 
= 11, Pancreas = 11, Penis = 11, 
Placenta = 1, Prostate Gland = 25, 
Skin of Body = 15, Small Intestine 
= 3, Spinal Cord = 1, Spleen = 4, 
Stomach = 7, Thymus = 2, 
Thyroid Gland = 7, Urinary 
Bladder = 1, Uterus = 4, Vagina = 
3, Vein = 3 

ChIP-seq: 
H3K27ac 

Chromatin RCA 294 

ENCODE CTL 
Frontal Cortex 

DNase-seq TF imputation 2 

GTEx CTL Frontal Cortex (BA9) RNA-seq QTL analyses, Gene 
Expression RCA 138 

 CTL Cerebellum RNA-seq Gene Expression RCA 
298 

 CTL Amygdala = 99,  
Anterior Cingulate Cortex = 114, 
Caudate (basal ganglia) = 157, 
Cortex = 148, 
Hippocampus = 122, 
Hypothalamus = 121, Nucleus 
Accumbens (basal ganglia) = 144, 
Putamen (basal ganglia) = 118, 
Spinal cord (cervical c-1) = 87, 
Substantia Nigra = 86 

RNA-seq Gene Expression RCA 
1196 

 CTL Frontal Cortex (BA9) Genotypes QTL analyses 
25 
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 CTL All non-brain tissues (GTEx V7) RNA-seq Weighted Gene Co-expression 
Analysis (WGCNA) 11688  

 CTL Non-brain tissues (GTEx V6p): 
Adipose - Visceral (Omentum) = 
110, Esophagus - 
Gastroesophageal Junction = 166, 
Esophagus - Mucosa = 328, 
Esophagus - Muscularis = 282, 
Liver = 128, Lung = 350, Nerve - 
Tibial = 333, Pancreas = 194, 
Spleen = 120, Uterus = 39 

RNA-seq Gene Expression RCA 
2050 

Published 
Methylation 
data: Jaffe et 
al., 2016 

CTL Dorsolateral Prefrontal Cortex 
(BA46/9) 

DNA Methylation 
Microarray studies 

Methylation Analysis 
255 

PEC: 
BrainSpan 

CTL Dorsolateral Prefrontal Cortex RNA-seq eQTL 
6 

Published 
Single-cell: 
Lake et al., 
2016 

CTL Dorsolateral Prefrontal Cortex 
(BA10) 

scRNA-seq Bulk Tissue Deconvolution 
and Decomposition, fQTL 575 

 CTL Temporal Cortex (BA21, BA22, 
BA41) 

scRNA-seq Bulk Tissue Deconvolution 
and Decomposition, fQTL 1771 

 CTL Intermediate Frontal Cortex (BA8) scRNA-seq Bulk Tissue Deconvolution 
and Decomposition, fQTL 490 

 CTL Primary Visual Cortex X1 (BA17) scRNA-seq Bulk Tissue Deconvolution 
and Decomposition, fQTL 391 

Published 
Single-cell: 
Darmanis et 
al., 2015 

CTL Temporal Cortex scRNA-seq Bulk Tissue Deconvolution 
and Decomposition, fQTL 332 

 CTL Developmental Cortex scRNA-seq Bulk Tissue Deconvolution 
and Decomposition, fQTL 134 

PEC: scRNA-
seq 

CTL Dorsolateral Prefrontal Cortex scRNA-seq Bulk Tissue Deconvolution 
and Decomposition, fQTL 459 

 CTL Dorsal Pallium scRNA-seq Bulk Tissue Deconvolution 
and Decomposition, fQTL  473 
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PEC: 
Reference 
Brain 

CTL Dorsolateral Prefrontal Cortex ChIP-seq: 
H3K27ac 

Enhancer Definition 
1 

 CTL Dorsolateral Prefrontal Cortex HiC Enhancer Definition 
1 

 CTL Dorsolateral Prefrontal Cortex ATAC-seq Enhancer Definition 
1 

PEC: 
CommonMin
d 

CTL Dorsolateral Prefrontal Cortex RNA-seq eQTL 
295 

 SCZ Dorsolateral Prefrontal Cortex RNA-seq eQTL 
263 

 BPD Dorsolateral Prefrontal Cortex RNA-seq eQTL 
47 

 AFF Dorsolateral Prefrontal Cortex RNA-seq eQTL 
8 

 CTL Dorsolateral Prefrontal Cortex Genotypes eQTL 
285 

 SCZ Dorsolateral Prefrontal Cortex Genotypes eQTL 
263 

 BPD Dorsolateral Prefrontal Cortex Genotypes eQTL 
47 

 AFF Dorsolateral Prefrontal Cortex Genotypes eQTL 
8 

PEC: 
CommonMin
d-HBCC 

CTL Dorsolateral Prefrontal Cortex RNA-seq eQTL 
220 

 SCZ Dorsolateral Prefrontal Cortex RNA-seq eQTL 
97 

 BPD Dorsolateral Prefrontal Cortex RNA-seq eQTL 
70 

 CTL Dorsolateral Prefrontal Cortex Genotypes eQTL 
191 

 SCZ Dorsolateral Prefrontal Cortex Genotypes eQTL 
85 

 BPD Dorsolateral Prefrontal Cortex Genotypes eQTL 
25 

PEC: 
BrainGVEX 

CTL Dorsolateral Prefrontal Cortex RNA-seq eQTL 
259 

 SCZ Dorsolateral Prefrontal Cortex RNA-seq eQTL 
95 

 BPD Dorsolateral Prefrontal Cortex RNA-seq eQTL 
73 
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 CTL Dorsolateral Prefrontal Cortex Genotypes eQTL 
47 

 SCZ Dorsolateral Prefrontal Cortex Genotypes eQTL 
45 

 BPD Dorsolateral Prefrontal Cortex Genotypes eQTL 
45 

PEC: 
LIBD_szCont
rol 

CTL Dorsolateral Prefrontal Cortex RNA-seq eQTL 
320 

 SCZ Dorsolateral Prefrontal Cortex RNA-seq eQTL 
175 

 CTL Dorsolateral Prefrontal Cortex Genotypes eQTL 
96 

 SCZ Dorsolateral Prefrontal Cortex Genotypes eQTL 
104 

PEC: BipSeq BPD Dorsolateral Prefrontal Cortex RNA-seq eQTL 
69 

 BPD Dorsolateral Prefrontal Cortex Genotypes eQTL 
55 

PEC: UCLA-
ASD 

CTL Dorsolateral Prefrontal Cortex RNA-seq eQTL 
46 

 ASD Dorsolateral Prefrontal Cortex RNA-seq eQTL 
43 

 CTL Dorsolateral Prefrontal Cortex Genotypes eQTL 
35 

 ASD Dorsolateral Prefrontal Cortex Genotypes eQTL 
31 

 CTL Dorsolateral Prefrontal Cortex ChIP-seq: 
H3K27ac 

cQTL, Enhancer Definition 
50 

 ASD Dorsolateral Prefrontal Cortex ChIP-seq: 
H3K27ac 

cQTL 
31 

 CTL Cerebellar Cortex ChIP-seq: 
H3K27ac 

Enhancer Definition 
50 

 CTL Temporal Cortex ChIP-seq: 
H3K27ac 

Enhancer Definition 
50 

PEC: Yale-
ASD 

CTL Dorsolateral Prefrontal Cortex RNA-seq eQTL 
23 

 ASD Dorsolateral Prefrontal Cortex RNA-seq eQTL 
3 

PEC: EpiDiff CTL NeuN+/- from Dorsolateral 
Prefrontal Cortex 

ChIP-seq: 
H3K27ac 

cQTL 
117 

 SCZ NeuN+/- from Dorsolateral 
Prefrontal Cortex 

ChIP-seq: 
H3K27ac 

cQTL 
109 
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S2.1.2 RNA-seq processing (Adapted from the Synapse Website) 
The PsychENCODE RNA-seq pipeline (Fig. S2.2) is mostly based on that of ENCODE, which is 
compatible with stranded and unstranded mRNAs from (poly-A(+)), rRNA-depleted total RNA, or poly-
A(-) RNA libraries. The inputs are RNA-seq reads (from paired-end stranded or single-end unstranded 
libraries), a reference genome and a gene annotation file (by default, GENCODE). We used GRCh37 
(hg19) as a reference genome and Gencode v19 for gene annotation. Coding and non-coding transcripts 
were used to quantify gene expression. For each sample, the pipeline outputs included: A bam file with 
reads mapped to the genome, a bam file with reads mapped to the transcriptome, bigwig files with 
normalized RNA-seq signal track for unique and multi-mapping reads (split between +strand and -strand 
if the library was stranded), gene quantifications, and transcript quantifications. 

The mapping of the reads was done using STAR (2.4.2a) and the quantification of genes and 
transcripts was done with RSEM (1.2.29). Although there is general agreement between the mappings and 
the gene quantifications produced by different RNA-seq pipelines, quantifications of individual transcript 
isoforms, being much more complex, can differ substantially depending on the processing pipeline 
employed, and are of unknown accuracy. Therefore, mapping and gene quantifications can be used 
confidently, whereas transcript quantifications should be used with care. Quality control metrics were 
calculated using RNA-SeQC (v1.1.8), featureCounts (v1.5.1), PicardTools (v1.128), and Samtools 
(v1.3.1). Pipeline source code can be found at doi:10.7303/syn12026837.1 at Synapse. All 
PsychENCODE sample FASTQ files were run through a unified RNA-seq processing pipeline (Fig. S1.1) 
run at the University of Chicago on an OpenStack cloud system. GTEx samples were processed at Yale 
University.  

 
Fig. S2.2 PsychENCODE RNA-seq pipeline. The flowchart of the uniform RNA-seq pipeline is shown. This pipeline 
was modified based on the long-RNA-seq-pipeline used by the ENCODE Consortium. 
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S2.2 Single-cell RNA-seq analysis 
S2.2.1 Datasets of single-cell transcriptomics 
We integrated and used the same pipeline, including ENCODE RNA-seq analysis, to uniformly process 
single-cell RNA-seq data for ~900 cells from PsychENCODE with 11 novel cell types in embryonic and 
developmental tissues. The expression of ~3,000 neuronal cells with 8 excitatory and 8 inhibitory types 
(Lake et al., 2016), and ~400 cells including two developmental types, one adult neuronal type and 5 
adult non-neuronal types, astrocytes, endothelial, microglia, oligodendrocytes, and oligodendrocyte 
progenitor cells (OPCs; Darmanis et al., 2015) were downloaded from corresponding publications. The 
details of cell types are shown in Table S2.2. 

The basic cell types have been shared and used by other PsychENCODE capstone projects 
focusing on non-coding regulation and development. For PsychENCODE single-cell data, we first 
applied quality control on ~900 cells using the R ‘scater’ package (McCarthy et al., 2017) to filter the 
cells with low library size and high mitochondrial RNA concentration. Furthermore, the cells with a total 
library size less than 0.2 million were also filtered for future analysis. In total, we built a gene expression 
profile of ~800 high-quality cells quantified in TPM. We merged the PsychENCODE, Lake et al., and 
Quake et al. data by matching the gene names. As the single-cell data suffers from high dropout rates, we 
used MAGIC (van Dijk et al., 2017) to impute the missing values in the expression matrix. We compared 
these single cells based on (biomarker) gene expression similarity using tSNE, and found that cells of the 
same type generally could be clustered together (Fig. S2.3). In particular, 99.4% PsychENCODE cells 
clustered together with known developmental cell types from a previous report (Darmanis et al., 2015). 

We also found that the gene expression changes across individual tissue samples could be largely 
explained by single-cell gene expression, and the changes of single-cell fractions were associated with the 
individual phenotypes. Therefore, we deconvolved the tissue-level gene expression data of all 1,866 
individuals’ tissue samples using single-cell gene expression data of 457 biomarker genes to find the 
fraction of different cell types that corresponded, and compared cell fractions across different phenotypes. 

 

S2.2.2 Quantification of gene expression 
The gene expression in both bulk and single-cell RNA-seq data were quantified in TPM and further 
transformed into log scale by log2(TPM+1). Later, we subjected the transformed gene expression to 
decomposition and devolution analysis (see below). 
 

S2.3 Decomposition of brain tissue gene expression data 
To check if the brain tissue expression was due to the combinations of single-cell types in Section 2.4 
(i.e., the cell fractions), we decomposed the brain tissue gene expression data using an unsupervised 
approach to find the principal components of the tissue data, and compared them with single-cell 
expression data. Specifically, given the brain tissue gene expression matrix X (N by M) for a 
phenotype/disorder where M is the number of tissue samples and N is the number of select genes (e.g., 
the cell biomarker genes), we used non-negative matrix factorization (NMF) to decompose X into the 
product of two matrices, H and V so that ||X-V*H||2 was minimized and all elements of H is non-negative. 
H is a K by M matrix with the (i,j) element describing the contribution coefficient of the jth NMF "top-
component" (NMF-TC) to the ith tissue sample, K is the number of select NMF-TCs (e.g., equal to the 
number of select cell types as above), and V is an N by K matrix with the (i,j) element being the 
expression level of the jth select gene on the ith NMF-TC.  

We then correlated NMF-TCs with the select gene expression data of different single-cell types, 
and obtained a correlation map between NMF-TCs and single cells (Fig. 2B). For example, No. 10 and 19 
NMF-TCs of the non-neuronal group highly correlated with astrocytes, No. 21 NMF-TC correlated with 
developmental cells, and No. 4, 7, 12, and 25 NMF-TCs of the neuronal group correlated with excitatory 
neuronal cell types. This suggests that a large portion of the tissue gene expression changes was a linear 
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combination of these cell types’ gene expression. Thus, we wanted to further identify the cell fractions 
showing how individual single cells contribute the tissue’s gene expression, using a deconvolution. In 
addition, previous studies have identified cell type-specific expression patterns from co-expression 
analysis (Oldham et al., 2008). We found here that some of our NMF-TCs correlated with the eigengenes 
of gene co-expression modules (Gandal, M.J. et al., submitted), especially for the cell type modules, 
supporting again that they connect the cell type information from the bulk tissue data. 

 

S2.4 Deconvoluting brain tissue gene expression data using single-
cell data to estimate cell fractions 
We used an unsupervised approach (NMF) to decompose tissue expression and found that NMF-PCs 
recovered the expression patterns of both neuronal and non-neuronal cells. This suggests that it is highly 
likely that a linear combination of single cells contributes to the brain tissue expression. Thus, to more 
accurately identify the single-cell fractions that determine the tissue expression, especially for various 
phenotypes/disorders, we further applied a supervised approach that used the single-cell expression data 
to deconvolve brain tissue expression data to find the fractions of different cell types of individual tissues. 

In particular, we defined the brain tissue gene expression matrix B (N by M) for a 
phenotype/disorder, where M is the number of tissue samples and N is the number of select genes (e.g., 
the cell biomarker genes), and the single-cell gene expression matrix C (N by K), where K is the number 
of select cell types. We used the non-negative least square method to find a non-negative K by M matrix, 
with W to minimize ||B-C*W||2. The (i,j) element of W represents the linear combination coefficient of 
the ith single-cell type to the jth tissue expression, which is proportional to the jth single-cell fraction. In 
the deconvolution analysis, the gene expression quantified in TPM was transformed into log scale by 
log2(TPM+1). 

We further evaluated the goodness-of-fit for the deconvolution model by calculating the 
coefficient of determination (also known as R2), which accounts for the percentage of variance in the 
individual gene expression of tissue samples that has been explained by varying the cell proportions of 
cell types. Specifically, the variance in the gene expression of tissue samples was ||B||2 and the variance 
that had not been explained by the model was ||B-C*W||2. The R2 could be calculated as 1-||B-
C*W||2/||B||2, which was further normalized to an adjusted R2 by incorporating the degree of freedom. In 
addition, we deconvolved the tissue expression data and compared the cell fraction changes for various 
phenotypes and psychiatric disorders (Figs. S2.6 and S2.7). Fig. S2.8 shows the cell fractions across 
different ages. We found that Ex3 and Ex4 had a significant increasing trend across age (trend analysis 
p<6.3e-10 and 1.5e-6), but some non-neuronal types such as oligodendrocytes were found to decrease 
(p<2.1e-14). Furthermore, these age-related cell changes were potentially associated with differentially 
expressed genes across age groups; for example, a gene involved in early growth response was down-
regulated in older age groups, whereas ceruloplasmin was down-regulated among middle-aged groups 
(Fig. 2F). In addition, we observed reduced microglia fractions for bipolar disorder and increased 
astrocyte fractions for SCZ. 

