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[bookmark: _2qpcljffkivy]Introduction on PsychENCODE data & more on the supplement
This document provides an organized reference to support datasets, pipelines, and analyses associated with this study. It is presented in a parallel fashion to the main text. It is also connected to the main text through the major results presented in the form of main text figures – captions associated with main text figures point to relevant subsections within this supplement. In cases where the related supplementary section is not readily apparent, we note "see supp. section xyz” to refer to a specific section.
Large datasets produced by the psychENCODE consortium include over 2,000 human brain samples for healthy controls and individuals afflicted by neuropsychiatric diseases. These include full genotyping, RNA-seq, ChIP-seq, and single-cell data. It also includes processed data such as expression QTLs and chromatin QTLs trait loci, enhancers that are active in different brain regions, in addition to differentially expressed genes, transcripts, and novel non-coding RNAs. These are also provided at the resolution of brain sub-regions, thereby providing valuable resources for investigating potential underlying factors for an array of psychiatric diseases.
However, the very richness of this data introduces considerable challenges with respect to data organization. Our analyses rely on multiple methodologies, the details of which are difficult to include within the main text of this paper. 
The data resources may be organized into a pyramid-like structure, with large raw data files at the base, and more processed summary data organized at higher levels. The raw data files include datasets from PyschENCODE, ENCODE, CommonMind, GTEx, Epigenomics Roadmap, and others. These comprise RNA-seq expression quantification data, ChIP-seq signal track qualifications and peak identifications using ENCODE standard pipelines, in addition to private data such as imputed genotypes. Further up the pyramid, more readily human-interpretable data and descriptors populate the top. These more processed datasets include patient metadata and phenotypes (such as disease status), fully processed epigenomic signals and peaks, active enhancers, QTLs, differentially expressed genes and transcripts, and regulatory networks. 
With the aim of presenting data and results (including software packages) in an organized way, we have written about this study in roughly a hierarchical fashion. The main text lies at the top of this hierarchy and synthesizes everything in a broad manner. It refers to more detailed descriptions of our methods and datasets, as provided in this supplement. Raw data files, which lie at the bottom of the hierarchy (and which are hosted as online resources) form the bedrock from which our results are built. 
[bookmark: _ce39b9ypvswq]S1. Supp. content to main text section "Resource construction"
The PsychENCODE data covers a number of phenotypes on mental health. These include normal controls (n=1104), as well as schizophrenia (n=558), bipolar (n=217), autism spectrum disorder, (n=44), and affective disorder (n=8) (Fig. 1). There are 1246 males and 685 females. We integrated standard pipelines to uniformly process raw sequencing and genotyping data (Fig. S1.1). Details are provided in following Sections S2.1, S2.2, S3.1, S5.1, and S6.1-6.2.

[image: ]
Fig. S1.1 - Integrated analysis pipeline of PsychENCODE. We used the standard pipelines from ENCODE and other large consortia to uniformly processed the raw sequencing data from PsychENCODE, including RNA-seq, ChIP-seq and Genotype, and identified functional genomic elements such as brain enhancers, expressed genes and eQTLs. We also processed other data types such as Hi-C and single cell and provided details on data processing in the following sections. As shown by this flowchart, we then performed the integrative modeling and analysis for functional genomic elements in adult brain.
[bookmark: _f099sunynl5o]



[bookmark: _s84infpakq9e]S2. Supp. content to main text section "Transcriptome analysis”
[bookmark: _50xvxcwc3gj5]S2.1 Data processing
[bookmark: _oym8n3muls7d]Note that the data files for this section are described in detail in Section S9 (Resource website).
[bookmark: _jmwwe1h0bb69]S2.1.1 GTEx brain and other tissues
[bookmark: _tmpmu8p4c071]We used several types of data from the GTEx version 7 dataset (GTEx Consortium, 2017). GTEx version 7 contains RNA-seq and matching genotype data for ten10 brain regions:  (aAnterior cingulate cortex, cCaudate nucleus, cCerebellar hemisphere, cCerebellum, cCortex, fFrontal cortex, hHippocampus, hHypothalamus, nNucleus accumbens, and pPutamen). We used the raw RNA- sequencing data to quantify the proportion of the transcribed non-coding genome. For eQTL calculations and weighted gene co-expression network analysis (WGCNA) WGCNA analysis, we used individual trusted platform module (TPM) data, and renormalized it using the probabilistic estimation of expression residuals (PEER) factors calculated in combination with PsychENCODE data. Further, for the eQTL calculations, we re-imputed the genotype data from the raw genotype calls using the pipeline described below to match the processing of the PsychENCODE data.
We used data from GTEx7 (GTEx Consortium, 2017) to compare the brain transcriptome to that of other tissues. GTEx7 contains RNA-seq data from 34 other tissues. As above, we used the raw RNA- sequencing data to quantify the proportion of transcribed non-coding regions. For WGCNA analysis, we used the individual TPM data, pre-normalized by the PEER factors calculated in GTEx7 to identify modules in individual tissues, and the median TPM data by tissue to identify modules across tissues.

[image: ]
Fig. S2.1 Dendrogram of clustering analysis for identifying outliers of gene expression.  An example of removing four4 outlier samples from a UCLA-ASD study according to hierarchical clustering of the gene expression data.

Table S2.1 Summary of dataset.  This table provides the number of samples incorporated into the integrative analyses in this manuscript, categorized by study, the disease status of the individual from which the sample is acquired (CTL = Control, SCZ = Schizophrenia, BPD = Bipolar Disorder, ASD = Autism Spectrum Disorder, AFF = Affective Disorder), the source tissue(s), and the downstream analyses conducted as a part of this manuscript.
	Study
	Disease
	Brain Tissue(s)
	Assay
	Analyses done
	No. of Samples

	Roadmap
	CTL
	Dorsolateral Prefrontal Cortex
	ChIP-seq: H3K27ac
	Chromatin RCA
	1

	
	CTL
	Caudate nucleus, Cingulate gyrus, Hippocampus, Cortex
	ChIP-seq: H3K27ac
	Chromatin RCA
	4

	ENCODE
	CTL
	Frontal Cortex
	DNase-seq
	TF imputation
	2

	GTEx
	CTL
	Frontal Cortex (BA9)
	RNA-seq
	QTL analyses, Gene Expression RCA
	138

	
	CTL
	Cerebellum
	RNA-seq
	Gene Expression RCA
	298

	
	CTL
	Amygdala, 
Anterior Cingulate Cortex, Caudate (basal ganglia),
Cortex,
Hippocampus, Hypothalamus, Nucleus Accumbens (basal ganglia), Putamen (basal ganglia), Spinal cord (cervical c-1), Substantia Nigra
	RNA-seq
	Gene Expression RCA
	1196

	
	CTL
	Frontal Cortex (BA9)
	Genotypes
	QTL analyses
	25

	
	CTL
	All non-brain tissues
	RNA-seq
	Weighted Gene Co-expression Analysis (WGCNA)
	11688 (GTEx V7)