We have validated our estimated cell fractions on a subset of samples from the EPIMAP study 
with experimentally measured NeuN+ fractions. Fig. S2.9 shows the NeuN+ fractions measured in 
experiments and estimated in our deconvolution analysis on 14 samples with RIN > 7.3. Our estimation 
was very close to the experimental NeuN+ fractions. 

We further compared the performance of deconvolution with one popular deconvolution tool 
CIBERSORT (Newman et al., 2015). We performed CIBERSORT to deconvolve the tissue expression 
data with single-cell data of selected 24 types and further calculated the variance as an adjusted R-square; 
this value (0.8132) was lower than that calculated by our deconvolution method (0.8779). 

Data files associated with both the decomposition (NMF components and fractions) and 
deconvolution (cell fractions) analyses are available on the website (adult.psychencode.org). 
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Table S2.2 Summary of cell types. This table includes PsychENCODE developmental cell types and public adult 
cell types from Lake et al. 2016 and Darmanis et al. 2015. 

Abbreviation Adult/Developmental Full name Source 

Ex Adult Excitatory Neuron Lake et al. 2016 

In Adult Inhibitory Neuron Lake et al. 2016 

OPC Developmental Oligodendrocyte progenitor cells Li, M. et al. (submitted) 

Trans Developmental Transient cell type (nascent neurons) Li, M. et al. (submitted) 

NEP Developmental Neuroepithelial cells Li, M. et al. (submitted) 

IPC Developmental Intermediate progenitor cells Li, M. et al. (submitted) 

Quiescent/Quies Developmental Quiescent newly born neurons Darmanis et al., 2015 

Replicating/Repli Developmental Replicating neuronal progenitors Darmanis et al., 2015 

IntN Developmental Inhibitory Neuron Li, M. et al. (submitted) 

ExtN Developmental Excitatory Neuron Li, M. et al. (submitted) 

Oligo Developmental Oligodendrocyte cells Li, M. et al. (submitted) 

Astrocytes/Astro Developmental Astrocytes Li, M. et al. (submitted) 

Pericytes/Peri Developmental Pericytes Li, M. et al. (submitted) 

Endothelial/Endo Developmental Endothelial cells Li, M. et al. (submitted) 

Microglia/Micro Developmental Microglia Li, M. et al. (submitted) 

Microglia/Micro Adult Microglia Darmanis et al., 2015 

OPC Adult Oligodendrocyte progenitor cells Darmanis et al., 2015 

Endothelial/Endo Adult Endothelial cells Darmanis et al., 2015 

Astrocytes/Astro Adult Astrocytes Darmanis et al., 2015 

Oligo Adult Oligodendrocyte Darmanis et al., 2015 

OtherNeuron Adult Mixed of excitatory and inhibitory 
neuronal cells 

Darmanis et al., 2015 
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Fig. S2.3 t-SNE plot of the PsychENCODE and public single-cell data. Most of the PsychENCODE data were 
found to be clustered together with public developmental data in Darmanis et al., 2015.  

 

S2.5 Differentially expressed genes for brain phenotypes 
We used the limma R package for linear modeling to find genes that are differentially expressed for 
neuropsychiatric disorders, sex, and brain regions. Normalized gene expression data was partitioned into 
the control and schizophrenia samples or male and female samples using a merged matrix. We then 
constructed a design matrix representing these partitions, which we used to fit a linear model and estimate 
fold changes/standard errors. We then applied empirical Bayes smoothing to the standard errors. The 
output was represented in a table form or as a heatmap using the heatmap.2 R package. This pipeline was 
used for brain region analysis using gene expression data from GTEx, where either brain regions 
(amygdala, anterior cingulate cortex, caudate, cerebellar hemisphere, cerebellum, cortex, frontal cortex, 
hippocampus, hypothalamus, nucleus accumbens, putamen, spinal cord, and substantia nigra) or all brain 
samples were compared with select control tissues (liver, colon, lung, esophagus, pancreas, spleen, and 
stomach) for region-specific or brain-specific differential gene expression, respectively. In addition, the 
differentially expressed and spliced genes and transcripts for psychiatric disorders were identified by a 
submitted report (Gandal, M.J. et al., submitted). Associated data files with the differentially expressed 
(DEX) and spliced genes and transcripts from the both the current manuscript and the submitted report are 
available on the website (adult.psychencode.org).  
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Fig. S2.4 Biomarkers show higher expression in the cell type from which they were defined compared to 
other cell types. Expression signatures of biomarkers are conserved in the newly constructed expression matrix, 
which integrates multiple sources of single-cell expression data. 

 

S2.6 Gene co-expression network analysis 
We used WGCNA to identify modules of co-expressed genes, both within and between tissues (Zhang et 
al., 2005). Briefly, each gene was associated with a vector of normalized expression values across either 
individuals or tissues (using median expression). A weighted network was constructed where the weight 
between any two genes had a similar score, calculated by normalizing the Pearson correlation of their 
expression vectors to lie between 0 and 1, and raising this to the power !. 

We followed Zhang et al. in setting ! such that connectivity of the network was as close to scale-
free as possible (using the R2 statistic described in Zhang et. al.). The genes were then hierarchically 
clustered using a topological overlap score, which compares how similar the patterns of connection are 
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from each node to all other nodes. Disjoint modules were extracted using the Dynamic Tree Cut 
algorithm (Langfelder et al., 2008). We further extracted submodules in addition to the disjoint modules 
extracted by WGCNA, by adding the subtrees formed on each merge where both left and right subtrees 
were larger than a minimal size (which we set at 30 genes). To find brain specific modules/submodules 
using clusters calculated on median expression variation across tissues, we further calculated the module 
eigengenes (as described in Zhang et al.), and calculated the correlation of each eigengene with a binary 
vector, which was 1 for brain regions and 0 otherwise. We called a module ‘brain specific’ if this 
correlation was significant at the 0.001 level (under a permutation test of the tissue labels). 

Our co-expression analysis indeed found several modules with eigengenes showing very different 
expression levels between brain and non-brain samples (Fig. S2.5), which suggests that brain-specific 
regulatory mechanisms drive these brain co-expression modules (Gandal, M.J. et al., submitted). 
Associated data files with the gene and isoform co-expression modules from the both the current 
manuscript and the submitted report are available on the website (adult.psychencode.org).  

 

S2.7 Gene expression and DNA methylation over aging 
To find the effect of age on gene expression, we selected genes that showed significant correlation with 
age. Samples were segregated by age bins of 20 years, for a total of five bins (0-20, 20-40, 40-60, 60-80, 
and 80-100). Gene expression was estimated using uniform processing with the PsychENCODE RNA-seq 
pipeline (See S2.1.3). Fig. S2.10 displays 90 protein-coding and non-coding genes that correlate with age. 
In particular, EGR1 (early growth response - ENSG00000120738.7) and CP (ceruloplasmin - 
ENSG00000047457.9) are displayed. Similarly, we processed array methylation data to investigate the 
effect of aging in promoter and enhancer methylation. Published data from (Jaffe et al., 2016) were used. 
We used the normalized (scaled) proportion of methylated CpGs across individuals’ age bins near gene 
TSS (Fig. S2.11).  

 
Fig. S2.5 Brain-specific co-expression modules and submodules. Module eigengenes are plotted as columns, 
which are ordered by the degree to which their expression is specific to the brain (see text). Lines beneath the plot 
show positive (green) and negative (red) correlations, with correlations that are significant at the p<0.001 level (either 
positive or negative) highlighted in blue.  
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Fig. S2.6 Estimated cell fractions of 24 selected cell types in control samples. The cell types with significant 
changes (FDR < 0.05) between genders after balancing age distribution are labeled with double asterisks (**).. 
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Fig. S2.7 Estimated cell fractions of 24 selected cell types in samples with different disorders. For each cell 
type, the boxes with double asterisks (**) indicate the disorder types that show significant differences (FDR < 0.05) 
after balancing the age distribution. 
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Fig. S2.8 Estimated cell fractions of 24 selected cell types in control samples with different ages. The cell 
types showing significant increasing/decreasing trends across ages (trend analysis p-value < 1e-2) are labeled with 
double asterisks (**). 
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Fig. S2.9 Validation of estimated cell fractions from deconvolution. The X-axis shows the NeuN+ cell fractions 
measured in experiments and the y-axis shows the NeuN+ cell fractions estimated from deconvolution. The median 
error is 0.04. 



 

19 

 
Fig. S2.10 Gene expression variation in the human brain across ages. The X axis shows 5 bins of age and the Y 
axis shows the log2(rpkm) for genes positively or negatively correlated with age. Each panel refers to a gene, where 
the identification was made by ENSEMBL ID. 
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Fig. S2.11 Promoter and enhancer region methylation of genes correlated to aging. Genes with methylation 
data available were assessed for their methylation status. The X axis shows 5 bins of age and the Y axis shows the 
normalized distribution of methylation near the gene TSS. Each panel refers to a gene, where the identification was 
made by gene name. 
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S3. Supp. content to main text section 
"Enhancers" 
S3.1 PsychENCODE ChIP-seq pipeline and processing 
We used the modified parallel version of the ENCODE ChIP-seq pipeline (Fig. S3.1). This was improved 
over the ENCODE pipeline using the workflow system Snakemake for more efficient computation 
(https://github.com/weng-lab/psychip_snakemake). The original ENCODE pipeline can be found at 
https://goo.gl/KqHjKH. The PsychENCODE ChIP-seq data were processed at the University of 
Massachusetts and Yale University. 
 

 
Fig. S3.1 PsychENCODE ChIP-seq processing pipeline. This pipeline flowchart was adapted and modified from 
the ENCODE ChIP-seq pipeline (https://goo.gl/KqHjKH). FASTQ files were aligned using BWA and the reads were 
filtered to get only unique mapped reads for peak calling using MACS2. Pseudo-replicates were generated before 
peak calling for each individual to find robust peaks. NSC, RSC, and PCR bottlenecks were generated for QC. 

S3.2 Epigenomics Roadmap, ENCODE ChIP-seq for identifying 
regulatory regions 
We incorporated ChIP-seq datasets from the Roadmap Epigenomics Consortium and the ENCODE 
project in our analysis. To integrate them consistently with the PsychENCODE dataset, ChIP-seq 
experiments were uniformly processed using the ENCODE standard pipeline (See below, Section S2.3), 
including alignment, quality control, and peak-calling. Each released experiment consists of the raw 
sequencing data (in FASTQ) and the processed output, including alignment, signal, and peak files.  

With the set of uniformly processed ChIP-seq experiments, a comprehensive statistical model 
was used to generate a registry of candidate regulatory elements (cREs) for major cell lines and tissues 
(Moore et al., under review). The cREs are based on a combined set of high-quality DHSs. For a 
particular cell or tissue, z-scores for DNase, H3K4me3, H3K27ac, and CTCF were calculated for these 
high-quality DHSs. Using the maximum z-score across all cell types and the distance to the nearest TSS, 
the cREs were classified into promoter-like elements, enhancer-like elements, and regions bound by 
CTCF only. As described in later sections (S2.6 and S2.10), we used the epigenetics signals of these cREs 
to annotate enhancers, calculate cQTLs, and perform comparative chromatin signal RCA analysis. 
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S3.3 Activated brain enhancers 
To annotate a set of active enhancers, we uniformly processed the H3K27ac, H3K4me1, and H3K4me3 
ChIP-seq data from the reference brain using the standard ENCODE pipeline. We also processed the 
ATAC-seq data generated on the same reference. Supplemented by the DNase-seq and ChIP-seq data of 
the prefrontal cortex (PFC) from the ENCODE and Roadmap Epigenomics projects, we identified 79,056 
active enhancers. An active enhancer was considered to be in open chromatin regions (ATAC-seq signal 
or DNase signal Z-score > 1.64), with H3K27ac and H3K4me1 signals (Z-score > 1.64), which are 
characteristic markers for enhancers. To exclude promoters, we excluded regions with enriched 
H3K4me3 signals. These identified enhancer regions largely overlapped with ChromHMM enhancer 
annotations of the PFC (>90%). 

We uniformly processed 150 H3K27ac ChIP-seq data from healthy individuals, 50 each from 
PFC, PC, and CB regions. For each sample, we called H3K27ac peaks using the standard ENCODE 
ChIP-seq pipeline. The H3K27ac peaks were pooled across the cohort, generating a total of 37,761 
H3K27ac pooled peaks in PFC, 42,683 in TC, and 26,631 in CB. Each pooled peak was present in more 
than half of the samples in its corresponding brain region. Note that although the numbers of aggregate 
peaks were smaller than the number of reference enhancers, they actually covered a larger fraction of the 
genome, as the average width of H3K27ac peaks was larger than that of reference enhancers. 

To investigate the enhancer activity across the population, we intersected the set of active 
enhancers identified in the reference sample with the H3K27ac PFC ChIP-seq peaks in each individual 
from the cohort. Any H3K27ac peaks intersecting with the reference enhancers were considered to be 
active enhancers in the corresponding individual. Among the 50 healthy samples, a median of 53,976 
(~70%) enhancers from the reference brain were found to be active in the cohort. We also examined the 
cumulative number of reference enhancers that could be found in the cohort with individuals sorted by the 
number of overlapping enhancers, as shown in Fig. S3.2. The cumulative number grew fast at the 
beginning, and saturated at the 20th person of the sorted cohort. Thus, we hypothesize that pooling 
together the active enhancers of 20 people should recover most of the potential regulatory elements in 
brain prefrontal cortex. The PsychENCODE enhancer list is available on the website 
(adult.psychencode.org). 

 
Fig. S3.2 Active reference brain enhancers in the population. The dotted line shows the cumulative number of 
identified reference sample enhancers in the cohort, which saturates at the 20th individual from the sorted cohort. 
The boxplot shows the number of identified reference enhancers found active in each individual, with the lower and 
the upper boundaries of the box showing the first and the third quantiles. 
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S4. Supp. content to main text section 
"Consistent comparison" 
S4.1 Spectral analytic approaches (PCA, tSNE, RCA) to compare 
transcriptomic and epigenomic data across brain and other tissues 
One key aspect of our analysis is that we, as consistently as possible, processed the transcriptomic and 
epigenomic data from PEC, GTEx (GTEx Consortium, 2017), and the Epigenetic Roadmap (Kundaje et 
al., 2015). This approach allowed us to compare the brain to other organs in a consistent fashion to assess 
if the human brain has unique gene expression and chromatin activities. This comparison could not be 
achieved without such a large-scale uniform data processing. We attempted several methods for an 
appropriate comparison; in particular, we used methods to reduce the dimensionality of genes or 
enhancers to compare the underlying structure of brain and other tissues. PCA and t-SNE are two popular 
techniques, but PCA tends to capture global structures, ignoring most of the local structure, but be overly 
influenced by data outliers (Johnstone et al., 2009). In contrast, t-SNE tends to separate samples from the 
same tissue so that the cluster distances on the t-SNE space are not proportional to real gene expression 
dissimilarities, and thus does not give a sense of overall effects (Maaten et al., 2008). As an alternative, 
we found another very useful technique to be reference component analysis (RCA), which projects the 
gene expression in an individual sample against a reference panel, and then essentially reduces 
dimensionality of individual projections (Li et al., 2017). Moreover, as shown in Fig. 3E, all the brain 
tissue samples from the different projects tend to group together, which is a consequence of our uniform 
processing. 

In order to perform an RCA analysis, we first built a reference gene expression panel based on 
GTEx, which consisted of the average expression of genes across a panel of tissues. To select the genes in 
this panel, we searched for expression outliers (i.e., genes for which at least one sample had a delta 
log10(rpkm) higher than 1). This yielded 4,162 coding and non-coding genes in the reference panel. The 
average expression level for these genes was extracted from the GTEx v6 average expression file. We 
next used the gene expression from uniformly processed PsychENCODE and GTEx samples and selected 
only the 4,162 genes in the reference panel. We then calculated the correlation between each sample x 
reference tissue pair and built a correlation matrix. 

Finally, to extract structures from the dataset, we performed PCA on the correlation matrix. 
Median sample was defined as the median PC1 and PC2. In order to account for sample variance within 
tissues, we fit the PC1 and PC2 to a multivariable Gaussian distribution and plotted the ellipse defined by 
median PC1, PC2, with width and height equal to one standard deviation in PC1 and PC2 space, 
respectively. We calculated the distances between tissues and samples. Overall, the distance of the brain 
centroid to other tissues was approximately one order of magnitude higher than the distance between 
brain samples. Distance was calculated using Euclidean distance on RCA space (Fig. S4.1, Table S4.1, 
and S4.2).  

In order to assess which genes were responsible for differences in RCA PC1, we simulated RNA-
seq samples with a step function equal to discrete changes in gene expression. For each step, we selected 
the gene representing the biggest change in the PC1 dimension. We simulated 5,253 steps (Fig. S4.2; the 
path is represented by the dark like moving from the brain to other tissues). In total 1,226 gene were 
selected multiple times as the biggest change in the PC1 dimension. Selecting top-ranked genes and 
performing Reactome term enrichment analysis with Panther resulted in enrichment for brain pathways.  