	Published Methylation data: Jaffe et al., 2016
	CTL
	Dorsolateral Prefrontal Cortex (BA46/9)
	DNA Methylation Microarray studies
	Methylation Analysis
	255

	PEC: BrainSpan
	CTL
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	6

	Published Single-cell: Lake et al., 2016
	CTL
	Dorsolateral Prefrontal Cortex (BA10)
	scRNA-seq
	Bulk Tissue Deconvolution and Decomposition, fQTL
	575

	
	CTL
	Temporal Cortex (BA21, BA22, BA41)
	scRNA-seq
	Bulk Tissue Deconvolution and Decomposition, fQTL
	1771

	
	CTL
	Intermediate Frontal Cortex (BA8)
	scRNA-seq
	Bulk Tissue Deconvolution and Decomposition, fQTL
	490

	
	CTL
	Primary Visual Cortex X1 (BA17)
	scRNA-seq
	Bulk Tissue Deconvolution and Decomposition, fQTL
	391

	Published Single-cell: Darmanis et al., 2015
	CTL
	Temporal Cortex
	scRNA-seq
	Bulk Tissue Deconvolution and Decomposition, fQTL
	332

	
	CTL
	Developmental Cortex
	scRNA-seq
	Bulk Tissue Deconvolution and Decomposition, fQTL
	134

	PEC: scRNA-seq
	CTL
	Dorsolateral Prefrontal Cortex
	scRNA-seq
	Bulk Tissue Deconvolution and Decomposition, fQTL
	459

	
	CTL
	Dorsal Pallium
	scRNA-seq
	Bulk Tissue Deconvolution and Decomposition, fQTL 
	473

	PEC: Reference Brain
	CTL
	Dorsolateral Prefrontal Cortex
	ChIP-seq: H3K27ac
	Enhancer Definition
	1

	
	CTL
	Dorsolateral Prefrontal Cortex
	HiC
	Enhancer Definition
	1

	
	CTL
	Dorsolateral Prefrontal Cortex
	ATAC-seq
	Enhancer Definition
	1

	PEC: CommonMind
	CTL
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	295

	
	SCZ
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	263

	
	BPD
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	47

	
	AFF
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	8

	
	CTL
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	285

	
	SCZ
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	263

	
	BPD
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	47

	
	AFF
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	8

	PEC: CommonMind-HBCC
	CTL
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	220

	
	SCZ
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	97

	
	BPD
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	70

	
	CTL
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	191

	
	SCZ
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	85

	
	BPD
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	25

	PEC: BrainGVEX
	CTL
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	259 + 3(?)

	
	SCZ
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	95

	
	BPD
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	73

	
	CTL
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	47

	
	SCZ
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	45

	
	BPD
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	45

	PEC: LIBD_szControl
	CTL
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	320

	
	SCZ
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	175

	
	CTL
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	96

	
	SCZ
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	104

	PEC: BipSeq
	BPD
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	69	Comment by Prashant Emani: Need to add the following: WGBS data from AJ, non-brain tissue samples, Genotype data

	
	BPD
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	55

	PEC: UCLA-ASD
	CTL
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	46

	
	ASD
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	43

	
	CTL
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	35

	
	ASD
	Dorsolateral Prefrontal Cortex
	Genotypes
	eQTL
	31

	
	CTL
	Dorsolateral Prefrontal Cortex
	ChIP-seq: H3K27ac
	cQTL, Enhancer Definition
	50

	
	ASD
	Dorsolateral Prefrontal Cortex
	ChIP-seq: H3K27ac
	cQTL
	31

	
	CTL
	Cerebellar Cortex
	ChIP-seq: H3K27ac
	Enhancer Definition
	50

	
	CTL
	Temporal Cortex
	ChIP-seq: H3K27ac
	Enhancer Definition
	50

	PEC: Yale-ASD
	CTL
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	23

	
	ASD
	Dorsolateral Prefrontal Cortex
	RNA-seq
	eQTL
	3

	PEC: EpiDiff
	CTL
	NeuN+/- from Dorsolateral Prefrontal Cortex
	ChIP-seq: H3K27ac
	cQTL
	117

	
	SCZ
	NeuN+/- from Dorsolateral Prefrontal Cortex
	ChIP-seq: H3K27ac
	cQTL
	109


[bookmark: _fj123p4g4l1]
[bookmark: _65vst081qvgs]S2.1.2 RNA-seq processing (Adapted from the Synapse Website)
The PsychENCODE RNA-seq pipeline (Fig. S2.2) is mostly based on that of ENCODE, which is compatible with stranded and unstranded mRNAs from (poly-A(+)), rRNA-depleted total RNA, or poly-A(-) RNA libraries. The inputs are RNA-seq reads (from paired-end stranded or single- end unstranded libraries), a reference genome and a gene annotation file (by default, GENCODE). We used GRCh37 (hg19) as a reference genome and Gencode v19 foras gene annotation. Coding and non-coding transcripts were used to quantify gene expression. For each sample, the pipeline outputs included: A bam file with reads mapped to the genome, a bam file with reads mapped to the transcriptome, bigwig files with normalized RNA-seq signal track for unique and multi-mapping reads (splitted between +strand and -strand if the library wasis stranded), gene quantifications, and transcript quantifications.
The mapping of the reads wasis done using STAR (2.4.2a) and the quantification of genes and transcripts wasis done with RSEM (1.2.29). Although there is general agreement between the mappings and the gene quantifications produced by different RNA-seq pipelines, quantifications of individual transcript isoforms, being much more complex, can differ substantially depending on the processing pipeline employed, and are of unknown accuracy. Therefore, mapping and gene quantifications can be used confidently, whereaswhile transcript quantifications should be used with care. Quality control metrics were calculated using RNA-SeQC (v1.1.8), featureCounts (v1.5.1), PicardTools (v1.128), and Samtools (v1.3.1). Pipeline source code can be found at doi:10.7303/syn12026837.1 at Synapse. All PsychENCODE sample FASTQ files were run through a unified RNA-seq processing pipeline (Fig. S1.1) run at the University of Chicago on an OpenStack cloud system. and GTEx samples were processed at Yale University. 
[image: ]
Fig. S2.2 PsychENCODE RNA-seq pipeline. TheThis is the flowchart of the uniform RNA-seq pipeline is shown. This pipeline was modified based on the long-RNArna-seq-pipeline used by the ENCODE Consortium.