Similar to the transcriptome RCA analysis, we built a reference panel using H3K27ac signals 
overlapping CREs as previously defined. For reference tissues, we used uniformly processed Epigenome 
RoadMap samples and calculated the average H3K27ac signals across CREs. We further filtered outlier 
CREs to select informative CREs. Similar to the transcriptome analysis, we selected CREs with average 
signal across the CRE higher than 0.1 from 40 tissues. That filter yielded 5,506 reference CREs. We 
calculated the correlation between each sample and the reference tissue pair, built a correlation matrix, 
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and performed PCA analysis at the correlation space. Median and ellipses were calculated as described 
above. To remove batch effects from H3K27Ac, we used well-established methods. First, we computed 
the PCA in the RCA space and selected the first principal component; indeed, most of the variance in the 
first component was derived from experimental differences. In order to consistently compare the 
transcriptome and epigenome, we selected tissues on roadmap that were also represented in the 
transcriptome RCA analysis. Namely, we used roadmap_brain, esophagus, liver, lung, pancreas, spleen, 
and uterus. We also performed a PCA analysis for these samples (Fig. S4.3). 
 

 
 

 
 

 
Fig. S4.1 Distances between brain to other tissues centroids. Transcriptome RCA plot as in Fig. 3. Brain 
samples’ distributions are displayed in green and orange. Other tissues are shown in red. Euclidean distance was 
calculated between all centroids (Table S4.1) and normalized by the median brain distance (Table S4.2). 
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 PEC Adipose Esophagus Liver Lung Nerve Pancreas Spleen Uterus 

PEC 0.00         

Adipose 4.32 0.00        

Esophagus 4.01 0.56 0.00       

Liver 3.32 1.69 1.85 0.00      

Lung 4.25 0.37 0.84 1.39 0.00     

Nerve 3.86 0.67 0.15 1.78 0.90 0.00    

Pancreas 3.35 1.13 1.17 0.69 0.93 1.10 0.00   

Spleen 3.66 1.38 1.63 0.39 1.05 1.59 0.61 0.00  

Uterus 4.07 0.46 0.10 1.82 0.76 0.23 1.16 1.58 0.00 

 

Table S4.1 RCA centroid distances. Euclidean distance was calculated between all tissue centroids in RCA space. 

 

 

 PEC Adipose Esophagus Liver Lung Nerve Pancreas Spleen Uterus 

PEC 0.00         

Adipose 9.80 0.00        

Esophagus 9.11 1.27 0.00       

Liver 7.54 3.83 4.19 0.00      

Lung 9.64 0.83 1.91 3.16 0.00     

Nerve 8.76 1.51 0.35 4.05 2.05 0.00    

Pancreas 7.61 2.56 2.66 1.57 2.12 2.49 0.00   

Spleen 8.31 3.12 3.69 0.89 2.38 3.61 1.39 0.00  

Uterus 9.24 1.05 0.22 4.13 1.72 0.53 2.63 3.59 0.00 

 

Table S4.2 RCA centroid distances normalized by median interbrain distance. Euclidean distance was 
calculated between all tissue centroids in RCA space and normalized by median brain distance. 
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Fig. S4.2 Assessment of the most impactful genes in the PC1 dimension. All analyzed RNA-seq samples are 
displayed. Green and yellow samples are brain samples and pink samples were extracted from other tissues. Dark 
line represents hypothetical samples with gene expression changes.  

 
 

Fig. S4.3 PCA plot for regulatory data. H3K27Ac signals were used to calculate the PCA after batch correction. 
Brain samples are scattered in both PC1 and PC2, whereas the roadmap samples are clustered together. 
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Reactome pathways # # expected Fold 
Enrichment 

+/- P value 

Serotonin Neurotransmitter 
Release Cycle 

17 4 .16 25.01 + 4.14E-02 

Neurotransmitter Release 
Cycle 

50 6 .47 12.75 + 1.68E-02 

Neuronal System 337 14 3.17 4.41 + 8.43E-03 

Dopamine Neurotransmitter 
Release Cycle 

22 5 .21 24.15 + 4.52E-03 

Table S4.3 Reactome pathway enrichment for most impactful genes in the RCA PC1 dimension. Pathway 
enrichment for the top genes selected in the Fig. S4.2 analysis.  

S4.2 Non-coding RNAs and TARs 
We used uniformly processed RNA-seq signal data from healthy individuals from GTEx 6p and 
PsychENCODE to quantify the expression activity of annotated and non-annotated regions of the human 
genome. In order to create signal files, we used alignment files (bam files) as input to RSEM to create 
both uniquely aligned and multiple aligned signal tracks. Signal values were normalized within samples 
using the total number of reads mapped to the genome and by generating RPM values. We divided the 
genome into bins of 100 base pairs and calculated the average expression (RPM) in windows. We finally 
selected regions in the genome with an RPM higher than 0.1 to filter transcriptionally active regions. The 
union of all bins in the human genome above the threshold was used to build a resource of active regions 
of the human brain. To estimate the proportion of coding and non-coding (i.e., non-coding and 
unannotated) regions, we overlapped active regions to the GENCODE v19 annotation. For each 
annotation class, we estimated the cumulative proportion of coding and non-coding regions (Fig. S4.4).  

 
Fig. S4.4 Cumulative distribution of transcribed regions in the human brain and other tissues. The Y axis 
shows the cumulative transcribed proportion of annotated and unannotated regions (coding or non-coding). The X 
axis shows the number of transcriptomes (or individuals) analyzed. Labels on the right-hand side of the figure display 
the maximum cumulative proportion found. 
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We fit the curves on Fig. S4.4 to cumulative exponential curves to estimate a per tissue upper 

bound of the proportion of coding and non-coding transcribed regions. We observed that most tissues 
were transcriptomically saturated at approximately 100 individuals. Moreover, although a large (65-75%) 
of the coding transcriptome was active, only (3-10%) of the non-coding transcriptome was active. By 
contrast, the absolute number of nucleotides active in non-coding regions (which include non-annotated 
regions) was much larger than in coding regions. In Fig. 3, we estimated inter-tissue variability by 
calculating the cumulative transcriptome diversity as stated above; inter-sample diversity was defined as 
the average diversity across samples in a tissue-based fashion. Values displayed in Fig. 3 were normalized 
by average diversity in coding and non-coding regions, respectively. The inter-sample variability was 
estimated by calculating the mean difference. Absolute values for coding and non-coding transcriptome 
diversity were also estimated. 
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S5. Supp. content to main text section "QTL 
analysis" 
S5.1 Genotype data processing 

 
Fig. S5.1 PsychENCODE genotype data processing pipeline. The raw genotype data were called and converted 
to PLINK files. We ran an initial quality sample level and marker level using PLINK. The quality controlled genotype 
data were then prepared by prephasing using Eagle2. The prephased data were imputed using Minimac3 and HRC. 
After imputation, we filtered genotype using R2>0.3 to get high-quality imputation data. 

 
S5.1.1 Genotyping arrays, data generation, and quality control  
Genotyping was done on several different genotyping platforms listed in Supplemental Table S5.1 and 
Section S9. Initial QC was performed using PLINK (Purcell et al., 2007) to remove markers with: zero 
alternate alleles, genotyping call rate < 0.95, Hardy-Weinberg p-value < 1 x 10-6, and individuals with 
genotyping call rate < 0.95. We also corrected for the strand flipping problem using snpflip 
(https://github.com/biocore-ntnu/snpflip). 
 

S5.1.2 Imputation of genotypes 
Genotypes of all studies were imputed using a uniform genotype QC and imputation pipeline in order to 
streamline quality control and genotype imputation of genome-wide single nucleotide polymorphism 
(SNP) data. This imputation pipeline consisted of four primary, independent modules: (1) pre-imputation 
data processing and quality control; (2) PCA of raw genotype data; (3) genotype imputation of untyped 
variants; and (4) post-imputation statistical analysis. Briefly, in the pre-imputation step, input genotype 
data (PLINK binary format) was reformatted for downstream analysis, and initial summaries of classic 
technical parameters (e.g., minor allele frequency, per individual and per site missing rates, case/control 
missingness, Hardy-Weinberg equilibrium) were produced. 
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Datasets #samples DataPlatform 

BipSeq 179 Illumina_1M and Illumina_h650 

LIBD_szControl 493 Illumina_1M, Illumina_Omni5, Illumina_h650 

CMC-HBCC 696 (896 totoal) Illumina_1M, Illumina_Omni5, Illumina_h650 

BrainSpan 41 HumanOmni2.5 

CommonMind 620 
IlluminaInfiniumHuman Omni Express Exome 8 
v 1.1b chip 

GTEx 450 (97 DFC) Illumina OMNI 5M or 2.5M 

BrainGVEX 138+280 Affymetrix6.0, PsychChips 

UCLA-ASD 97 Omni-2.5 and Omni-2.5-Exome 
iPSC 3 WGS 
EpiGABA 9 Illumina_HumanOmni1-Quadv1.0 
 
Table S5.1. Summary of genotype data generated in PsychENCODE and used in our paper. Most of these 
studies used different genotyping platforms. There were overlap of the individuals in BipSeq, LIBD_szControl and 
CMC_HBCC studies and the number of total individuals of these three studies are 896. 

 
The second module consisted of genotype PCA using peddy (Pedersen et al., 2017) to identify 

ancestry structure (Fig. S5.2). In the third, prior to imputation, SNP positions, identifiers, and alleles were 
aligned to the relevant reference genome assembly using LiftOver, and genotype data was divided into 
chromosomes and overlapping segments for parallel haplotype pre-phasing and imputation using eagle2 
and Minimac3 on the Michigan Imputation Server (Das et al., 2016). We used the recently released HRC 
Reference Panel for imputation. In the final module, we used the summary of R2 from Minimac3 to 
evaluate the imputation accuracy and only kept imputed SNPs with R2>0.3 for QTL analysis. 
 

S5.2 eQTL and isoform QTL 
We used a conservative approach for eQTL and isoQTL processing. We adhered closely to the 

GTEx pipeline, and we benchmarked our results with direct comparisons to available data files in the 
GTEx portal (gtexportal.org) and published GTEx results. We used the QTLtools software package for 
eQTL and isoform QTL (iso-QTL) identification. Following the normalization scheme used by GTEx, the 
gene expression matrix was normalized using quantile normalization, followed by inverse quantile 
normalization to map to a standard normal distribution. Probabilistic estimation of expression residuals 
(PEER) factors, genotype PCs, gender, and respective study were used as covariates in our calculations to 
identify cis-eQTL. For cis-eQTLs, we calculated the associations between gene expression and variants 
within a 1Mb window of each gene TSS. These calculations were performed using genotype and gene 
expression data from 1,387 individuals (associations between a total of 43,854 genes and 5,312,508 
variants were evaluated for potential QTLs). 
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Fig. S5.2 Genotype PCs showing the population structure in CMC and UCLA-ASD studies. The first 3 genotype 
PCs could capture most of the population structures. The top panels show genotype PC1 vs. PC2. The bottom panels 
show genotype PC1 vs. PC3. A majority of the individuals in these two studies were from EUR populations. 

 
We performed multiple testing correction on nominal P values by limiting FDR values less than 

0.05. We identified 2,542,908 significant cis-eQTLs. Because of linkage disequilibrium (LD), many of 
the eQTL SNPs for the same gene were correlated. We pruned such SNPs for a given gene by restricting 
the genotype correlation coefficient (r2) values to exceed 0.5. Enforcing this resulted in 373,686 eQTLs.  

These conservative approaches for searching for eQTLs identified a substantially larger number 
of cis-eQTLs and eGenes than previous brain eQTL studies. This may reflect the greater statistical power 
offered by our large sample size. We also identified 157,592 iso-QTLs, using a similar pipeline to that in 
our search for eQTLs. For 1,147 individuals, we used isoform percentages of 43,820 transcripts using the 
same set of variants that we used in our search for eQTLs. 

S5.3 cQTLs 
To calculate cQTLs, we used the uniformly processed ChIP-seq data from PsychENCODE (3 different 
brain regions) and Roadmap ChIP-seq data for different tissues. cQTLs were calculated using candidate 
regulatory regions (cREs). We extended (in rare cases truncated) each cRE to 1kb (a typical enhancer’s 
size). We calculated the average signal on each of the extended regions across PsychENCODE and 
roadmap samples. We identified 74 individuals from UCLA_ASD and 218 from Epidiff correlating this 
signal matrix with nearby variants within 1Mb window of the peak center. Then, we used the QTLtools 
for cQTL calculation using FDR<0.05 and identified the most significant SNP for each enhancer.  
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S5.4 Cell fraction & residual QTL 
We used the QTLtools package (Delaneau et al., 2017) to calculate the cell fraction and residual QTLs 
based on the cell fractions and estimated residuals. QTLtools was run in nominal pass mode to identify 
fQTLs. We used gender and disease as covariates. To best deal with population structure as potential 
confounding factor, we restricted our analysis to European adult samples, which comprise a substantial 
subset of all available genotyped data (Fig. S5.3A). 

We take the conservative approach of defining significant fQTLs to be those associated with 
Bonferroni-corrected p-values of no more than 0.05. By using this approach, we identified 9 different cell 
types with significant fQTLs (Ex3, Ex4, Ex5, In6, In8, Astrocytes, Microglia, and Endothelial cells). 
Specifically, these 9 cell types are those which exhibit fQTLs when using gender and disease status as 
input covariates. We find that different cell types exhibit considerable heterogeneity in terms of their 
abundance within the set of high-confidence fQTLs (Fig. S5.3B). The SNVs associated with these fQTLs 
coincide with 106 distinct SNVs associated with cis-eQTLs. A supplementary data file listing all fQTLs 
(along with associated data) is available online. 

 
 

 
Fig. S5.3 Datasets, counts, and cis-eQTL overlaps associated with fQTLs. A. In calculating fQTLs, we restricted 
our analyses to a 938 European adult samples for which genotype data is available. B. The histogram on the left 
represents the counts for the number of fQTLs across 10 different cell types. These fQTLs encompass 1672 distinct 
SNVs, of which 106 (6.3%) also appear among the cis-eQLTs. 

 

S5.5 QTL replication and sharing 
We evaluated the replication of GTEx and CommonMind PFC eQTLs in our study using the π1 statistic 
(Storey et al., 2003; Ng et al., 2017), which estimated the proportion of eQTLs that were significant based 
on the p-value distribution in our dataset. In this calculation, we used top SNPs from our eQTLs and 
found overlap with the eQTL SNPs in GTEx and CommonMind. Then, we used the p values of 
associations between these overlapped SNPs with protein-coding genes in the 1Kb window to calculate 
π1. We determined π1 values of 0.93 and 0.9 for GTEx and CommonMind, respectively, which indicated a 
good replication rate. We also used the π1 statistic to investigate the sharing of SNPs between different 
types of QTLs in our study. In this case, we found shared SNPs between eQTL top SNPs and other QTL 
SNPs. Then, the π1 statistic was calculated based on the p values of the associations of these shared SNPs 
with all genes in the 1Kb window. We found that the π1 value of cQTL was 0.89, which is the highest 
among all QTL SNP sharing comparisons. 

 Lists of the identified QTLs are available on the website (adult.psychencode.org). 

A B
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S6. Supp. content to main text section 
"Regulatory networks" 
S6.1 Generation of Hi-C libraries 
Hi-C libraries were generated as previously described (Won et al., 2016). Briefly, adult dorsolateral 
prefrontal cortices (DLPFC) from three individuals (sample information provided below) were acquired 
through a Reference Brain Project as a component of the psychENCODE project. Frozen pulverized 
tissue (100mg) was homogenized in 2mL of ice-cold lysis buffer (10mM Tris-HCl pH8.0, 10mM NaCl, 
0.2% NP40, protease inhibitor). Ten million nuclei were collected, and chromatin was crosslinked in 1% 
formaldehyde (diluted in 1X PBS) for 10 min. Crosslinked chromatin was first digested by HindIII (NEB, 
R0104), and digested sites were labelled by biotin-14-dCTP (ThermoFisher, 19518-018). Proximity-based 
ligation was performed within nuclei to prevent random collision-based ligation (Rao et al., 2014). Biotin-
marked DNA was then purified and sequenced by Illumina 50 bp paired-end sequencing. 
 

S6.2 Hi-C data processing 
Hi-C reads were mapped and filtered as previously described (Won et al., 2016) using hiclib 
(https://bitbucket.org/mirnylab/hiclib). Only cis reads (which refer to intra-chromosomal interactions) 
were used to construct contact matrices at 40kb and 10kb resolution for compartment and loop analyses, 
respectively. To obtain maximum resolution for loop detection (10kb), we pooled datasets from three 
individuals (see below for read depths for pooled samples). To compare interaction profiles in adult and 
fetal brain, we combined previously generated Hi-C datasets from two fetal cortical laminae to obtain 
comparable read depths (Won et al., 2016; see below for read depths for pooled samples).  

Compartments were analyzed by calculating the leading principal component (PC1) values from 
Pearson’s correlation matrix generated from contact matrices in 40kb resolution. Regions with PC1s 
positively and negatively correlated with the gene density were defined as compartment A and B, 
respectively. TADs were called based on contact matrices in 40kb resolution using Hi-C domain callers 
(http://chromosome.sdsc.edu/mouse/hi-c/download.html). Briefly, the directionality index was calculated 
by measuring the degree of interaction bias of a given 40kb bin to its upstream (2Mb) and downstream 
(2Mb) regions, which was subsequently processed by a hidden Markov model.  

 
Table S6.1 Summary of Hi-C datasets 

Samples Sample information cis filtered reads total filtered reads 

HBS189 Male 36yr 
(Ancestry unknown) 

197,394,146 251,515,059 

HBS106 Male 64yr 
(Ancestry unknown) 

170,057,582 209,571,512 

HBS181 Male 44yr 
(Caucasian) 

243,396,052 299,801,452 

Pooled samples Adult brain  610,847,780 760,888,023 

Pooled samples Fetal brain Won et al., 2016 855,987,816 1,834,759,860 
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S6.3 Detection of promoter-based interactions  
Promoter-based interactions were identified as previously described (Won et al., 2016). Briefly, we 
constructed background interaction profiles from randomly selected length- and GC content-matched 
regions to promoters (defined as 2kb upstream of transcription start sites based on Gencode v19). Using 
these background interaction profiles, we fit interaction frequencies into Weibull distribution at each 
distance for each chromosome using the fitdistrplus package in R. Significance of interaction from each 
promoter was calculated as the probability of observing higher interaction frequencies under the fitted 
Weibull distribution, and interactions with FDR<0.01 (which corresponds to P-values~1x10–4) were 
selected as significant promoter-based interactions. In total, we detected 149,098 promoter-based 
interactions. We overlapped promoter-based interactions with genomic coordinates of TADs, and found 
that the majority (~75%) of promoter-based interactions were located within the same TADs.  

We used a binomial test as previously described (McLean et al., 2010) to evaluate the epigenetic 
state enrichment of regions that interact with promoters, using a 15 state chromatin state model in adult 
prefrontal cortices (PFC) from Roadmap Epigenomics (Kundaje et al, 2015). To assess whether promoter-
interacting regions are enriched in enhancer states, we calculated the significance of the overlaps by 
binomial probability of P=Pbinom(k>=s, n=n, p=p), when p = fraction of genome in enhancer states, n = 
the number of promoter-interacting regions, s = the number of promoter-interacting regions that overlap 
with enhancer states. 

To assess whether epigenetic states affect their target gene expression levels, we used 
transcriptomic profiles of PFC from neurotypical individuals (see section S2.1). Quantile normalized 
expression values were log transformed and centered to the mean expression level for each sample using a 
scale(center=T, scale=F)+1 function in R. The centered expression values denote each gene’s relative 
expression level in a given individual, and were used throughout the integrative analysis. We selected 
genes that interact with enhancers (EnhG=Genic enhancers, Enh=Enhancers), promoters (TssA=Active 
transcription start sites, TssAFlnk=Active transcription start site flanking regions), bivalent enhancers 
(EnhBiv), and repressive states (Het=Heterochromatin, ReprPC=Polycomb repressive sites) and average 
centered expression values for each group were calculated and plotted. 

 
 

 
Fig. S6.1 Regulatory relationships in the adult cortex. A. The majority of promoter-based interactions reside 
within the same topologically associating domains (TADs). B. Regions that interact with transcription start sites (TSS) 
are enriched with other TSS and enhancers. D. Distribution of the number of putative enhancers assigned to each 
promoter. E. Genes that interact with enhancers or promoters are more highly expressed than genes that interact 
with bivalent enhancers or repressive marks. 
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S6.4 Integrative analysis 
Compartment changes across brain development. Genomic regions were classified into (1) 
regions that undergo compartment A to B switching from fetal to adult brain, (2) regions that undergo 
compartment A to B switching from adult to fetal brain, (3) regions that do not switch their compartments 
across brain development (stable).  

Genes were then grouped according to the compartment categories they locate in, and centered 
expression values for each group were calculated. As our RNA-seq data mainly focus on adult brain 
transcriptome, we processed expression values from Kang et al. to generate centered expression values 
(Kang et al., 2011). Prenatal and postnatal centered expression values were plotted for each group of 
genes. We also overlapped chromatin states in adult PFC and fetal brain defined by chromHMM with 
compartment categories. We then counted the total number of each chromatin state in a given 
compartment category, which was subsequently normalized by the size and the number of total chromatin 
states in that compartment category. We compared these normalized counts for each chromatin state 
between fetal and adult brains using the Fisher’s exact test.  

 
Fig. S6.2 Compartment switching across brain development is associated with expression and epigenetic 
changes. A. Heat map of the first principal component (PC1) values for regions that undergo compartment switching 
between fetal brain (CP and GZ) and adult brain. B. Brain expression levels for genes located in compartments that 
switch during development. C. Fraction of epigenetic states for regions that undergo compartment switching across 
brain development. For example, B to A shift in adult to fetal brain is accompanied by an increased proportion of 
active promoters (TssA, TssAFlnk), transcribed regions (Tx, TxWk), and enhancers (EnhG, Enh), and a decreased 
proportion of repressive elements (ReprPCWk) and heterochromatin (Het) in fetal brain compared with adult brain. *P 
< 0.05, **P < 0.01, ***P < 0.001. P values from Fisher’s test.  
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Regulatory relationships across brain development. To compare the shared proportion of 
enhancer-promoter interactions in fetal vs. adult brain, we first collapsed putative enhancers (identified as 
promoter-based interactions) to each gene. We generated enhancer-gene links (e.g. 
chr10:100130000:ENSG00000230928) from fetal and adult brain and directly compared them. According 
to this analysis, 30.8% of enhancer-gene links detected from adult brain were also detected in fetal brain.  

Using chromatin states defined by chromHMM (Kundaje et al., 2015) in fetal brain and adult 
PFC, we defined regulatory regions according to their developmental state changes: (1) Both active: 
elements that are active in both adult and fetal brain, (2) Fetal active: elements that are active in fetal 
brain and become repressive in adult brain, (3) Adult active: elements that are repressive in fetal brain 
then become active in adult brain. Active elements were defined as TssA, TssAFlnk, EnhG, Enh, while 
repressive elements were defined as Het, ReprPC, ReprPCWk (weak Polycomb repressive sites), and 
Quies (quiescent states). These elements are referred as developmental regulatory elements. Since 
developmental regulatory elements contain both promoters and enhancers, we then overlapped them with 
the promoter coordinates used to detect promoter-based interactions (see section S6.3). In total, we 
identified 6 types of developmental regulatory elements: both active promoters, both active enhancers, 
fetal active promoters, fetal active enhancers, both active promoters, both active enhancers.  

We next assigned genes to developmental regulatory elements: elements that overlap with 
promoter coordinates were directly assigned to their genes based on linear genome, while the ones that do 
not overlap with promoter coordinates were thought as enhancers and assigned based on promoter-based 
interactions either from adult or fetal brain. Fetal active enhancers were assigned to their target genes 
based on fetal brain Hi-C, adult active enhancers were assigned based on adult brain Hi-C data, while 
both active enhancers were assigned based on both adult and fetal brain Hi-C data. In total, this analysis 
leads to 7 groups of genes that were linked to each element: both active promoters-linear assignment, fetal 
active promoters-linear assignment, adult active promoters-linear assignment, both active enhancers-fetal 
Hi-C, both active enhancers-adult Hi-C, fetal active enhancers-fetal Hi-C, adult active enhancers-adult 
Hi-C. Average centered expression values were calculated and plotted for each group, and gene ontology 
(GO) enrichment for each group was assessed using GoElite v77 (http://www.genmapp.org/go_elite/).  

We also processed single cell expression values (in log2(TPM+1) forms, see Section S2.2.2) by 
centering to the mean expression level for each cell using a scale(center=T, scale=F) function in R. This 
results in centered expression values denoting each gene’s relative expression level in a given cell, hereby 
referred as cell-level centered expression values. We then calculated average cell-level centered 
expression values for each group of genes mapped to distinct types of developmental regulatory elements.  
 
Relationships between the enhancer number and gene expression. To measure the 
relationship between enhancer numbers and gene expression level, we integrated promoter-based 
interactions, brain active enhancers, and expression data. As enhancers and Hi-C interactions were 
defined in different resolution (Hi-C was defined at 10kb bin level, while enhancers were defined at much 
higher resolution), we clumped enhancers within 10kb bins so that they match with the Hi-C resolution. 
Intersecting brain active enhancers and promoter-based interactions led to 17,719 bin-level enhancer-
promoter interactions. We grouped genes based on their number of interacting enhancers and their 
average centred expression values were calculated and plotted for each group. We also identified 90,015 
enhancer-promoter interactions when we didn’t clump enhancers into a bin-level. 

 
Cis-regulatory relationship mediated by chromatin interactions. We overlapped eQTLs, 
isoQTLs, and cQTLs (hereby referred as QTLs) with Hi-C to measure the proportion of cis-regulatory 
relationship mediated by 3D interactions. As the type of chromatin interactions that mediate cis-
regulatory relationship has not been well understood, we did not want to restrict our interaction search 
space into promoter-based interactions. Therefore, we first obtained chromatin interaction profiles of 
QTLs and then overlapped the profiles with (1) gene coordinates both at the exon and promoter levels 
(eQTL/isoQTL) or (2) coordinates of chromatin marks (cQTL). 
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Fig. S6.3 Dynamics of chromatin landscape across brain development. A. A schematic showing how brain 
regulatory elements were mapped to their putative target genes based on chromatin interaction profiles. Brain 
regulatory elements were first grouped into three categories: regulatory elements that are active in both 
developmental epochs (both active), regulatory elements in fetal brain (fetal active), and regulatory elements in adult 
brain (adult active). Brain regulatory elements that reside within promoters were directly assigned to their target 
genes (promoter-based assignment), while intergenic/intronic regulatory elements were assigned based on chromatin 
interactions either in fetal or adult brain (Hi-C based assignment). The number of brain regulatory elements (peaks) 
and genes mapped to regulatory elements by promoter- and Hi-C-based assignment is described in the bottom. B. 
Genes assigned to fetal active elements are prenatally enriched, while genes assigned to adult active elements are 
postnatally enriched. C. Genes assigned to fetal active elements are relatively more enriched in neurons in the adult 
(Adult-Neuron) and fetal brain (Developmental-Quies and Repl), while genes assigned to adult active elements are 
relatively more enriched in glia (astrocytes, endothelial cells, and oligodendrocytes). D. Gene ontology enrichment for 
genes that are assigned to fetal and adult active regulatory elements based on chromatin interactions. Fetal active 
elements were assigned to genes associated with neuronal differentiation and synaptic formation, while adult active 
elements were assigned to genes involved in gliogenesis and synaptic maturation. 

 
We constructed background interaction profiles from all SNPs with the imputation score > 0.9 in 

the genome to fit null distribution of the expected interaction frequencies given the chromosome and 
distance (see section S6.3 for more details). Significance of interaction from each QTL was calculated as 
the probability of observing higher interaction frequencies under the fitted null distribution. Interactions 
with FDR<0.01 were selected as significant interactions, and the regions that significantly interact with 
QTLs were overlapped with genomic coordinates of promoter (defined as 2kb upstream of every TSS), 
exon coordinates (based on Gencode v19), and coordinates of chromatin marks used to detect cQTLs. 
When conducting chromatin interaction analysis for eQTL/isoQTL, we excluded QTLs that are located 
within promoter or exons (promoter/exonic QTLs) because there is a high probability that they are 
directly associated with the genes/chromatin marks in which they locate. We also excluded cQTLs within 
20kb from chromatin marks as chromatin interactions within this range is undetectable. 

An e-Gene/chromatin often has multiple QTLs due to the linkage disequilibrium (LD), which 
makes it difficult to identify causal variants. Therefore, instead of a direct comparison between 
eGenes/chromatin and genes/chromatin that physically interact with QTLs, we measured the fraction of 
eGenes/chromatin that also have Hi-C evidence. For this purpose, we grouped QTLs based on 
eGenes/chromatin and checked whether any of the QTLs for a given e-Gene/chromatin also physically 
interacts with the same e-Gene/chromatin. 
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According to this analysis, 31.9% of eQTLs and 12.4% of isoQTLs had Hi-C evidence, indicating 
that chromatin interactions may impact cis-regulatory relationships via gene regulation than isoform 
switching. We also found that 6.5% of cQTLs have Hi-C evidence. Although this overlap is lower than 
what we found from eQTLs and isoQTLs, we think this reflects the low power of cQTLs (292 samples for 
cQTL vs. 1,387 samples for eQTL). In details, 27.4% of eQTLs were supported by promoter-based 
interactions, while 30.9% were supported by exon-based interactions, suggesting that exon-level 
interactions also have potentials to affect gene regulation, which has not been previously studied. Given 
that 31.9% (< 27.4% promoter-based interactions + 30.9% exon-based interactions = 58.4%) of eQTLs 
are supported by either promoter or exon-level interactions, most of the exon-/promoter-based 
interactions are redundant, indicating a complex gene regulatory network. On the contrary, 10.9% of 
sQTLs were supported by promoter-based interactions, while 3.7% were supported by exon-based 
interactions, which are largely non-redundant (12.4% total Hi-C supported sQTL ~ 10.9% promoter-
based interactions + 3.7% exon-based interactions = 14.6%). In total, 32% of the eGenes showed 
evidence of chromatin interactions, accounting for 239,837 eQTLs, 3,235 isoQTLs.  

We then compared the significance of associations for Hi-C supported QTLs, promoter/exonic 
QTLs, and non-supported QTLs (intronic/intergenic QTLs that do not have Hi-C evidence). We grouped 
QTLs based on these three categories and compared the significance of associations for each group. We 
compared the distribution of -log10(P-values) for each group using a (pairwise) Wilcoxon test. When 
there are more than two groups to compare, multiple testing correction was performed using FDR. 

 
Fig. S6.4 Chromatin interactions mediate cis- and trans-regulatory relationships. A. A proportion of QTL-
associated genes (eQTLs), isoforms (isoQTLs) and chromatin marks (cQTLs) that have Hi-C evidence. B. eQTLs 
supported by Hi-C evidence show stronger associations not only to eQTLs without genomic annotations (non-
supported), but also to exonic and promoter eQTLs. C-D. isoQTLs (C) and cQTLs (D) supported by Hi-C evidence 
show stronger associations than those without genomic annotations (non-supported).  

S6.5 Imputed gene regulatory networks (TFs) 
We integrated and imputated all possible regulatory relationships in the frontal cortex including the 
enhancers, transcription factors (TFs), miRNAs and target genes in this resource. The first step involved 
inferring the positions of the TF binding sites (TFBSs) within the key regulatory elements in our model, 
namely, promoters and enhancers in TADs. To do this, we started with a previously generated genome-
wide map of all the TFBSs using a list of 786 TF motif position weight matrices (PWMs) downloaded 
from CIS-BP (build 1.02, Weirauch et al., 2014), with TFBS locations on the hg19 genome build found 
using the program FIMO from the MEME suite (version 4.11.4, Grant et al., 2011) with a threshold of 
0.00001. 

Next, we defined the promoter regions by a window of ±1.25 kb (=2.5 kb in total) relative to the 
transcription start site (TSS), while the PEC enhancer regions of uniform length 1 kb were used. The 
ENCODE DNase hypersensitivity site (DHS) datasets for the frontal cortex (in .bed format) were then 
used to find open chromatin regions within the promoters, and the TFs with TFBSs within these open 
chromatin regions of the regulatory elements were linked to the corresponding elements. Since the PEC 
enhancers were already defined within regions of open chromatin, there was no need to further filter them 
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out using DHS data, hence the TFs within the enhancers were directly linked to them. Finally, we 
tentatively link all enhancers and promoters within the same TADs determined from the Hi-C data on the 
reference brains (pooled data from three reference brains). The net result is a set of preliminary linkages 
in the form of [Enhancer TFs]=>Enhancers=>Promoters<=[Promoter TFs].  