[bookmark: _a2e86kbjlss4]S2.2 Single- cell RNA-seq analysis
[bookmark: _kgswr7hd23w]S2.2.1 Datasets of single- cell transcriptomics. 
We integrated and used the same pipeline, including ENCODE RNA-seq analysis, to uniformly process single- cell RNA-seq data for ~900 cells from PsychENCODE with 11 novel cell types in embryonic and developmental tissues. The expression of ~3,000 neuronal cells with eight8 excitatory and eight8 inhibitory types (Lake et al., 2016), and ~400 cells including two developmental types, one adult neuronal type and five5 adult non-neuronal types, astrocytes, endothelial, microglia, oligodendrocytes, and oligodendrocyte progenitor cellsOPC (Darmanis et al., 2015) were downloaded from corresponding publications. The details of cell types arewere shown in Table S2.2.
The basic cell types have been shared and used by other PsychENCODE capstone projects focusing on non-coding regulation and development. For PsychENCODE single- cell data, we first appliedy quality control on ~900 cells using the R ‘scater’ package (McCarthy et al., 2017) to filter the cells with low library size and high mitochondrial RNA concentration. Furthermore, the cells with a total library size less than 0.2 million were also filtered for future analysis. In total, we built a gene expression profile of ~800 high- quality cells quantified in TPM. We merged the PsychENCODE data, Lake et al., data and Quake et al. data by matching the gene names. As the single- cell data suffers from high dropout rates, we used MAGIC (van Dijk et al., 2017) to impute the missing values in the expression matrix. We compared these single cells based on the (biomarker) gene expression similarity using tSNE, and found that the same-type cells of the same type generally couldcan be clustered together (Fig. S2.3). In particular, 99.4% PsychENCODE cells clustered together with known developmental cell types from a previous report Darmanis et al. (Darmanis et al., 2015).
We also found that the gene expression changes across individual tissue samples couldcan be largely explained by the single- cell gene expression, and the changes of single- cell fractions wereare also associated with the individual phenotypes. Therefore, we deconvolved the tissue-level gene expression data of all 1,866 individuals’ tissue samples using single-cell gene expression data of 457 biomarker genes to find the fraction of different cell types that correspondedcorresponding, and compared cell fractions across different phenotypes.

[bookmark: _6f3q2q27l48s]S2.2.2 Quantification of gene expression
The gene expression in both bulk and single-cell RNA-seq data were quantified in TPM and further transformed into log scale by log2(TPM+1). Later, we subjected theThe transformed gene expression towill be used in the decomposition and devolution analysis (see below).

[bookmark: _8m3lii5313o8]S2.3 Decomposition of brain tissue gene expression data
To check if the brain tissue expression wasis dueattributed to the combinations of single- cell types in Section 2.4; (i.e., the cell fractions), we decomposed the brain tissue gene expression data using an unsupervised approach to find the principal components of the tissue data, and compared them with single- cell expression data. Specifically, given the brain tissue gene expression matrix X (N by M) for a phenotype/disorder where M is the number of tissue samples and N is the number of select genes (e.g., the cell biomarker genes), we used non-negative matrix factorization (NMF) to decompose X into the product of two matrices, H and V so that ||X-V*H||^2 wasis minimized with constraints that all elements of H. H is an K by M matrix with the (i,j) element describing the contribution coefficient of the jth NMF "top-component" (NMF-TC) to the ith tissue sample, K is the number of select NMF-TCs (e.g., equal to the number of select cell types as above), and V is an N by K matrix with the (i,j) element being the expression level of the jth select gene on the ith NMF-TC. 	Comment by Julie Gosse: this is unclear to me
We then correlated NMF-TCs with the select gene expression data of different single- cell types, and obtained athe correlation map between NMF-TCs and single cells (Fig. 2B). For example, No. 10 and 19 NMF-TCs of the non-neuronal group highly correlated with astrocytes, No. 21 NMF-TC correlated with developmental cells, and No. 4, 7, 12, and 25 NMF-TCs of the neuronal group correlated with excitatory neuronal cell types. This suggests that athe large portion of the tissue gene expression changes wasis a linear combination of these cell types’ gene expression. Thus, we wanted to further identify the cell fractions to showshowing how individual single cells contribute the tissue’s gene expression, using athe deconvolution. In addition, previous studies have identified cell type- specific expression patterns from co-expression analysis (Oldham et al., 2008). We found here that some of our NMF-TCs correlated with the eigengenes of gene co-expression modules (Gandal, M.J. et al., submitted), especially for the cell type modules, supporting again that they connect the cell type information from the bulk tissue data.

[bookmark: _45q9vjce0e1v]S2.4 Deconvoluting brain tissue gene expression data using single- cell data to estimate cell fractions
Since wWe used an unsupervised approach (NMF) to decompose tissue expression and found that NMF-PCs recovered the expression patterns of both neuronal and non-neuronal cells. This suggests that it is highly likely that a linear combination of single cells contributes to the brain tissue expression is highly likely contributed by a linear combination of single cells.. Thus, to more accurately identify the single- cell fractions that determine the tissue expression, especially for various phenotypes/disorders, we further applied anthe supervised approach that useds the single- cell expression data to deconvolve brain tissue expression data to find the fractions of different cell types of individual tissues.
In particular, we defined the brain tissue gene expression matrix B (N by M) for a phenotype/disorder, where M is the number of tissue samples and N is the number of select genes (e.g., the cell biomarker genes), and the single- cell gene expression matrix C (N by K), where K is the number of select cell types., Wwe used the non-negative least square method to find a non-negative K by M matrix, with W to minimize ||B-C*W||^2. The (i,j) element of W represents the linear combination coefficient of the ith single- cell type to the jth tissue expression, which is proportional to the jth single- cell fraction. In the deconvolution analysis, the gene expression quantified in TPM was transformed into log scale by log2(TPM+1).



Table S2.2 Summary of cell types. This table includes PsychENCODE developmental cell types and public adult cell types from Lake et al. 2016 and Darmanis et al. 2015.
	Abbreviation
	Adult/Developmental
	Full name
	Source

	Ex
	Adult
	Excitatory Neuron
	Lake et al. 2016

	In
	Adult
	Inhibitory Neuron
	Lake et al. 2016

	OPC
	Developmental
	Oligodendrocyte progenitor cells
	Li, M. et al. (submitted)

	Trans
	Developmental
	Transient cell type (nascent neurons)
	Li, M. et al. (submitted)

	NEP
	Developmental
	Neuroepithelial cells
	Li, M. et al. (submitted)

	IPC
	Developmental
	Intermediate progenitor cells
	Li, M. et al. (submitted)

	Quiescent/Quies
	Developmental
	Quiescent newly born neurons
	Darmanis et al., 2015

	Replicating/Repli
	Developmental
	Replicating neuronal progenitors
	Darmanis et al., 2015

	IntN
	Developmental
	Inhibitory Neuron
	Li, M. et al. (submitted)

	ExtN
	Developmental
	Excitatory Neuron
	Li, M. et al. (submitted)

	Oligo
	Developmental
	Oligodendrocyte cells
	Li, M. et al. (submitted)

	Astrocytes/Astro
	Developmental
	Astrocytes
	Li, M. et al. (submitted)

	Pericytes/Peri
	Developmental
	Pericytes
	Li, M. et al. (submitted)

	Endothelial/Endo
	Developmental
	Endothelial cells
	Li, M. et al. (submitted)

	Microglia/Micro
	Developmental
	Microglia
	Li, M. et al. (submitted)

	Microglia/Micro
	Adult
	Microglia
	Darmanis et al., 2015

	OPC
	Adult
	Oligodendrocyte progenitor cells
	Darmanis et al., 2015

	Endothelial/Endo
	Adult
	Endothelial cells
	Darmanis et al., 2015

	Astrocytes/Astro
	Adult
	Astrocytes
	Darmanis et al., 2015

	Oligo
	Adult
	Oligodendrocyte
	Darmanis et al., 2015

	OtherNeuron
	Adult
	Mixed of excitatory and inhibitory neuronal cells
	Darmanis et al., 2015


[image: ]
Fig. S2.3 t-SNE plot of the PsychENCODE and public single- cell data.  Most of the PsychENCODE data were found to be clustered together with public developmental data in Darmanis et al., 2015. 