There are some noteworthy points on this analysis. Firstly, when the PEC enhancers were 
expanded to a uniform size of 1 kb, there were some overlaps between adjacent enhancers. With regard to 
the TF linkages, we resolved these overlaps by assigning a TF within the overlap region only to the first 
enhancer encountered in the sorted enhancer list. Secondly, there are two experimental DHS files for the 
frontal cortex from the ENCODE consortium, resulting in two different sets of TF linkages for the 
promoters. The results from the two replicates were merged into a single consensus set of linkages. 

In total, we included 675,061 enhancer-target-promoter in TADs and 823,946 TF-target-promoter 
binding linkages, providing a reference wiring network on gene regulation in brain, which consists of the 
regulatory factors and elements (e.g., TFs, enhancers) and target genes. An associated data file with the 
reference TF network is available on the website (adult.psychencode.org). 

To identify activated regulatory wires for a particular phenotype or disorder, we further used the 
method to determine such activated regulation. Given a gene and a phenotype/disorder, we applied the 
Elastic net regression, linearly combining the L1 and L2 regularizations to predict its gene expression data 
from the expression data of the TFs that have the binding sites on the gene’s enhancers and promoter and 
overlap the QTLs; i.e., the QTLs break the binding sites. We then identified the activated TF-target 
regulatory relationships if TFs have large regression coefficients. In detail, suppose Y is an N-dimensional 
vector with elements being the gene’s expression levels across samples, where N is the sample number for 
the phenotype/disorder. X is an N by M matrix whose columns are the TFs’ expression levels, where M is 
the number of potential TFs. The Elastic net regression estimates the coefficients of M TFs, denoted by an 
M-dimensional vector, B= argminB ||Y-XB||2+alpha||B||L2+beta*||B||L1, where alpha and beta are 
parameters to adjust the contributions from L2 and L1 regularizations of B. The mean square error of 
Elastic net regression is equal to ||Y-XB||2/N based on ⅔ training and ⅓ test data. For each gene and its 
TFs, we used the gene expression data across all adult samples (N=1866) in the resource to run the Elastic 
net regression. For example, we identified a strong regulatory relationship between four promoter TFs 
(NKX2-4, FOXE3, FOXI1, TFAP2B, coefficients >0.2) and three enhancer TFs (FOXA2, FOXI2, 
HMX2, coefficients > 1) with CHD8, a chromatin remodeler strongly associated with ASD. In total, we 
could predict the expression level of CHD8 with mean square error < 0.034.  

We compared the HiC enhancer-promoter interactions and the interactions between eGenes and 
associated e/isoQTLs on enhancers with TF activity to determine a highly confident, overlapped 
enhancer-target-promoter linkages. In summary, there were 43,181 TF-to-target and 37,052 enhancer-to-
target-promoter linkages among the top 5% Elastic net regression coefficients (absolute value >0.2). from 
at least two of these types: (i) activity relationships (~448k enhancer-to-target-promoter linkages), (ii) 
physical chromatin interactions (~91k Hi-C enhancer-promoter interactions), and (iii) 36,293 QTLs 
(e/isoQTL-SNP on brain enhancers to eGene). Associated data files with the final, Elastic-Net-Based TF 
network and HiC-derived enhancer-promoter linkages are on the website (adult.psychencode.org). 
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FIg. S6.5 Mean square error distribution of Elastic net regression predicting target gene expression from TF 
expression. The x-axis is the mean square error range across protein-coding target genes. The y-axis is the density 
of target genes. An associated data file with the mean square error values for each gene with an Elastic Net 
prediction is available on the website (adult.psychencode.org). 

S7. Supp. content to main text section 
"Linking GWAS variants" 
S7.1 Identification of GWAS associated genes for schizophrenia 
We used 5,996 schizophrenia (SCZ)-associated autosomal putative causal (credible) SNPs reported in the 
original study (Pardiñas et al., 2018) and categorized them into promoter/exonic and intergenic/intronic 
SNPs. Promoter/exonic SNPs were directly assigned to the target genes based on the genomic 
coordinates, while intergenic/intronic SNPs were annotated based on chromatin interactions and 
enhancer-target-gene linkages supported by activity relationships from Elastic net regression. We used 
promoter-based interactions defined by Hi-C and enhancer-target-gene linkages to assess whether 
credible SNPs reside in (1) regions that physically interact with promoters of any genes (see Section S6.3) 
and/or (2) enhancer regions supported by activity relationships (see Section S6.5).  

Credible SNPs colocalize with 2,064 eQTLs associated with 282 eGenes, 91 of which overlap 
with those identified by the Hi-C driven approach. To confirm this overlap is mediated by the shared 
causal variants in GWAS and eQTLs, we performed a colocalization test (Giambartolomei et al., 2014), 
from which we identified 293 genes across 79 loci in which GWAS and eQTLs share causal variants.  

Collectively, we identified 176 genes across 83 loci from the direct assignment, 597 genes across 
92 loci from the Hi-C driven approach, 388 genes across 37 loci from enhancer-target links, 293 genes 
across 79 loci from eQTL associations, and 29 genes across 23 loci from isoQTL associations. In total, 
this leads to 1,097 genes across 119 loci, which are referred as SCZ genes. We also selected risk genes 
that are identified by two or more metrics to obtain SCZ high-confidence (HC) genes (304 genes). 
Associated data files with the full list of 1,097 SCZ risk genes and the filtered list of 304 high-confidence 
SCZ genes are available on the website (adult.psychencode.org). 

We compared SCZ risk genes defined by each metric (QTL=eQTL and isoQTL, Hi-C, and 
enhancer-target links) by performing an over-representation test. One key thing for an over-representation 
test is to define a background gene set, because each metric has different background genes. For example, 
13,304 genes have enhancer-target links (hereby referred as E-T genes), 33,217 genes have QTLs, while 
Hi-C has the genome-wide search space. Therefore, we defined a background gene list by taking an 
intersect of eGenes and E-T genes. For each metric, we took an intersect of SCZ risk genes and the 
background gene set and used them for the Fisher’s exact test. 

To assess what fraction of SCZ genes have distal regulatory relationships with putative causal 
SNPs, we compared SCZ genes with the genes that locate within the LD regions with the index SNPs 
(r2>0.6, includes genes partly overlapping with LDs). We also ran the colocalization test using the 
currently largest public dataset of eQTLs from the CMC (Fromer et al., 2016), assigning 137 genes to 68 
loci. Notably, our newly generated eQTLs identified twice more genes than CMC eQTLs.  

 

S7.2 Functional enrichment analysis 
To assess whether SCZ genes and SCZ HC genes are dysregulated in neuropsychiatric disorders, we 
performed enrichment analysis by logistic regression on (1) differentially expressed genes (DEGs) in 
three types of disorders (ASD=autism spectrum disorder, SCZ=schizophrenia, BD=bipolar disorder) 
identified by (Gandal, M.J. et al., submitted), (2) genes affected by rare LoF variants in SCZ (TADA<0.3; 
Singh et al., 2016), and (3) genes located in recurrent SCZ copy number variation (CNVs) (Marshall et 
al., 2017). For the enrichment analysis on SCZ rare variants and CNVs, we used protein-coding genes for 
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a background gene list and regressed exon lengths out. For the enrichment analysis on DEG, we used a 
union of eGenes and E-T genes detected in our study as a background gene list.  

We analyzed GO enrichment for SCZ genes and SCZ HC genes using GOElite. We used the 
union of detected eGenes and E-T genes as a background gene list.  

We used cell-level centered expression values to get average centered expression values for SCZ 
and SCZ HC genes in each cell type. Cell types were grouped into the clusters neurons, astrocytes, OPC, 
oligodendrocytes, microglia, endothelial cells, fetal neurons, and the neuronal subcluster (excitatory and 
inhibitory neurons) and measured relative expression levels in a given cluster by a scale function in R.  

 

S7.3 Identification of TFs associated with schizophrenia risk genes 
TF-target regulatory relationships (see Section S6.5) were used to detect TFs that are enriched either in 
(1) promoters of SCZ genes or (2) enhancers that overlap with SCZ credible SNPs. We calculated the 
significance of the enrichment by P=Pbinom(k>=s, n=n, p=p), when p = fraction of promoters/enhancers 
associated with credible SNPs, n = the number of total binding sites of a TF A (TFBSA) in 
promoters/enhancers, s = the number of total promoter/enhancer TFBSA associated with credible SNPs 
(Fig. S7.1).  

For promoter enrichment, p = the number of SCZ genes / the number of genes that have TF-
target-promoter links from the elastic net; s = the number of TFBSA within promoters of SCZ risk genes. 
For enhancer enrichment, p = the length of enhancers that harbor SCZ credible SNPs / the length of 
enhancers that have TF-enhancer-target links from the elastic net; s = the number of TFBSA within 
enhancers that harbor SCZ credible SNPs. For promoter enrichment, we calculated an enrichment P-value 
for each TF, which was subsequently corrected for the number of TFs bound to gene promoters. For 
enhancer enrichment, an enrichment P-value for each TF was subsequently corrected for the number of 
TFs within enhancers that harbor SCZ credible SNPs.  

 

S7.4 Partitioned heritability  
We assessed heritability explained by brain regulatory elements (enhancers) and variants (eQTLs) for 
different GWAS using partitioned LD score regression (LDSC, Finucane et al., 2015; 
https://github.com/bulik/ldsc/wiki/Partitioned-Heritability). We included 9 brain disorder GWAS and 3 
non-brain disorder GWAS (GWAS sets and sources described below) in an attempt to test that partitioned 
heritability estimates of brain disorders are more strongly enriched in brain enhancers and eQTLs than in 
non-brain disorders. For eQTLs, we included all eQTLs in the model, since LD scores count for LD. We 
also used top SNPs (pruned for LD r2>0.5) to ensure that the enrichment signal doesn’t come from the 
spurious LD structures, where we got similar enrichment results.  

Disorders Source 

ADHD Demontis et al. 2017 

ASD Grove et al. 2017 

Bipolar disorder Ruderfer et al. 2014 

Depression (Broad General Practice) Howard et al. 2017 

Schizophrenia Pardinas et al. 2018 

Educational attainment Okbay et al. 2016 

Intelligence Sniekers et al. 2017 

Alzheimer’s disease Lambert et al. 2013 

Parkinson’s disease Nalls et al. 2014 
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Type 2 diabetes (T2D) Morris et al. 2012 

 Coronary artery disease (CAD) Schunkert et al. 2011 

 Inflammatory bowl disease (IBD)  Liu et al. 2015 

 
Fig. S7.1 Identification of schizophrenia risk genes. A. A schematic depicting how SCZ GWAS loci were assigned 
to putative genes. B. Gene ontology enrichment for SCZ-genes demonstrates that cholinergic receptors, synaptic 
genes, calcium channels, immune response-related genes, translational regulators, and RNA splicing regulators are 
associated with SCZ GWAS. C. Left, Colocalization analysis with eQTLs identified 2.13 fold more genes than the 
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CMC eQTLs (Fromer et al., 2016). Right, Most SCZ genes (66.2%) are not located in the genome-wide significant 
loci (LD defined as r2>0.6). D. SCZ risk genes are enriched for dysregulated genes in ASD and SCZ, genes affected 
by recurrent copy number variations (CNV) in SCZ (SCZ CNV), and genes intolerant to loss-of-function mutations 
(ExAC pLI>0.9). SCZ LGD, genes that harbor likely gene disrupting (LGD) mutations in SCZ; HC, SCZ high-
confidence genes; Downreg, downregulation; Upreg, upregulation. E. TFs that are significantly enriched in promoter 
regions of SCZ genes. F. TFs that are significantly enriched in enhancers that harbor SCZ credible SNPs.  

S8. Supp. content to main text section 
"Deep-learning model” 
S8.1 Data 
We integrate data of the kinds described above into a single model connecting genotype, functional 
genomics and phenotype data from PsychENCODE in the Prefrontal Cortex.  We build separate models 
for the phenotypes Schizophrenia (SCZ), Bipolar disorder (BPD), Autism spectrum disorder (ASD), age 
(AGE), gender (GEN) and reported ethnicity (ETH).  For each phenotype, we created 10 balanced train / 
test splits as described below, and we report the performance of all models averaged across these 10 splits 
of the data.  For the disease conditions, these splits contain equal numbers of cases and controls, while for 
age, gender and ethnicity, only control samples are used.  As inputs to the model during training, we use 
the imputed genotypes; intermediate phenotype data including gene expression, enhancer h3k27ac 
activation levels, cell fraction estimates, and co-expression module mean expression; and high-level 
phenotype data corresponding to the categories above.  Normalization of the gene expression and 
enhancer activation data was identical to that used in the QTL calculations.  Also, for the cRBM, cDBM 
and DSPN models, all functional genomics data was binarized by thresholding at the median value (per 
gene/enhancer/cell-type/module).  Further, DSPN model connectivity was constrained by using the 
estimated eQTLs, cQTLs and fQTLs, along with the Gene Regulatory Network (GRN) TF-gene and 
enhancer-gene linkages estimated in the elastic net analysis. 
 
 
8.1.1 Balanced Datasets 
We first describe how the balanced datasets are created for SCZ, and then describe how the balanced 
datasets are created for the other high-level phenotypes using a similar process with small modifications.  
For SCZ, we divide the PEC data into subsets, each containing samples from a common assay (BipSeq, 
brainGVEX, CMC, CMC-HBCC, Libd, UCLA-ASD, Yale-ASD or GTEx-DFC), the same gender (M or 
F), the same ethnicity (Caucasian (CC) or African American (AA), to which most samples belonged), and 
the same age range (1-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90+).  For each subset, 
we found all SCZ and control (CTR) samples within that subset, with counts # and $ for the number of 
cases and controls respectively.  We then sampled uniformly without replacement %&'(&)* = min	(#, $) 
SCZ samples and %&'(&)*  CTR samples from the subset to add to a ‘pool’ of samples for the current data 
split.  After having done this for all such subsets so that the pool contains %3445  SCZ and %3445  CTR 
samples, we partition the case samples randomly into groups of size  67 = 89&35:* ⋅ %3445< and 6= =

%3445 − 67 for training and testing respectively (9&35:* = 0.9), and do likewise to add equal numbers 
(67, 6=) of controls to each partition.  We repeat the whole process 10 times to generate 10 data splits; the 
above process ensures that each training and test partition contains a 50/50 split of SCZ/CTR samples, 
and additionally that the distribution of covariates (assay, gender, ethnicity and age) is approximately the 
same for cases and controls in the training and testing partitions. 

Exactly the same method is used to create balanced data splits for BPD.  For ASD, due to the 
limited number of cases, we set 9 = 0.8, and balance only for assay and gender (not for ethnicity and age 
range).  For the non-disease phenotypes (AGE, GEN and ETH), a similar method is used but with the 
following modifications.  Here, we use CTR samples only, and split the PEC data into subsets containing 
samples from a common assay, and which are matched on all covariates as above except the high-level 
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phenotype being modeled.  Then, equal numbers of samples are randomly selected for each binary value 
of the modeled phenotype to be added to the training/testing partitions (respectively 67 and 6= for training 
and testing as above); for GEN the binary values are M/F, for ETH they are CC/AA, and for AGE we 
binarize the trait as 0/1 such that 1 indicates that a sample is older than the median age of 51 (NB the 
median age binarization is used only when AGE is the modeled phenotype; for all other phenotypes age is 
balanced using the decade age bins as above).  The above method generates 10 data splits each of the 
following sizes (training/testing):  SCZ (640/70); BPD (170/18); ASD (50/12); AGE (244/26); ETH 
(284/30); GEN (312/34). 
 
 
S8.2 Model descriptions, training and inference with observed 
intermediate phenotypes 
 
8.2.1 Logistic regression (LR) 
We train LR models to predict a binary phenotype from a single level of predictors (either genotype or an 
intermediate phenotype).  The model has the form: 

C(D = 1|G) = H(I ⋅ G + K), 
where D is the phenotype, G is a vector of predictors, I is a weight vector, K is the bias term, and H is the 
logistic function, H(L) = 1/(1 + NOP).  Since training and test sets are both balanced, for a test sample 
we use the predictor D*)&* = [I ⋅ G*)&* + K > 0.5], where [L] is the Iverson bracket, which is 1 if a is 
true, and 0 otherwise. 
 
For each data split, we initially perform feature selection by calculating the correlation of each predictor 
with the high-level phenotype: 

UV = corr([D7, D=, …D[], \]7V, ]=V …][V^), 
where D: is the phenotype of the i’th training sample, ]:V is the value of the j’th predictor at the i’th 
training sample, and corr is the Pearson correlation function, corr(_, `) = _ ⋅ `/(a|_|a ⋅ a|`|a).  To 
perform feature selection, we rank the predictors by the absolute value of UV  in descending order for a 
given training split, and include only predictors 1… ⌈c%⌉ in the model for that data split. We learn two 
LR models for each phenotype, the first using the imputed genotypes at the eSNPs as predictors, and the 
second using PFC gene expression levels (transcriptome) as predictors.  We set c = 0.01 and c =

0.0001 for the genotype and transcriptome models respectively. For optimization, we use the Matlab 
Statistics and Machine Learning toolbox (glmfit). 
 