We further evaluated the goodness-of-fit for the deconvolution model by calculating the coefficient of determination (also known as R^2), which accounts for the percentage of variance in the individual gene expression of tissue samples that has been explained by varying the cell proportions of cell types. Specifically, the variance in the gene expression of tissue samples wasis ||B||^2 and the variance that hads not been explained by the model wasis ||B-C*W||^2. The R^2 couldcan be calculated as 1-||B-C*W||^2/||B||^2, which was further normalized to an adjusted R^2 by incorporating the degree of freedom. In addition, we deconvolved the tissue expression data and compared the cell fraction changes for various phenotypes and psychiatric disorders (Figs. S2.6 and S2.7). Fig. S2.8 shows the cell fractions across different ages. We found that Ex3 and Ex4 had ahave significant increasing trend across age (trend analysis p<6.3e-10 and 1.5e-6), but some non-neuronal types such as oligodendrocytes wereare found to decrease (p<2.1e-14). Furthermore, these age-related cell changes wereare potentially associated with differentially expressed genes across age groups; -- egfor example, athe gene involved in early growth response wasis down-regulated in older age groups, whereas ceruloplasmin wasis down-regulated among middle-aged groups (Fig. 2F). In addition, we observedAlso reduced microglia fractions for bBipolar disorder and increased astrocyte fractions for schizophreniaSCZ.
We have validated our estimated cell fractions on a subset of samples from the EPIMAP study with experimentally measured NeuN+ fractions. Fig. S2.9 shows the NeuN+ fractions measured in experiments and estimated in our deconvolution analysis on 14 samples with RIN > 7.3. OIt can be seen that our estimation was is very close to the experimental NeuN+ fractions.
We further compared the performance of deconvolution with one popular deconvolution tool CIBERSORT (Newman et al., 2015). We performed CIBERSORT to deconvolve the tissue expression data with given single- cell data of selected 24 types and further calculated the variance explained as an adjusted R-square; this value (0.8132), which is was lower than that calculated byof our deconvolution method (0.8779).



[image: ]
Fig. S2.4 Biomarkers show higher expression in the cell type from which they were defined compared tothan other cell types. Expression signatures of biomarkers are conserved in the newly constructed expression matrix, which integratesd multiple sources of single- cell expression data.
[bookmark: _trth92jrm0of]

[bookmark: _9r94exd8sr8w]S2.5 Differentially expressed genes for brain phenotypes
We used the limma R package for linear modeling to find genes that are differentially expressed for neuropsychiatric disorders, sex, and brain regions. Normalized gene expression data wasis partitioned into the control and schizophrenia samples or male and female samples using athe merged matrix. We then constructed a design matrix representing these partitions, which we used to fit a linear model and estimate fold changes/standard errors., Weand then appliedy empirical Bayes smoothing to the standard errors. The oOutput wasis represented in a table form or as a heatmap using the heatmap.2 R package. This pipeline wasis used for brain region analysis using gene expression data from GTEx, where either brain regions (aAmygdala, aAnterior cingulate cortex, cCaudate, cCerebellar hHemisphere, cCerebellum, cCortex, fFrontal cCortex, hHippocampus, hHypothalamus, nNucleus accumbens, pPutamen, sSpinal cord, and sSubstantia nigra) or all brain samples wereare compared with select control tissues (lLiver, cColon, lLung, eEsophagus, pPancreas, sSpleen, and sStomach) for region-specific or brain-specific differential gene expression, respectively. In addition, the differentially expressed genes for psychiatric disorders were identified by a submitted report (Gandal, M.J. et al., submitted).

[bookmark: _kkg7nmy36wui]S2.6 Gene co-expression network analysis
We used Weighted Gene Co-expression Network Analysis (WGCNA) to identify modules of co-expressed genes, both within tissues and between tissues (Zhang et al., 2005). Briefly, each gene wasis associated with a vector of normalized expression values across either individuals or tissues (using median expression). A weighted network wasis constructed where the weight between any two genes hadis a similarly score, calculated by normalizing the Pearson correlation of their expression vectors to lie between 0 and 1, and raising this to the power .
We followed Zhang et. al. in setting  such that connectivity of the network wasis as close to scale-free as possible (using the  statistic described in Zhang et. al.). The genes wereare then hierarchically clustered using a topological overlap score, which compares how similar the patterns of connection are from each node to all other nodes., and dDisjoint modules wereare extracted using the Dynamic Tree Cut algorithm (Langfelder et al., 2008). We further extracted further submodules in addition to the disjoint modules extracted by WGCNA, by adding the subtrees formed on each merge where both left and right subtrees wereare larger than a minimal size (which we set attake to be 30 genes). To find brain specific modules/submodules using clusters calculated on median expression variation across tissues, we further calculated the module eigengenes (as described in Zhang et. al.), and calculated the correlation of each eigengene with a binary vector, which wasis 1 for brain regions and 0 otherwise. We called a module ‘brain specific’ if this correlation wasis significant at the 0.001 level (under a permutation test of the tissue labels).
Our co-expression analysis indeed found several modules with eigengenes showing very different expression levels between brain and non-brain samples (Fig. S2.5), which suggests that brain-specific regulatory mechanisms drive these brain co-expression modules (Gandal, M.J. et al., submitted).

[bookmark: _iq5habw4afud]S2.7 Gene expression and DNA mMethylation over aging
To find the effect of age on gene expression, we selected genes thatwhich showedhad significant correlation with age. Samples were segregated by age bins of 20 years, for a total ofand we used five bins (the bin ranges used were 0-20, 20-40, 40-60, 60-80, and 80-100). Gene expression was estimated using the uniformily processing with the PsychENCODE RNA-seq pipeline (See S2.1.3). Fig. S2.10 displays 90 protein-coding and non-coding genes that correlate with age. In particular, EGR1 (early growth response - ENSG00000120738.7) and CP (ceruloplasmin - ENSG00000047457.9) are displayed. Similarly, we processed array methylation data to investigate the effect of aging in promoter and enhancer methylation. Published dData from (Jaffe et al., 2016) was used (Jaffe et al., 2016). We used the normalized (scaled) proportion of methylated CpGs across individuals’ age bins near gene TSS (Fig. S2.11). 
[image: ]
Fig. S2.5 Brain- specific co-expression modules and submodules.  Module eigengenes are plotted as columns, which are ordered by the degree to which their expression is specific to the brain (see text). Lines beneath the plot show positive (green) and negative (red) correlations, with correlations thatwhich are significant at the p<0.001 level (either positive or negative) highlighted in (blue). 
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Fig. S2.6 Estimated cell fractions of 24 selected cell types in control samples.  The cell types with significant changes (FDR < 0.05) between genders after balancing age distribution are labeled with double asterisks (**).**.
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Fig. S2.7 Estimated cell fractions of 24 selected cell types in samples with different disorders.  For each cell type, the boxes with double asterisksstars (**) indicate the disorder types that show significant differences (FDR < 0.05) after balancing the age distribution.
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Fig. S2.8 Estimated cell fractions of 24 selected cell types in control samples with different ages.  The cell types showing significant increasing/decreasing trends across ages (trend analysis p-value < 1e-2) arewere labeled with double asterisksstars (**).
[image: ]
Fig. S2.9 Validation of estimated cell fractions from deconvolution. The X-axis shows the NeuN+ cell fractions measured in experiments and the y-axis shows the NeuN+ cell fractions estimated from deconvolution. The median error is 0.04.


[image: ]
Fig. S2.10 Gene expression variation in the human brain across ages. The X axis shows five5 bins of age and the Y axis shows the log2(rpkm) for genes positively or negatively correlated with age. Each panel refers to a gene, where the identification wasis made by ENSEMBL IDid.
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Fig. S2.11 Promoter and eEnhancer region methylation of genes correlated to aging. Genes with methylation data available were assessed for their methylation status. The X axis shows five5 bins of age and the Y axis shows the normalized distribution of methylation near the gene TSS. Each panel refers to a gene, where the identification wasis made by gene name.
[bookmark: _jbpqsphbyea3]S3. Supp. content to main text section "Enhancers"
[bookmark: _aq8gofcq00tp]S3.1 PsychENCODE ChIP-seq pipeline and processing
We used the modified parallel version of the ENCODE ChIP-seq pipeline (Fig. S3.1). This wasis improved over the ENCODE pipeline using the workflow system Ssnakemake for more efficient computation (https://github.com/weng-lab/psychip_snakemake ). The original ENCODE pipeline can be found at https://goo.gl/KqHjKH. The PsychENCODE ChIP-seq data were processed at thein University of Massachusetts and Yale University.