 
8.2.2 Conditional Restricted Boltzmann Machine (cRBM) 
A Restricted Boltzmann Machine (RBM) models the joint distribution of a set of visible and hidden units; 
we will denote the visible units as G and D corresponding to the intermediate and high-level phenotypes 
respectively, and the hidden units as e, all of which are binary variables (multivariate in the case of G and 
e).  An RBM has the form f(G, y, e) = expk−lmno(G, y, e)p /q, where q is a normalizing partition 
function, and lmno(G, y, e) is the RBM energy function, which has the form lmno(G, D, e) =

−[Gr, D]se− [Gr, D]`t − er`u, where s is a matrix of interaction weights between the visible and 
hidden units, and `t and `u are the visible and hidden bias terms respectively. A Conditional RBM 
(cRBM) models the conditional distribution of a set of visible and hidden units on a further set of 
conditioning (visible) units (see Mnih et al., 2012), which we will denote v, and which are assumed to be 
discrete:  

f(G, y, e|v) = expk−lwmno(G, y, e|v)p/q(v), 
lwmno(G, y, e|v) = −vrxG − [Gr, D]se− [Gr, D]`t − er`u, 

(1) 

(2) 

(3) 
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q(v) = y expk−lwmno(G, y, e|v)p,

G,z,e

		 

where x is a matrix of interaction weights between the conditioning and visible units (which are 
restricted here to exclude interactions involving D, and hence model only dependencies between genotype 
v and phenotype D which are mediated by the intermediate phenotypes G). 
 
Both the RBM and cRBM may be trained using Contrastive Divergence (CD).  In the case of the cRBM, 
CD finds an approximate gradient to the conditional log-likelihood of the training data:  

{log	(f(G, y|v))

{~:V

=< ]:ℎV|v >Å −< ]:ℎV|v >Ç≈< ]:ℎV|v >Å −< ]:ℎV|v >7= CDk~:Vp, 

where < L >Ü denotes the expected value of L after performing $ steps of alternating Gibbs 
sampling, starting with the visible units fixed to the training data (see Hinton, 2012 for the RBM 
case).  Approximate gradients for interactions involving D and v and the bias terms may be found 
similarly by estimating the expected statistics for  ]:D, á:]V, ]: and á: after one step of alternating Gibbs 
sampling.  The step size for the change in ~:V  at iteration 6, à*k~:Vp, may then be calculated as:  

à*k~:Vp = âà*O7k~:Vp − äCDk~:Vp − ã~:V, 
where â is a momentum parameter, ä is the learning rate, and ã is a weight cost to encourage sparsity.  At 
each iteration, we evaluate Eq. 5 using a subset of the training samples (a mini-batch), hence performing 
stochastic gradient descent (SGD).  We cycle once through the training data in disjoint mini-batches to 
form an epoch, and use early stopping after 9&*43 epochs to control for overfitting. 
 
Given a test sample, we wish to predict D given G and v (or v alone for imputation based inference, see 
below).  This can be achieved by maximizing the conditional probability of D and G given v, or 
equivalently minimizing the free-energy (see Hinton, 2012 for the RBM case): 

argmaxçkf(G, y|v)p = argminçké(G, y|v)p 

é(G, y|v) = −yK1è]è

è

− K1DD −yêèëáè]ë

èë

−y log í1 + exp íK2ë +y]è~èë

è

+ D~Dëîî

ë

. 

We use the 10 balanced data split above to train a series of models for each phenotype.  We initially 
perform feature selection (for each data split) using the method in Eq. 2 to identify a subset of genes to 
include as transcriptome predictors in G (setting c = 0.05), and include all eSNPs associated with these 
genes in v.  We also enforce sparsity on the matrix x during training, so that only connections supported 
by eQTLs are allowed to be non-zero.  Further, we set %ï = 400 (the number of hidden nodes), â = 0.1, 
ä = 1N − 4, and used mini-batches of size 61, 10, 17, 71, 39 and 64 for AGE, ASD, BPD, ETH, GEN and 
SCZ models respectively.  For 9&*43, we used either a variable setting which was set independently for 
each model trained, or a fixed setting which was held constant across all data-splits for a given phenotype.  
In each case, we trained all models for 100 epochs.  For the variable setting, we chose 9&*43 to minimize 
the test error for each data-split separately, while for the fixed setting we chose the 9&*43 which had the 
minimum mean test error across data-splits.  Results are shown using both variable (Fig. 6D) and fixed 
(Table. S8.1) settings for all phenotypes except ASD; for ASD we use only the fixed setting to control for 
the smaller number of samples in the ASD cohort.  Performance for each phenotype is calculated as an 
average across data splits for the accuracy of a model on its corresponding test partition. 
 
8.2.3 Conditional Deep Boltzmann Machine (cDBM) 
A Deep Boltzmann Machine (DBM) may be defined as in (Salakhutdinov and Hinton, 2012) as a 
Boltzmann machine with additional structure such that it can be viewed as a stack of RBMs.  The model 
with two hidden layers has the form: f(G, ó, et, eu) = expk−lòno(G, ó, et, eu)p /q, where q is a 
normalizing partition function, and lòno(G, ó, et, eu) is the DBM energy function, which has the form 
lòno(G, ó, et, eu) = −Grstet − et

rsueu − eu
rs5P(ó − \Gr, et

r, eu
r, ó^`. Here, st, su, s5P( are 

(4) 

(5) 

(6) 
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matrices of interaction weights between the visible and first-layer hidden units, the first and second layer 
hidden units, and the ‘labels’ and second-layer hidden units respectively.  For the DBM, we write ó as a 
vector, since for convenience we assume the class variables (high-level phenotypes) are represented using 
one-of-$ encoding (i.e. for a binary trait, either [1,0]r or [0,1]r for the two classes), and we write ` for a 
single vector combining all the bias terms. 
 
As for the cRBM, we can use a family of DBMs to model a conditional distribution which depends on a 
further set of variables, v.  This is equivalent to converting the DBM from a Markov Random Field 
(MRF) into a Conditional Random Field (CRF, see Koller and Friedmann, 2009).  We can thus define a 
conditional DBM analogously to the cRBM:  

f(G, ó, et, eu|v) = expk−lwòno(G, ó, et, eu|v)p /q(v), 
lwòno(G, ó, et, eu|v) = −vrxG − Grstet − et

rsueu − eu
rs5P(ó − \Gr, et

r, eu
r, ó^`, 

q(v) = y expk−lwòno(G, ó, et, eu|v)p

G,ó,et,eu

.		 

The cDBM can be trained by adapting the Persistent Markov Chain Monte Carlo algorithm used in 
(Salakhutdinov and Hinton, 2012).  In this approach, following a pre-training phase which uses CD to 
train adjacent layers as RBMs, the weights for the whole network are optimized jointly by approximating 
the gradient to the full data log-likelihood of the model.  For the cDBM, we can write the approximation 
as: 

{log	(f(G, ó|v))

{~7:V

≈< ]:ℎ7V|v >oô −< ]:ℎ7V|v >3oöoö= pMCMCk~7:Vp, 

where for convenience we show only the gradient for a weight in matrix st.  The first term <.>oô uses 
a mean-field approximation to evaluate the conditional expectation of ]:ℎ7V when G and v are clamped to 
their observed values (due to this clamping, the unimodal form of the mean-field distribution is expected 
to hold approximately).  Mean-field updates in the cDBM may be calculated straightforwardly by 
incorporating terms involving x into the energy.  The second term approximates the model statistics with 
G unclamped; in the case of the DBM a set of %3oö  persistent Markov Chains are maintained for this 
purpose, each tracking the trajectory of a ‘fantasy particle’ consisting of a joint setting of the model 
variables (G, ó, et, eu).  The fantasy particles make a fixed number of updates at each gradient iteration 
using the current model weight settings, and are not re-initialized (hence ‘persisting’) between gradient 
updates (each can be thought of as a series of Markov chains with changing parameters, or a single 
Markov chain over the model variables and weight parameters).  The fantasy particles can then be used to 
estimate the required model expectations for the gradient.  A similar approach can be used for the cDBM, 
only because the required term in the gradient is now a conditional expectation, it cannot be estimated by 
calculating expectations over a set of fantasy particles all evolving according to the same Markov process.  
Rather, a set of fantasy particles is required for each training sample (%3oö = %úPÜ*P&ç ⋅ %*ùP:Ü), each 
evolving according to a Markov process conditioned on that sample’s v value, and the expectation is 
calculated across the entire collection.  Stochastic gradient updates are then made to the weights as in Eq. 
5 (substituting pMCMC(. ) for CD(. )).  Finally, as in (Salakhutdinov and Hinton, 2012) back-propagation 
can be applied for fine-tuning, and we use a single forward pass through the network for prediction.  
Settings of the parameters above are described in the context of the DPSN in the following section. 
 
8.2.4 Deep Structured Phenotype Network (DSPN) 
We define a Deep Structured Phenotype Network (DSPN) as a conditional Deep Boltzmann Machine, 
with extra structure added to the visible units to reflect regulatory relationships between various 
intermediate phenotypes.  The general form of the model is:  

f(G, ó, et, eu|v) = expk−lòûü[(G, ó, et, eu|v)p/q(v), 
lòûü[(G, ó, et, eu|v) = −vrxG−Gr†G − Grstet − et

rsueu − eu
rs5P(ó− \Gr, et

r, eu
r, ó^`, 

q(v) = y expk−lòûü[(G, ó, et, eu|v)p

G,ó,et,eu

,		 

(7) 

(8) 

(9) 
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which is identical to the cDBM, except for the introduction of a matrix of interaction terms † between the 
visible units.  However, we also require that G, † and x have specific forms, such that: 

G = \G°¢£¢
r , G¢£§

r
, G•¶ß®

r
, G©™´

r ^
r

, 
Gr†G = G°¢£¢

r †¨≠ÆG°¢£¢ + G¢£§
r

†ØrO∞±£≤≥G°¢£¢ +	G•¶ß®
r

†©ß¶≤¢¶≥G°¢£¢ + G©™´
r

†¥¨µÆ∂G°¢£¢, 
vrxG = vrx¢∑r∏G°¢£¢ + vrx®∑r∏G¢£§ + vrx•∑r∏G•¶ß® + vrx©™´∑r∏G©™´, 

where G°¢£¢r , 	G¢£§
r

, 	G•¶ß®
r

, 	G©™´
r  are (binarized) representations of the gene expression, enhancer activity 

(h3k27ac level), cell-type fraction and co-expression module net activation respectively; †¨≠Æ is a sparse 
matrix where non-zero entries are allowed only between genes having a TF-target relationship determined 
by the elastic net model; †ØrO∞±£≤≥ is a sparse matrix where non-zeros are allowed only between 
enhancers and genes when an enhancer-target link is determined by the elastic net model; †©ß¶≤¢¶≥ and 
†¥¨Æ∂ are sparse matrices where non-zero entries are allowed only between a cell-type/co-expression 
module and the marker-genes/member-genes associated with it respectively; and 
x¢∑r∏, x®∑r∏, x•∑r∏, x©™´∑r∏are sparse matrices with non-zero elements allowed only between SNPs and 
genes/enhancers/cell-types/modules supported by a QTL linkage.  We note that the results of previous 
analyses (e.g. elastic net and QTL analyses) are used only to establish the sparse structure of the † and x 
matrices, but not the actual linkage values of the non-zero entries, which are learned during joint training 
of the DSPN model (along with the s and ` parameters).  In general, we do not expect the magnitudes 
established independently for these linkages in the previous analyses to relate in a straightforward way to 
their optimal settings in a joint model, and hence we use only the connectivity structure as prior 
information during training. 

The DSPN model can be trained similarly to the cDBM using persistent MCMC as described 
above.  Mean-field approximate inference and Gibbs sampling steps are straightforwardly adapted to 
incorporate the additional linkages between the visible units.  Because of the dependencies within the 
visible units, the mean-field and sampling steps cannot be made in parallel for the visible layer unlike the 
cDBM; for this reason, we choose a random update schedule of the nodes within the visible layer on each 
iteration, and update all other layers in parallel as before.  In principle, the approach described learns a 
model representing the joint distribution of intermediate and high-level phenotypes conditioned on 
genotypes, and so can be used for prediction of high-level phenotypes either directly from the 
intermediate phenotypes, or from the genotype with imputation when the intermediate layers are 
unobserved.  However, we adopt a slightly different training process when the goal is to provide a model 
for inference with imputed intermediate phenotypes, as described below, to optimize performance for this 
scenario.   We summarize here the parameter settings for the model with direct observations: we perform 
feature selection as in Eq. 2 for each intermediate phenotype (setting c = 0.05);  additionally, we set 
%ïπ

= 400 and %ï∫
= 100 (the number of hidden nodes in layers 1 and 2 respectively), %úPÜ*P&ç = 5,  

â = 0.1, ä = 1N − 4, and use variable/fixed settings of 9&*43 and mini-batch sizes as described above for 
the cRBM. 

 
 
S8.3 Imputation of intermediate phenotypes 
 
8.3.1 Deep Structured Phenotype Network with Imputation (DSPN-imput) 
To optimize performance for prediction of high-level phenotypes from genotype data with imputation of 
intermediate phenotypes, we adopt a specialized training process.  We assume that during training, we 
have access to fully observed genotype and intermediate phenotype data.  Additionally, we split the 
training data for each data split evenly into training and validation partitions. 
           First, we train logistic regression models independently to predict each intermediate phenotype 
(e.g. gene expression level, enhancer activation) from the genotype at each of its QTLs using the training 
partition.  We then fix the x matrices of the DSPN directly to the coefficients of the logistic regression 
models, and train †′ and st′ matrices (along with the biases for the visible layer and first hidden layer; 
primes indicate that these parameters are initial estimates only) by optimizing º(G|v) on the validation 
partition, while fixing all hidden nodes at the second layer to 0; since we only allow one level of hidden 

(10) 
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nodes to vary, this model is equivalent to a cRBM (with additional structure on the visible nodes), and 
hence we use the Contrastive Divergence (Eq. 5) for optimization. Additionally, we perform feature 
selection at this stage by only including in the model the top c°¢£¢, c¢£§, c•¶ß®, c©™´ proportion of 
intermediate phenotypes for each respective type as order by their predictive accuracy using the initial 
logistic predictor. We then use the partial cRBM model over (v, G, et) to jointly infer estimated 
intermediate phenotype data for the validation samples, which we label GΩæø¿¡ (we infer GΩæø¿¡  by 
initializing it to the maximum likelihood outputs of the logistic predictors, and performing Gibbs 
sampling according to the cRBM energy function to refine this estimate).  Finally, we train a full DSPN 
(with x still fixed) on the validation data, but optimized using the imputed rather than the original 
intermediate phenotype data, i.e. using  kv, GΩæø¿¡, ¬p as training samples.   

At test time, we do not make use of the intermediate phenotype data.  Instead, we follow a similar 
path to training, by first imputing the intermediate phenotype data using the partial cRBM model with 
parameters x, †′ and st′ (initialized using the individual logistic predictors used to form x).  We then 
treat the imputed phenotype data as fixed, and predict the associated high-level phenotype data from the 
full DSPN model using a forward pass as described for prediction in the cDBM model.  We train the 
imputation based DSPN model using the same hyper-parameters as for the DSPN above, while setting  
c°¢£¢ = 0.01, 	c¢£§ = 0.01, 	c•¶ß® = 0.5, c©™´ = 0.05. 

 
Fig. S8.1 Accuracy of intermediate phenotype imputation using DSPN-imput model  Figure compares 
prediction accuracy for gene expression and chromatin activity using the full DSPN-imput model (with GRN structure 
included) vs prediction with a logistic model (independent prediction). Performance on training and testing partitions is 
shown. 

 
 
S8.4 Variance explained on liability scale 
To covert predictive performance of all models onto the liability scale, we use the following conversion 
due to Falconer (see International Schizophrenia Consortium, 2009; Falconer and MacKay, 1996): 

ê5:P( = 2f34&k1 − f34&p(GRR − 1)=/i=, 
Here, ê5:P( is the variance explained on the liability scale, f34& is the probability the model predicts a 
genotype to be a case, GRR is the genotype relative risk, and è = á/≈, where ≈ is the disease prevalence, 
and á the height of a standard normal distribution when the cumulative distribution has height (1 − ≈).  
Letting L, K, ∆, « be the true negatives, false negatives, false positives and true positives respectively for a 
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given model on test data, we estimate f34& = (∆ + »
…

7O…
 «)/(L + ∆ + »

…

7O…
 (K + «)), and GRR =

(
À

wÃÀ
)/(

(

PÃ(
).  We set ≈ = 0.011, 0.01, 0.015 for SCZ, BPD and ASD respectively.  