[image: ]
Fig. S3.1 PsychENCODE ChIP-seq processing pipeline. This pipeline flowchart wasis adapted and modified from thebased on ENCODE  ChIP-seq pipeline(https://goo.gl/KqHjKH.). FASTQ files were aligned using BWA and then the reads were filtered to get only unique mapped reads for peak calling using MACS2. Pseudo-rReplicates were generated before peak calling for each individual to find robust peaks. NSC, RSC, and PCR bottlenecks were generated for quality controlQC.
[bookmark: _mx3d54jqkrpm]fS3.2 Epigenomics Roadmap, ENCODE ChIP-seq for identifying regulatory regions
We incorporated ChIP-seq datasets from the Roadmap Epigenomics Consortium and the ENCODE project in our analysis. To integrate them consistently with the PsychENCODE dataset, ChIP-seq experiments wereare uniformly processed using the ENCODE standard pipeline (See below, Ssection S2.3 S), including alignment, quality control, and peak-calling. Each released experiment consists of the raw sequencing data (in FASTQ), and the processed output, including alignment files, signal files, and peak files. 
With the set of uniformly processed ChIP-seq experiments, a comprehensive statistical model was used to generate a registry of candidate regulatory elements (cREs) for major cell lines and tissues (Moore et al., under review). The cREs are based on a combined set of high- quality DHSs. For a particular cell or tissue, z-scores for DNase, H3K4me3, H3K27ac, and CTCF wereis calculated for these high-quality DHSs. Using the maximum z-score across all cell types and the distance to the nearest TSS, the cREs were classified into promoter-like elements, enhancer-like elements, and regions bound by CTCF only. As described in later sections (S2.6 S and S2.10 S), we used the epigenetics signals of these cREs to annotate enhancers, calculate cQTLs, and perform comparative chromatin signal RCA analysis.
[bookmark: _4kd2wvc6c758]S3.3 Activated brain enhancers
To annotate a set of active enhancers, we uniformly processed the H3K27ac, H3K4me1, and H3K4me3 ChIP-seq data from the reference brain using the standard ENCODE pipeline. We also processed the ATAC-seq data generated on the same reference. Supplemented by the DNase-seq and ChIP-seq data of the prefrontal cortex (PFC)PFC from the ENCODE and Roadmap Epigenomics projects, we identified 79,056 active enhancers. An active enhancer wasis considered to be in open chromatin regions (ATAC-seq signal or DNase signal Z-score > 1.64), with H3K27ac and H3K4me1 signals (Z-score > 1.64), which are characteristic markers for enhancers. To exclude promoters, we excluded regions with enriched H3K4me3 signals. These identified enhancer regions largely overlapped with ChromHMM enhancer annotations of the PFCprefrontal cortex (>90%).
We uniformly processed 150 H3K27ac ChIP-seq data from healthy individuals, 50 each from PFC, PC, and CB regions respectively. For each sample, we called H3K27ac peaks using the standard ENCODE ChIP-seq pipeline. The H3K27ac peaks were pooled across the cohort, generating a total of 37,761 H3K27ac pooled peaks in PFC, 42,683 in TC, and 26,631 in CB. Each pooled peak wasis present in more than half of the samples in its corresponding brain region. Note that althoughwhile the numbers of aggregate peaks wereare smaller than the number of reference enhancers, they actually covered a larger fraction of the genome, as the average width of H3K27ac peaks was larger than that of reference enhancers).
To investigate the enhancer activity across the population, we intersected the set of active enhancers identified in the reference sample with the H3K27ac PFC ChIP-seq peaks in each individual from the cohort. Any H3K27ac peaks intersecting with the reference enhancers wereare considered to beas active enhancers in the corresponding individual. Among the 50 healthy samples, a median of 53,976 (~70%) enhancers from the reference brain were found to be active in the cohort. We also examined the cumulative number of reference enhancers that could be found in the cohort with individuals sorted by the number of overlapping enhancers, as shown in Fig. S3.2. The cumulative number grewgrows fast at the beginning, and saturateds at the 20th person of the sorted cohort. Thus, Wwe hypothesizes that pooling together the active enhancers of 20 people should recover most of the potential regulatory elements in brain PFCprefrontal cortex. 
[image: ]
Fig. S3.2 Active reference brain enhancers in the population.  The dotted line shows the cumulative number of identified reference sample enhancers in the cohort, which saturates at the 20th individual from the sorted cohort. The boxplot shows the number of identified reference enhancers found active in each individual, with the lower and the upper boundaries of the box showing the first and the third quantiles.
[bookmark: _h4fef739rh01]S4. Supp. content to main text section "Consistent comparison"
[bookmark: _mcvt6eiy7p8j]S4.1 Spectral analytic approaches (PCA, tSNE, RCA) to compare transcriptomic and epigenomic data across brain and other tissues
One key aspect of our analysis is that we, as consistently as possible, processed the transcriptomic and epigenomic data from PEC, GTEx (GTEx Consortium, 2017), and the Epigenetic Roadmap (Kundaje et al., 2015). This approachconsistent processing alloweds us to compare the brain to other organs in a consistent fashion to assess if the human brain has unique gene expression and chromatin activities. This comparison could not be achieved without such a large-scale uniform data processing. We attempted several methods for an appropriate comparison;, in particular, we used methods to reduce the dimensionality of genes or enhancers to compare the underlying structure of brains and other tissues. Principal component analysis (PCA) and t-SNE are two popular techniques, but we found PCAthe former tends to capture global structures, ignoring most of the local structure, but be overly influenced by data outliers, and t-SNE tends to just uniformly separate all the clusters and not give one a sense of the overall effect; i.e., PCA tends to capture global structures, ignoring most of the local structure, but it can easily be influenced by outliers (Johnstone et al., 2009). 
In contrastOn the other hand, t-SNE tends to separate samples from the same tissue so that the cluster distances on the t-SNE space are not proportional to real gene expression dissimilarities, and thus does not give a sense of overall effects (Maaten et al., 2008). As an alternativeTherefore, we found another very useful technique to be rReference cComponent aAnalysis (RCA), which projects the gene expression in an individual sample against a reference panel, and then essentially reduces dimensionality of individual projections (Li et al., 2017). Moreover, as shown in Fig. 3E, all the brain tissue samples from the different projects tend to grouped together, which is a consequence of our uniformly processing.
In order to perform an RCA analysis, we first built a reference gene expression panel based on GTEx, which consisteds of the average expression offor genes across a panel of tissues. To select the genes in this panel, we searched for expression outliers, (i.e., e.g. genes for whichwhich at least one sample had a delta log10(rpkm) higher than 1). This yielded 4,162 coding and non-coding genes in the reference panel. The aAverage expression level for these genes waswere extracted from the GTEx v6 average expression file. We next used the gene expression from uniformly processed PsychENCODE and GTEx samples and selected only the genes in the 4,162 genes in the reference panel. We then calculated the correlation between each sample x reference tissue pair and built a correlation matrix.
Finally, to extract structures from the dataset, we performed PCA on the correlation matrix. Median sample was defined as the median PC1 and PC2. In order to account for sample variance within tissues, we fit the PC1 and PC2 into a multivariable Gaussian distribution and plotted the ellipse defined by median PC1, PC2, with; width and height equal to one standard deviation in PC1 and PC2 space, respectively. We calculated the distances between tissues and samples. Overall, the distance of the brain centroid to other tissues wasis approximately onean order of magnitude higher than the distance between brain samples. Distance was calculated using Euclidean distance on RCA space (Fig. S4.1, Table S4.1, and S4.2). 
In order to assess which genes were responsible for differences in RCA PC1 ,space we simulated RNA-seq samples with a step function equal to discrete changes in gene expression. For each step, we selected the gene representing the biggest change in the PC1 dimension. We simulated 5,253 steps (Fig. S4.2; the, path is represented by the dark like moving from the brain to other tissues (Fig. S4.2). In total 1,226 gene were selected multiple times as the biggest change in the PC1 dimension. Selecting top- ranked genes and performing Reactome term enrichment analysis with Ppanther resulted in enrichmented for brain pathways.	
Similar to the transcriptome RCA analysis, we built a reference panel using H3K27ac signals overlapping CREs as previously defined. For reference tissues, we used uniformly processed Epigenome RoadMap samples and calculated the average H3K27ac signals across CREs. We further filtered outlier CREs to select informative CREs. Similar to the transcriptome analysis, we selected CREs with average signal across the CRE higher than 0.1 from 40 tissues. That filter yielded 5,506 reference CREs. WeSimilar to the transcriptome analysis we calculated the correlation between each sample and the reference tissue pair, and built a correlation matrix, and performed PCA analysis at the correlation space. Median and eEllipses were calculated as described above. To remove batch effects from H3K27Ac, we used well- established methods. First, we computed the PCA in the RCA space and selected the first principal component;, indeed, most of the variance in the first component was derived from experimental differences. In order to consistently compare the transcriptome and epigenome, we selected tissues on roadmap that were also represented in the transcriptome RCA analysis. Namely, we used roadmap_brain, esophagus, liver, lung, pancreas, spleen, and uterus. We also performedcalculated a PCA analysis for these samples (Fig. S4.3).
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Fig. S4.1 Distances from thebetween brain to other tissues centroids.  Transcriptome RCA plot as in Fig. 3., Bbrain samples’ distributions are displayed in green and orange. Other tissues are shown in red. Euclidean distance was calculated between all centroids (Table S4.1) and normalized by the median brain distance (Table S4.2).





	
	PEC
	Adipose
	Esophagus
	Liver
	Lung
	Nerve
	Pancreas
	Spleen
	Uterus

	PEC
	0.00
	
	
	
	
	
	
	
	

	Adipose
	4.32
	0.00
	
	
	
	
	
	
	

	Esophagus
	4.01
	0.56
	0.00
	
	
	
	
	
	

	Liver
	3.32
	1.69
	1.85
	0.00
	
	
	
	
	

	Lung
	4.25
	0.37
	0.84
	1.39
	0.00
	
	
	
	

	Nerve
	3.86
	0.67
	0.15
	1.78
	0.90
	0.00
	
	
	

	Pancreas
	3.35
	1.13
	1.17
	0.69
	0.93
	1.10
	0.00
	
	

	Spleen
	3.66
	1.38
	1.63
	0.39
	1.05
	1.59
	0.61
	0.00
	

	Uterus
	4.07
	0.46
	0.10
	1.82
	0.76
	0.23
	1.16
	1.58
	0.00



Table S4.1 RCA centroid distances  Euclidean distance was calculated between all tissue centroids in RCA space.



	
	PEC
	Adipose
	Esophagus
	Liver
	Lung
	Nerve
	Pancreas
	Spleen
	Uterus

	PEC
	0.00
	
	
	
	
	
	
	
	

	Adipose
	9.80
	0.00
	
	
	
	
	
	
	

	Esophagus
	9.11
	1.27
	0.00
	
	
	
	
	
	

	Liver
	7.54
	3.83
	4.19
	0.00
	
	
	
	
	

	Lung
	9.64
	0.83
	1.91
	3.16
	0.00
	
	
	
	

	Nerve
	8.76
	1.51
	0.35
	4.05
	2.05
	0.00
	
	
	

	Pancreas
	7.61
	2.56
	2.66
	1.57
	2.12
	2.49
	0.00
	
	

	Spleen
	8.31
	3.12
	3.69
	0.89
	2.38
	3.61
	1.39
	0.00
	

	Uterus
	9.24
	1.05
	0.22
	4.13
	1.72
	0.53
	2.63
	3.59
	0.00



Table S4.2 RCA centroid distances normalized by median interbrain distance.  Euclidean distance was calculated between all tissue centroids in RCA space and normalized by median brain distance.
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Fig. S4.2 Assessment of the most impactful genes in the PC1 dimension.  All analyzed RNA-seq samples are displayed. Green and yellow samples are brain samples and pink samples were extracted from other tissues. Dark line represents hypothetical samples with gene expression changes. 

[image: ]
Fig. S4.3 PCA plot for regulatory data. H3K27Ac signals were used to calculate the PCA after batch correction. Brain samples are scattered in both PC1 and PC2, whereas the while roadmap samples are clustered together.


	Reactome pathways
	#
	#
	expected
	Fold Enrichment
	+/-
	P value

	Serotonin Neurotransmitter Release Cycle
	17
	4
	.16
	25.01
	+
	4.14E-02

	Neurotransmitter Release Cycle
	50
	6
	.47
	12.75
	+
	1.68E-02

	Neuronal System
	337
	14
	3.17
	4.41
	+
	8.43E-03

	Dopamine Neurotransmitter Release Cycle
	22
	5
	.21
	24.15
	+
	4.52E-03



Table S4.3 Reactome pathway enrichment for most impactful genes in the RCA PC1 dimension. Pathway enrichment for the tpop genes selected in the Fig. S4.2 analysis. 
[bookmark: _a7de51yfspg8]S4.2 Non-coding RNAs and TARs
We used uniformly processed RNA-seq signal data from healthy individuals from GTEx 6p and PsychENCODE to quantify the expression activity of annotated and non-annotated regions of the human genome. In order to create signal files, we used alignment files (bam files) as input to RSEM to create both uniquely aligned and multiple aligned signal tracks. Singnal values were normalized within samples using the total number of reads mapped to the genome and by generating RPM values. We divided the genome into bins of 100 base pairs of the genome and calculated the average expression (RPM) in windows. We finally selected regions in the genome with an RPM higher than 0.1 to filter transcriptionally active regions. The union of all bins in the human genome above the threshold was used to build athe resource of active regions of the human brain. To estimate the proportion of coding and non-coding (i.e., non-coding and unannotated) regions, we overlapped active regions to the GENCODE v19 annotation. For each annotation class, we estimated the cumulative proportion of coding and non-coding regions (Fig. S4.4). 
[image: ]
Fig. S4.4 Cumulative distribution of transcribed regions in the human brain and other tissues. The Y axis shows the cumulative transcribed proportion of annotated and unannotated regions (coding or non-coding). The X axis shows the number of transcriptomes (or individuals) analyzed. Labels on the right -hand side of the figure display the maximum cumulative proportion found.

We finally fit the curves on Fig. S4.4 to cumulative exponential curves to estimate a per tissue upper bound of the proportion of coding and non-coding transcribed regions. We observed that most tissues wereare transcriptomically saturated at approximately 100one hundred individuals. Moreover, althoughwhile a large (65-75%) of the coding transcriptome wasis active, only (3-10%) of the non-coding transcriptome wasis active. By contrastOn the other hand, the absolute number of nucleotides active in non-coding regions (which include non-annotated regions) wasis much larger than in coding regions. IOn Fig. 3, we estimated inter-tissue variability by calculating the cumulative transcriptome diversity as stated above;, inter- sample diversity is was defined as the average diversity across samples in a tissue- based fashion. Values displayed ion Fig. 3 wereare normalized by average diversity in coding and non-coding regions, respectively. The iInter- sample variability was estimated by calculating the mean difference. Absolute values for coding and non-coding transcriptome diversity were also estimvated.


































[bookmark: _x12p00cgz3v8]S5. Supp. content to main text section "QTL analysis"
[bookmark: _gjv5atranw4l]S5.1 Genotype data processing
[image: ]
Fig. S5.1 PsychENCODE genotype data processing pipeline.  The raw genotype data were called and converted to PLINK files. We ran anrun initial quality sample level and marker level using PLINK. The quality controlledQCed genotype data were then prepared by prephasing using Eagle2. The prephased data were imputed using Minimac3 and HRC. After imputation, we filtered genotype using R2>0.3 to get high- quality imputation data.
(The latter required large-scale imputation for PsychENCODE datasets; full genotype sets are available). 	Comment by Julie Gosse: This seems out of place

[bookmark: _1z9tc8vdtli2]S5.1.1 Genotyping arrays, data generation, and quality control 
Genotyping was done on several different genotyping platforms listed in Ssupplemental Ttable S5.1 and Ssection S9. Initial quality controlQC was performed using PLINK (Purcell et al., 2007) to remove markers with: zero alternate alleles, genotyping call rate < 0.95, Hardy-Weinberg p-value < 1 x 10-6, and individuals with genotyping call rate < 0.95. We also corrected for the strand flipping problem using snpflip (https://github.com/biocore-ntnu/snpflip).

[bookmark: _a69113beh30]S5.1.2 Imputation of genotypes
Genotypes of all studies were imputed using an uniform genotype quality controlQC and imputation pipeline in order to streamline quality control and genotype imputation of genome-wide single nucleotide polymorphism (SNP) data. This imputation pipeline consisteds of four three primary, independent modules: (1) pre-imputation data processing and quality control; (2) PCA ofprincipal components analysis (PCA) of raw genotype data; (3) genotype imputation of untyped variants; and (4) post-imputation statistical analysis. Briefly, in the pre-imputation step, input genotype data (PLINK binary format) wasis reformatted for downstream analysis, and initial summaries of classic technical parameters (e.g., minor allele frequency, per -individual and per -site missing rates, case/control missingness, Hardy-Weinberg equilibrium) wereare produced.
	Datasets
	#samples
	DataPlatform

	BipSeq
	179
	Illumina_1M and Illumina_h650

	LIBD_szControl
	493
	Illumina_1M, Illumina_Omni5, Illumina_h650

	CMC-HBCC
	696 (896 totoal)
	Illumina_1M, Illumina_Omni5, Illumina_h650

	BrainSpan
	41
	HumanOmni2.5

	CommonMind
	620
	IlluminaInfiniumHuman Omni Express Exome 8 v 1.1b chip

	GTEx
	450 (97 DFC)
	Illumina OMNI 5M or 2.5M

	BrainGVEX
	138+280
	Affymetrix6.0, PsychChips

	UCLA-ASD
	97
	Omni-2.5 and Omni-2.5-Exome

	iPSC
	3
	WGS

	EpiGABA
	9
	Illumina_HumanOmni1-Quadv1.0



Table S5.1. Summary of genotype data generated in PsychENCODE and used in our paper  Most of these studies used different genotyping platforms. There were overlap of the individuals in BipSeq, LIBD_szControl and CMC_HBCC studies and the number of total individuals of these three studies are 896.