 

 
Fig. S8.2 Potential causal relationships between genome, transcriptome/epigenome, macro-environment and 
high-level traits  A schematic of possible decomposition of variation in the indicated variables. Large circles 
represent total entropy of each variable, and smaller circles (e-det, g-det, trait-det) represent multivariate mutual 
information shared between variables linked by arrows (directionality represents causation). The red dotted circle and 
arrow represent causal influence of transcriptome/epigenome on the high-level trait, only part of which need intersect 
the g-det circle; hence, the trait variance explained by the transcriptome/epigenome is an upper-bound on the 
genetically determined trait variance. Only three-way intersections involving trait interactions are shown 

 
 
S8.5 Enrichment analysis for prioritized modules and higher-order 
groupings 
To provide interpretation of the DSPN model we develop a multilevel prioritization scheme, which, given 
a node of interest and a lower ‘projection layer’, defines positive and negative subsets of nodes on the 
projection layer which are most ‘important’ in influencing the value of the node of interest.  In our 
analysis, we take the node of interest to be either a high-level trait (e.g. SCZ), or a hidden-layer node, and 
the projection layer to be an intermediate phenotype; we then use the prioritized subsets either to look for 
intermediate phenotypes prioritized for a given trait, or to functionally annotate hidden-layer nodes by 
looking for functionally enriched categories in the prioritized subsets. 
  In general, we assume we have a neural network with layers Õ5 = Œ$5,7, $5,=, …$5,[œ

–, — = 0…%“ , 
with ÕÅ the lowest (input) layer and Õ[”

 the highest (output) layer.  We fix a node of interest on layer #, 
$∗ ∈ Õ÷, and a ‘branching factor’ ◊, which will determine the maximum size of the prioritized sets 
associated with $∗.  Given these, we recursively define the positive and negative sets ÿ(5,Ã) and ÿ(5,O) 
associated with $∗ for all — ≤ #.  We start by defining ÿ(÷,Ã) = {$∗} and ÿ(÷,Ã) = {}.  Then, for all — <
#: 

ÿ(5,Ã) = ‹ › ◊(Ü,Ã)

Ü∈û(œfiπ,fi)

fl ∪ ‹ › ◊(Ü,O)

Ü∈û(œfiπ,·)

fl, 

ÿ(5,O) = ‹ › ◊(Ü,O)

Ü∈û(œfiπ,fi)

fl ∪ ‹ › ◊(Ü,Ã)

Ü∈û(œfiπ,·)

fl, 

where we define the sets ◊(Ü,Ã), ◊(Ü,O) ⊂ Õ5 for $ ∈ Õ5Ã7 as ◊(Ü,Ã) = {$„	|	rankÜ
Ã($„) ≤ ◊} and ◊(Ü,O) =

{$„	|	rankÜ
O($„) ≤ ◊}, where the function rankÜ

Ã($„) returns the rank of $„ when the nodes of layer Õ are 
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ranked in descending order by the network weights ~Ü,ÜÂ, and rankÜ
O($„) returns the rank when the nodes 

are ranked in ascending order by the same weights.  We note that ÿ(5,Ã) and ÿ(5,O) may contain common 
elements (i.e. nodes that contribute both positively and negatively to variation in a higher-level node). 
 
To find prioritized modules for a given trait, we fix the ‘projection layer’ — to be the co-expression module 
sublayer in the DSPN (Õ7(O:: in Fig. 6A), and find the sets ÿ(5,Ã) and ÿ(5,O) when $∗ is set to the output 
trait node.  We repeat this analysis for models trained on the 10 splits of the data for the given trait, 
generating 10 positive and negative projected sets.  For module $5,:, we then calculate the counts ∆(:,Ã) =
∑ [$5,: ∈* ÿ(5,Ã)

*
], where ÿ(5,Ã)

*  is the positive projected set from the model trained on data split 6, and 
∆(:,O) = ∑ [$5,: ∈* ÿ(5,O)

*
].  For our final list of positive and negative prioritized modules we use ÿÃ =

Œ$5,: 	a	∆(:,Ã) > 9Á¶±™¶±Ë±È¢} and  ÿO = Œ$5,: 	a	∆(:,O) > 9Á¶±™¶±Ë±È¢} respectively.  The threshold 9Á¶±™¶±Ë±È¢ is set 
such that, fk∆(:,Ã) > 9Á¶±™¶±Ë±È¢	|	◊p < â under a null distribution where the network weights are sampled 
from a standard normal distribution and the same branching factor ◊ is used.  We set â = 0.001, and 
evaluate 9Á¶±™¶±Ë±È¢ using 10,000 simulations.  Setting ◊ = 4, we found that this implied an estimate of  
9Á¶±™¶±Ë±È¢ = 3, and generated  ∼ 30 positive and negative prioritized modules per trait (out of ∼ 5000). 
 To annotate ‘typical’ ancestor nodes of module $5,: at layers — + 1 and — + 2 in the DSPN (hidden 
layers Õ=P and Õ=( respectively in Fig. 6A), for each data split we find nodes $5Ã7,V and $5Ã=,Ï  such that 
($5,: , $5Ã7,V, $5Ã=,Ï) forms the ‘best path’ from module $5,: to the trait output node in the sense that it 
minimizes the score: 

Sc = y min	(rankÜ
œÂfiπ,ÓÂ

Ã k$5Â,:Âp, rankÜ
œÂfiπ,ÓÂ

O k$5Â,:Âp)

(5Â,:Â,VÂ)∈{(5,:,V),(5Ã7,V,Ï),(5Ã=,Ï,Å)}

,	 

across all ‘positive’ paths, meaning:  

∏ (−1)
[¶ß£≤

œÂfiπ,ÓÂ
· »Ü

œÂ,ÒÂ
 Ún]

(5Â,:Â,VÂ) ⋅ ÛminÙrankÜ
œÂfiπ,ÓÂ

Ã k$5Â,:Âp, rankÜ
œÂfiπ,ÓÂ

O k$5Â,:Âpı ≤ ◊ˆ = 1, 

and ties are broken arbitrarily (a similar annotation can be made for negative paths by placing −1 on the 
RHS of Eq. 13). Writing $5Ã7,V

*
, $5Ã=,Ï

*  for the nodes on the best path from module $5,: in the model from 
data split 6, we evaluate the counts for all modules, ∆(:Â,Ã) = ∑ [$5,:Â ∈* ÿ(5,Ã)

*
($5Ã7,V

*
)] and «(:Â,Ã) =

∑ [$5,:Â ∈* ÿ(5,Ã)
*

($5Ã=,Ï
* )], where we write ÿ(5,Ã)

*
($) for the positive projected set at level — for data split 6 

when we set the node of interest $∗ = $.  We then evaluate ÿwÃ = Œ$5,:Â 	a	∆(:Â,Ã) > 9Á¶±™¶±Ë±È¢} and  ÿÀÃ =

Œ$5,:Â 	a	«(:Â,Ã) > 9Á¶±™¶±Ë±È¢} where 9Á¶±™¶±Ë±È¢ is defined as above, and annotate a typical (positive) ancestor 
of $5,: at layer — + 1 (respectively — + 2) by finding the functional annotations enriched in the gene-set 
formed by taking the union of the co-expression modules in ÿwÃ (respectively ÿÀÃ). 

We perform functional enrichment analysis using the R package ‘clusterProfiler’ (Yu et al., 2012) 
using KEGG pathway annotations, and setting the p-value and q-value cutoffs to 0.05 and 0.1 
respectively.  Further, we perform enrichment analysis for the cell-type marker genes corresponding to 
the cell-types used in our single-cell deconvolution analysis.  Here, we threshold the marker gene 
expression matrix for each gene independently at its 0.75 quantile value to define a collection of subsets 
of marker genes for each cell-type.  We test for enrichment of cell type markers using the hypergeometric 
test with a p-value cutoff of 0.1.  Finally, we also compare the modules prioritized for our SCZ model 
using the above approach with those prioritized using a gradient-based approach, following (Simonyan et 
al., 2013) where the magnitude of the gradient of the response of a node of interest (in our case, the trait 
node responses across the training set) is use to prioritize salient input nodes (modules).  We provide the 
results of this analysis in the enrichment analysis data file on the website (adult.psychencode.org), but 
found it to exhibit a strong bias towards prioritizing smaller modules, which may be due to the 
underestimation of the contribution of saturated nodes in gradient approaches (see Shrikumar et al., 2017, 
which attempts to circumvent these problems, but requires definition of a ‘reference’ state which is 
unclear in our model), causing us to prefer the prioritization scheme developed above, in which we did 
not observe such a bias.   

(13) 

(14) 
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Fig. S8.3 Schematic representation of prioritization scheme for interpreting DSPN latent nodes and modules  
Circles represent nodes on three layers within the DPSN, along with a ‘node of interest’ on the upper layer. The 
prioritization shown uses a branching factor of 2, where red and blue links indicate the largest positive and negatively 
weighted edge respectively connected to each node from below. + and - signs represent the positive and negative 
prioritized sets for the node of interest at each of the lower levels, which are assigned based on the multiplication of 
signs along connecting paths (conflicting pathways would result in assignment to both positive and negative sets; not 
shown). 

 

 
 

Fig. S8.4 Further DSPN traces for functional enrichment of prioritized modules in DSPN models  Examples are 
shown of genes belonging to prioritized modules in BPD (left) and AGE (right) related DSPN models. HOMER1 has 
previously been associated with BPD, and NRGN was strongly associated with age in our differential expression 
analysis (as well as being a SCZ associated gene). An associated data file summarizing the functional and cell-type 
enrichments in the prioritized modules of all phenotypes can be found on the website (adult.psychencode.org).  
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Fig. S8.5 Enrichment of GWAS SNPs in DSPN prioritized modules. Figure shows enrichment of GWAS SNPs 
associated with SCZ and BPD in the DSPN modules prioritized in the SCZ and BPD models. SNPs are linked with 
prioritized modules using all eQTLs associated with genes they contain. Enrichment is tested using a 1-tailed Mann-
Whitney test for an increase in the number of GWAS SNPs per gene in prioritized versus non-prioritized modules. We 
observe enrichments for both disease modules with their respective GWAS SNPs, and also an enrichment of BPD 
GWAS SNPs in the SCZ modules, consistent with an overlap in disease etiology. 

 

 
 
Table S8.1 Performance of DSPN-mod and comparison of stopping criteria. Performance of DSPN-mod and 
other models are shown using (a) fixed and (b) variable early stopping thresholds, as described in the supplemental 
text (S8.2). Test accuracy is shown for all models along with corresponding liability scores in brackets averaged 
across 10-fold cross validation data splits. A fixed threshold only is used for the ASD model (due to small sample 
size); variable threshold settings for cRBM, DSPN-imput and DSPN-full models are as in Fig. 6D for all phenotypes 
except ASD.  
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S9. Resource website and raw data 
S9.1 Resource website: http://adult.psychencode.org/ 
The website contains much supplementary information related to the project, including the raw and 
processed data files them. For convenience, we reproduce below some sections of the site and from the 
PsychENCODE Synapse website related to the descriptions of the data files. 

S9.2 RNA-seq, ChIP-seq and genotype data (The text in this section 
up to Study 8 was directly adapted from the Psychencode/Synapse 
Website). 
We processed data from 9 studies: UCLA-ASD, Yale-ASD, BrainGVEX, the The Lieber Institute for 
Brain Development (LIBD), GTEx, the CommonMind Consortium (CMC), the CMC’s NIMH Human 
Brain Collection Core (CMC HBCC) and Bipseq a Bipolar cohorts. The detailed descriptions of 
PsychENCODE related 8 studies were listed below and may also be found on supplemental Table S2.1, 
as well as in the PsychENCODE Knowledge Portal 
(https://www.synapse.org/#!Synapse:syn4921369/wiki/390659 ).   
 
Study 1 - BrainGVEX 
RNA-seq: RNAseq data was generated from 427 postmortem prefrontal cortex from subjects with 
schizophrenia (n=95), bipolar disorder (n=73), and non-psychiatric controls (n=259), as part of the 
BrainGVEX study (Synapse accession doi:10.7303/syn4590909) within the PsychEncode Consortium 
(https://www.synapse.org/pec) (72). BrainGVEX study includes RNA samples collected as part of the 
“Array Collection”, “Consortium Collection”, “New Collection” and ”Extra Collection” from the Stanley 
Medical Research Institute (SMRI). Array collection and Consortium collection were from superior 
frontal gyrus (BA9) whereas those labelled EXTRA or NEW were from the middle frontal gyrus (BA46). 
Another 184 controls were obtained as fresh-frozen brain tissue from the Banner Sun Health Research 
Institute (BSHRI). All BSHRI samples were from frontal cortex. RNA were extracted from BSHRI 
samples by first homogenizing 20-50 mg of tissue in QIAzol (Qiagen) using the Lysin Matrix D and 
FastPrep®-24 system (MPBiomedicals). Total RNA were then isolated using the miRNeasy Kit (Qiagen) 
according to manufacturer’s instructions. RNA integrity was assessed with Agilent Technologies RNA 
600 nano kit. Samples with RNA Integrity Number (RIN) lower than 5.5 were excluded from the study. 
RNA sequencing libraries were prepared using TruSeq Stranded Total RNA sample prep kit with 
RiboZero Gold HMR (Illumina). Libraries were multiplexed (3 per lane) for paired-end 100 bp 
sequencing on Illumina HiSeq2000 with read depth >70 million reads on average. 
 
Genotyping: DNA genotyping were done using two different platforms. 144 samples (SMRI Consortium 
and Array Collections) were genotyped using the Affymetrix GeneChip Mapping 5.0K Array. Genotypes 
were called with the BRLMM-p algorithm (Affymetrix) with all arrays simultaneously (Zhang et al., 
2010). The rest of samples (SMRI New and Extra Collection, and BSHRI Collection) were genotyped 
with the Human PsychChip, which is a custom version of the Illumina Infinium CoreExome-24 v1.1 
BeadChip (#WG-331-1111) supplemented with content derived from GWASs and DNA sequencing 
studies of multiple psychiatric disorders by the Psychiatric Genomics Consortium (PGC). Genotypes were 
called using Illumina’s GenomeStudio software, Birdseed and Zcall, as described (Code found at: 
https://github.com/Nealelab/ricopili/blob/master/rp_bin/mergecall_10) (Pedersen et al., 2018). 
 
GenomeStudio and Birdseed were used separately to initially call variants in 288 individuals. Accepted 
variants had a call frequency greater than 97% and a Hardy-Weinberg Equilibrium (HWE) p-value > 1 x 
10-6. 24 of the 288 individuals were immediately excluded because they were missing calls for >5% of 
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genotyped SNPs, when either caller was used. Birdseed and GenomeStudio variant calls were then 
merged by consensus. If both programs returned a different result for a single variant, the final call for 
that variant was set to “missing.” When a call was made with only one of the two programs, that 
successful call was deemed the consensus. 
 
The resulting merged consensus data was filtered again according to the same call frequency, sample 
missingness, MAF and HWE criteria described above. Finally, valid rare variant calls were refined using 
Zcall. Meaning, genotype calls for variants with MAF < 0.01 in the merged and filtered dataset were 
replaced with zCall results when, in zCall, their HWE p-values > 1 x 10-6, missingness rates were below 
3% and MAF < 0.05. Note that zCall only refines GenomeStudio calls, so zCall results are independent of 
Birdseed calls. Ultimately 577,643 variants were called, 242,272 being rare.  
 
Study 2- BrainSpan 
RNA-seq: RNA was extracted using RNeasy Plus Mini Kit (Qiagen) for mRNA. Either approximately 30 
mg of pulverized tissue (12 PCW – 40 Y specimens) or entire amount of dissected brain piece (8 – 9 
PCW, smaller than 30 mg) was processed. Tissue was pulverized with liquid nitrogen in a chilled mortar 
and pestle and transferred to a chilled safe-lock microcentrifuge tube (Eppendorf). Per tissue mass, equal 
mass of chilled stainless steel beads (Next Advance, cat# SSB14B) along with two volumes of lysis 
buffer were added. Tissue was homogenized for 1 min in Bullet Blender (Next Advance # SSB14B) at 
speed 6 and incubated at 37°C for 5 min. Lysis buffer up to 0.6 ml was again added, tissue homogenized 
for 1 min and incubated at 37°C for 1 min. Extraction was further carried out according to manufacturer’s 
protocol. Genomic DNA was removed by a proprietary column provided in RNeasy Plus Mini Kit 
(Qiagen) or by DNase treatment using TURBO DNA-free Kit (Ambion/ Life technologies). 260:A280 
ratio and RNA Integrity Number (RIN) were determined for each sample with NanoDrop (Thermo 
Scientific) and Agilent 2100 Bioanalyzer system, respectively. 
 
The mRNA-sequencing (mRNA-seq) Sample preparation Kit (Illumina) was used to prepare cDNA 
libraries per manufacturer instructions with some modifications. Briefly, polyA RNA was purified from 1 
to 5 µg of total RNA using Oligo (dT) beads. Quaint-IT RiboGreen RNA Assay Kit (Invitrogen) was used 
to quantitate purified mRNA with the NanoDrop 3300. Following mRNA quantitation, 2.5 µl spike-in 
master mixes, containing five different types of RNA molecules at varying amounts (2.5 × 10-7 to 2.5 × 
10-14 mol), were added per 100 ng of mRNA. Spike-in RNAs were synthesized by the External RNA 
Control Consortium (ERCC) by in vitro transcription of de novo DNA sequences or DNA derived from 
B. subtilis or the deep-sea vent microbe M. jannaschii and were a generous gift of Dr. Mark Salit at The 
National Institute of Standards and Technology (NIST). Each sample was tagged by adding two spike-in 
RNAs unique to the region from which the sample was taken. Besides, three common spike-in RNAs 
with gradient concentrations were added to each sample, aiming at the assessment of sequencing quality. 
Spike-in sequences are available at http://archive.gersteinlab.org/proj/brainseq/spike_in/spike_in.fa. The 
mixture of mRNA and spike-in RNAs was subjected to fragmentation, reverse transcription, end repair, 3’ 
end adenylation, and adapter ligation to generate libraries of short cDNA molecules, followed by PCR 
amplification. The PCR enriched product was assessed for its size distribution and concentration using 
Bioanalyzer DNA 1000 Kit. 
 
Single Cell RNA-seq: Neurotypical control tissue samples used in this study were obtained from various 
sources. Tissue was collected after obtaining parental or next of kin consent and with approval by the 
institutional review boards at the Yale University School of Medicine, and at each institution from which 
tissue specimens were obtained. Tissue was handled in accordance with ethical guidelines and regulations 
for the research use of human brain tissue set forth by the NIH and the WMA Declaration of Helsinki.  
Fresh tissue samples were received in Hibernate E solution. Tissues were then dissected depending on 
their ages. Embryonic samples were dissected under microscope and the whole pallial wall was sampled. 
Samples from later stages were placed on ventral side up onto a chilled aluminum plate (1 cm thick) on 
ice. The brainstem and cerebellum were removed from the cerebrum by making a transverse cut at the 
junction between the diencephalon and midbrain. Next, the cerebrum was divided into left and right 
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hemispheres by cutting along the midline using a Tissue-Tek Accu-Edge trimming blade, 260 mm. The 
regions of interest were dissected using a scalpel blade and immediately processed. The sampled area 
corresponds to dorsolateral prefrontal cortex (DLPFC) and it was sampled from the middle third of the 
dorsolateral surface of the anterior third of the cerebral hemisphere. These specimens contained the 
marginal zone, cortical plate, and part of the underlying subplate. Dissected tissue was dissociated to cell 
suspension using Papain-Protease-DNase (PPD) and gentleMACS dissociator (Miltenyi Biotec). Cell 
suspension was then processed on Fluidigm C1 machine to capture single cells, according to 
manufacturer's protocol. RNA extraction from each single cell was carried out on Fluidigm C1 machine, 
according to manufacturer's protocol. 
 
Genotype data was not used in this study due to the small adult sample size. 
 
Study 3 - CommonMind 
Full details of the CommonMind study have been published (19). Data is available through the Sage 
Bionetworks Synapse system (https://www.synapse.org/cmc; doi:10.7303/syn2759792). Samples were 
acquired through brain banks at three institutions:The Mount Sinai NIH Brain Bank and Tissue 
Repository, University of Pennsylvania Brain Bank of Psychiatric illnesses and Alzheimer’s Disease Core 
Center, and the University of Pittsburgh NIH NeuroBioBank Brain and Tissue Repository. Details about 
brain banks, inclusion/exclusion criteria, and sample collection and processing are described here: 
https://www.synapse.org/#!Synapse:syn2759792/wiki/71104 
 
RNA-seq: RNA-seq data from 613 total human postmortem dorsolateral prefrontal cortex (DLPFC) brain 
samples were obtained from 603 subjects with schizophrenia (n=263), bipolar disorder (n=47), affective 
disorder (8), and neurotypical controls (n=285), where 10 neurotypical controls were sequenced as 
biological replicates). Total RNA was extracted from 50 mg of homogenized DLPFC brain tissue using 
RNeasy kit. Samples with RIN < 5.5 (n=51) were excluded. The remaining samples had a mean RIN of 
7.7. RNAseq library preparation was performed using ribosomal RNA depletion, with the Ribozero 
Magnetic Gold Kit. Samples were barcoded, multiplexed (n=10/lane), and sequenced across two lanes as 
100 bp paired end sequencing on the Illumina HiSeq 2500 with an average of 85 million reads. Data is 
provided for those samples that passed all of the following QC filters: samples were required to have had 
a minimum of 50 million total reads and less than 5% rRNA alignment. 
 
ChIP-seq: ChIP-seq data of H3K27ac and H3K4me3 of NeuN+ cells were generated on a subset of the 
CommonMind Samples in PsychENCODE Epidiff study. Full details of the data generation protocal 
could be found in one of the published methods paper (Kundakovic M et al., 2017) We used H3K27ac 
from Dorsolateral Prefrontal Cortex of 117 neurotypical controls and 109 schizophrenia individuals. 
 
Genotyping: DNA was isolated from approximately 10 mg dry homogenized tissue coming from the 
same dissected samples as the RNA isolation using the Qiagen DNeasy Blood and Tissue Kit according 
to manufacturer’s protocol. Genotyping was performed using the Illumina Infinium 
HumanOmniExpressExome platform (Catalog #: WG-351-2301). All data were checked for discordance 
between nominal and genetically-inferred sex using Plink software to calculate the mean homozygosity 
rate across X-chromosome markers and to evaluate the presence or absence of Y-chromosome markers. 
In addition, pairwise comparison of samples across all genotypes was done to identify potentially 
duplicate samples (genotypes > 99% concordant) or related individuals using Plink. 
 
Study 4 - Yale-ASD 
RNA-seq: Total RNA was extracted using mirVana kit (Ambion) with some modifications to the 
manufacturer’s protocol. Approximately 60 mg of tissue was pulverized with liquid nitrogen in a 
prechilled mortar and pestle and transferred to a chilled safe-lock microcentrifuge tube (Eppendorf). Per 
tissue mass, equal mass of chilled stainless steel beads (Next Advance, catalog # SSB14B) along with one 
volume of lysis/binding buffer were added. Tissue was homogenized for 1 min in Bullet Blender (Next 
Advance) and incubated at 37°C for 1 min. Another nine volumes of the lysis/binding buffer were added, 
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homogenized for 1 min, and incubated at 37°C for 2 min. One-tenth volume of miRNA Homogenate 
Additive was added and extraction was carried out according to the manufacturer’s protocol. RNA was 
treated with DNase using TURBO DNA-free Kit (Ambion/ Life Technologies) and RNA integrity was 
measured using Agilent 2200 TapeStation System. Barcoded libraries for RNA-seq were prepared with 
5ng of RNA using TruSeq Stranded Total RNA with Ribo-Zero Gold kit (Illumina) per manufacturer’s 
protocol. Paired-end sequencing (100bp x 2) was performed on HiSeq 2000 sequencers (Illumina) at Yale 
Center for Genome Analysis. 

 
Genotype data is not available yet for this study. 
 
Study 5 - UCLA-ASD 
Full details of the UCLA-ASD study have been published (Parikshak, et al., 2016). 
 
RNA-seq: RNA-seq data for replication was generated from 251 postmortem cortex brain samples from 
subjects with ASD and non-psychiatric controls, across frontal cortex (BA9/46), temporal cortex 
(BA41/42/22), and cerebellum. 
 
Brain samples were obtained from the Harvard Brain Bank as part of the Autism Tissue Project (ATP). 
An ASD diagnosis was confirmed by the Autism Diagnostic Interview-Revised (ADIR) in 48 of the 
subjects. In the remaining two subjects, diagnosis was supported by clinical history. Frozen brain regions 
were dissected on dry ice in a dehydrated dissection chamber to reduce degradation effects from sample 
thawing or humidity. Approximately 50-100mg of tissue across the cortical region of interest was isolated 
from each sample using the miRNeasy kit with no modifications (Qiagen). For each RNA sample, RNA 
quality was quantified using the RNA Integrity Number (RIN) on an Agilent Bioanalyzer. Strand-
specific, rRNA-depleted RNAseq libraries were prepared using TruSeq Stranded Total RNA sample prep 
kit with RiboZero Gold (Illumnia) kits. Libraries were randomly pooled to multiplex 24 samples per lane 
using Illumina TruSeq barcodes. Each lane was sequenced five times on an Illumina HiSeq 2500 
instrument using high output mode with standard chemistry and protocols for 50 bp paired-end reads to 
achieve a target depth of 70 million reads.  
 
ChIP-seq: For each ChIP-seq experiment approximatively 100mg of frozen brain tissue per sample was 
aliquoted and thawed on ice in 1ml PBS buffer. Tissue was then homogenized using a manual glass 
douncer with 7-15 slow strokes on ice. The cell suspension was filtered with a 40uM cell strainer (Falcon) 
by spinning at 2000rpm for 1 minute at 4C in a swing bucket centrifuge (Eppendorf Centrifuge 5810R). 
Pellets were then washed twice with cold PBS, crosslinked with 1% formaldehyde for 15 minutes at room 
temperature and excess formaldehyde quenched by addition of glycine (0.625M). Cells were lysed with 
FA and nuclei were collected and re-suspended in 300 µl SDS lysis buffer (1% SDS, 1% Triton X 100, 2 
mM EDTA, 50 mM Hepes-KOH [pH 7.5], 0.1% Na dodecyl-sulfate, Roche 1X Complete protease 
inhibitor). Nuclei were lysed for 15 minutes, after which sonication was used to fragment chromatin to an 
average size of 200–500 bp (Bioruptor Next gen, Diagenode). Protein-DNA complexes were immuno-
precipitated using 3 µg of H3K27acetyl antibody of the same lot for all ChIP experiments (catalogue 
number 39133; Actif motif) coupled to 50µl protein G Dynal beads (Invitrogen) overnight. The beads 
were washed and protein-DNA complexes were eluted with 150 µl of elution buffer (1% SDS, 10 mM 
EDTA, 50 mM Tris.HCl [pH 8]), followed by protease treatment and de-crosslinking at 65°C overnight. 
After phenol/chloroform extraction, DNA was purified by ethanol precipitation. Library preparation was 
performed as in (Quail et al., 2008). After 15 cycles of PCR using indexing primers, libraries were size 
selected for 300-500 bp on low melting agarose gel and 4 libraries were pooled and sequenced in one lane 
of 2 x 100bp using the same Illumina HiSeq 2000 with V3 reagents.  

 
Genotyping: Genotyping was performed using Illumina Omni 2.5 arrays. 
 
Study 6 - BipSeq 
RNAseq: same as below Study 8 
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Genotyping: same as below Study 8 
 
 
Study 7 - CMC_HBCC 
Brain specimens for the CMC_HBCC study were obtained from the the NIMH Human Brain Collection 
Core (HBCC) (https://www.nimh.nih.gov/labs-at-nimh/research-areas/research-support-
services/hbcc/human-brain-collection-core-hbcc.shtml) under protocols approved by the CNS IRB 
(NCT00001260), with the permission of the next-of-kin through the Offices of the Chief Medical 
Examiners in the District of Columbia, Northern Virginia and Central Virginia. All specimens were 
characterized neuropathologically, clinically and toxicologically. A clinical diagnosis was obtained 
through family interviews and review of medical records by two psychiatrists based on DSMIV criteria. 
Non-psychiatric controls were defined as having no history of a psychiatric condition or substance use 
disorder.  
 
RNAseq: Samples were dissected at the NIMH Human Brain Collection Core and shipped to Ichan 
School of Medicine - Mt Sinai (ISMMS) for sample preparation and RNA-sequencing. Samples for the 
study were dissected from either the left or right hemisphere of fresh frozen coronal slabs cut at autopsy 
from the dorsolateral prefrontal cortex. Total RNA from 468 HBCC samples was isolated from 
approximately 100 mg homogenized tissue from each sample by TRIzol/chloroform extraction and 
purification with the Qiagen RNeasy kit (Cat#74106) according to manufacturer’s protocol. Samples were 
processed in randomized batches of 12. The order of extraction was assigned randomly with respect to 
diagnosis and all other sample characteristics. The mean total RNA yield was 24.2 ug. The RNA Integrity 
Number (RIN) was determined by fractionating RNA samples on the 4200 Agilent TapeStation System. 
69 samples with RIN <5.5 were excluded from the study. An additional 12 samples were removed post 
sequencing due to evidence of sample swap or contamination, resulting in a final dataset of 387 samples 
with a mean RIN of 7.5 and a mean ratio of 260/280 of 2.0. (Bipolar Disorder n=70, Schizophrenia n=97, 
neurotypical controls n=220) RNA sequencing raw and quantified expression data is provided for 387 
samples consisting of data from 387 unique individuals. Data was generated, QCed, processed and 
quantified as follows: All samples submitted to the New York Genome Center for RNAseq were prepared 
for sequencing in randomized batches of 94. The sequencing libraries were prepared using the KAPA 
Stranded RNAseq Kit with RiboErase (KAPA Biosystems). rRNA was depleted from 1ug of RNA using 
the KAPA RiboErase protocol that is integrated into the KAPA Stranded RNAseq Kit. The insert size and 
DNA concentration of the sequencing library was determined on Fragment Analyzer Automated CE 
System (Advanced Analytical) and Quant-iT PicoGreen (ThermoFisher) respectively. A pool of 10 
barcoded libraries were layered on a random selection of two of the eight lanes of the Illumina flow cell at 
appropriate concentration and bridge amplified to ~ 250 million raw clusters. One-hundred base pair 
paired end reads were obtained on a HiSeq 2500.  
 
Genotyping: Genotyping was done on the Illumina_1M, Illumina_h650, and Illumina_Omni5 platform.  
 
Study 8 - LIBD_szControl + BipSeq 
RNAseq: Post-mortem tissue homogenates of dorsolateral prefrontal cortex grey matter (DLPFC) 
approximating BA46/9 in postnatal samples and the corresponding region of PFC in fetal samples were 
obtained from all subjects. Total RNA was extracted from ~100 mg of tissue using the RNeasy kit 
(Qiagen) according to the manufacturer’s protocol. The poly-A containing RNA molecules were purified 
from 1 µg DNAse treated total RNA and sequencing libraries were constructed using the Illumina 
TruSeq© RNA Sample Preparation v2 kit. Sequencing indices/barcodes were inserted into Illumina 
adapters allowing samples to be multiplexed in across lanes in each flow cell. These products were then 
purified and enriched with PCR to create the final cDNA library for high throughput sequencing using an 
Illumina HiSeq 2000 with paired end 2x100bp reads. More details are available in: 
https://www.biorxiv.org/content/early/2017/11/22/124321  
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Genotyping: SNP genotyping with HumanHap650Y_V3, Human 1M-Duo_V3, and Omni5 BeadChips 
(Illumina, San Diego, CA) was carried out according to the manufacturer’s instructions with DNA 
extracted from cerebellar tissue. Genotype data were processed and normalized with the crlmm 
R/Bioconductor package separately by platform. 
 
There is an overlap in the donors and samples used for CMC_HBCC and LIBD_scControl and BipSeq 
came from, because they originate from the same brain bank (the NIMH human brain collection core). 
There is therefore a set of biological replicates from the same brain region where the samples have been 
processed separately. The same individual ID has been used on all 3 studies. The CMC data also has a set 
of 10 biological replicates (all controls). The individual IDs are the same (starting with CMC_..). We 
included all samples (including replicates) and accounted for them using random effect mixed model. 

 
An initial quality control step was taken in which all datasets were first pre-processed to remove outliers 
using a hierarchical clustering based global outlier detection. Samples from UCLA were subdivided into 
three different brain regions (vermis, Brodmann area 9, and Brodmann area 41). 
 
The gene expression data from these 9 centers were merged into one gene expression matrix, and 
subsequently normalized using the protocol detailed by GTEx (GTEx Consortium, 2017). 
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