The second module consisteds of genotype PCA using peddy (Pedersen et al., 2017) to identify ancestry structure (Fig. S5.2). In the third, prior to imputation, SNP positions, identifiers, and alleles wereare aligned to the relevant reference genome assembly using LiftOver, and genotype data wasis divided into chromosomes and overlapping segments for parallel haplotype pre-phasing and imputation using eagle2 and Minimac3 on the Michigan Imputation Server (Das et al., 2016). We used the recently released HRC Reference Panel for imputation. In the final module, we used the summary of R2 from Minimac3 to evaluate the imputation accuracy and only keept imputed SNPsnps with R2>0.3 for QTL analysis.

[bookmark: _1dg3u2fae83g]S5.2 eQTL and isoform QTL
We used a very conservative approach for eQTL and isoQTL processing. We adhered closely to the GTEx pipeline, and we benchmarked our results with direct comparisons to available data files in the GTEx portal (gtexportal.org) and published GTEx results. We used the QTLtools software package for eQTL and isoform QTL (iso-QTL) identification. Following the normalization scheme used by GTEx, the gene expression matrix was normalized using quantile normalization, followed by inverse quantile normalization to map to a standard normal distribution. Probabilistic eEstimation of Eexpression rResiduals (PEER) factors, genotype PCs, gender, and respective study were used as covariates in our calculations to identify cis-eQTL. For cis-eQTLs, we calculated the associations between gene expression and variants within a 1Mb window of each gene TSS. These calculations were performed using genotype and gene expression data from 1,387 individuals (associations between a total of 43,854 genes and 5,312,508 variants were evaluated for potential QTLs).
[image: ][image: ]
Fig. S5.2 Genotype PCs showing the population structure in CMC and UCLA-ASD studies. These figures showed that the first three3 genotype PCs could capture most of the population structures. The top panels showing genotype PC1 vs. PC2. The bottom panels showing genotype PC1 vs. PC3. AWe could see that a majority of the individuals in these two studies wereare from EUR populations.

We then performed multiple testing correction on nominal P values by limiting FDR values to those below 0.05. At this FDR threshold, we identified 2,542,908 significant cis-eQTLs. Because of the effects of linkage disequilibrium (LD), many of the eQTL SNPs for the same gene were correlated. We thus pruned such SNPs for a given gene by restricting the genotype correlation coefficient (r2 ) values to exceed 0.5. Enforcing this threshold of r2 >0.5 resulted in 373,686 eQTLs. 
These conservative approaches for searching for eQTLs identified a substantially larger number of cis-eQTLs and eGenes than previous brain eQTL studies. This may reflect the greater statistical power offered by our very large sample size.
We also identified 157,592 iso-QTLs,. iso-QTLs were identified using athe similar pipeline to that in our search for eQTLs. For 1,147 individuals, we used isoform percentages of 43,820 transcripts using the same set of variants that wewere used in our search for eQTLs.



[bookmark: _sdfu9fco6xx4]S5.3 cQTLs
To calculate cQTLs, we used the uniformly processed ChIP-seq data from PsychENCODE (three3 different brain regions) and Roadmap ChIP-seq data for different tissues. cQTLs were calculated using candidate regulatory regions (cREs). We first extended (in rare cases truncated) each cRE to 1kb (a typical enhancer’s size). We calculated the average signal on each of the extended regions across PsychENCODE and roadmap samples. We identified 74 individuals from UCLA_ASD and 218 from Epidiff correlating this signal matrix with nearby variants within 1Mb window of the peak center. Then, we used the QTLtools for cQTL calculation using FDR<0.05 and identified the most significant SNPsnp for each enhancer. 

[bookmark: _4s8cip3s8kd3]S5.4 Cell fraction & residual QTL
We used the QTLtools package (Delaneau et al., 2017) to calculate the cell fraction and residual QTLs based on the cell fractions and estimated residuals. QTLtools was run in nominal pass mode to identify fQTLs. We used gender and disease as covariates. To best deal with population structure as potential confounding factor, we restricted our analysis to European adult samples, which comprise a substantial subset of all available genotyped data (Fig. S5.3A).
We take the conservative approach of defining significant fQTLs to be those associated with Bonferroni-corrected p-values of no more than 0.05. By using this approach, we identified 9 different cell types with significant fQTLs (Ex3, Ex4, Ex5, In6, In8, Astrocytes, Microglia, and Endothelial cells). Specifically, these 9 cell types are those which exhibit fQTLs when using gender and disease status as input covariates. We find that different cell types exhibit considerable heterogeneity in terms of their abundance within the set of high-confidence fQTLs (Fig. S5.3B). The SNVs associated with these fQTLs coincide with 106 distinct SNVs associated with cis-eQTLs. A supplementary data file listing all fQTLs (along with associated data) is available online.

[image: ]
Fig. S5.3 Datasets, counts, and cis-eQTL overlaps associated with fQTLs  A. In calculating fQTLs, we restricted our analyses to a 938 European adult samples for which genotype data is available. B. The histogram on the left represents the counts for the number of fQTLs across 10 different cell types. These fQTLs encompass 1672 distinct SNVs, of which 106 (6.3%) also appear among the cis-eQLTs.



[bookmark: _gdgtzt8qk5ys]S5.5 QTL replication and sharing
We evaluated the replication of GTEx and CommonMind PFC eQTLs in our study using the π1 statistic (Storey et al., 2003; Ng et al., 2017), which could estimated the proportion of eQTLs that were significant based on the p- value distribution in our dataset. In this calculation, we used top SNPs from our eQTLs and foundfind the overlap with the eQTL SNPs in GTEx and CommonMind. Then, we used the p values of associations between these overlapped SNPs with protein- coding genes in the 1Kb window to calculate π1. We determinedgot π1 values of 0.93 and 0.9 for GTEx and CommonMind, respectively, which indicated a good replication rate. We also used the π1 statistic to investigate the sharing of SNPs between different types of QTLs in our study. In this case, we foundfind the shareding SNPs between eQTL top SNPs and other QTL SNPs. Then, the π1 statistic was calculated based on the p values of the associations of these shareding SNPs with all genes in the 1Kb window. We found that the π1 value of cQTL wasis 0.89, which is the highest among all QTL SNP sharing comparisons.

[bookmark: _fhl51hxc36rv]
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[bookmark: _n7q3rjys32r2]S6. Supp. content to main text section "Regulatory networks"
[bookmark: _bvud2qcjy3py]S6.1 Generation of Hi-C libraries
Hi-C libraries were generated as previously described (Won et al., 2016). Briefly, adult dorsolateral prefrontal cortices (DLPFC) from three individuals (sample information provided below) were acquired through a Reference Brain Project as a component of the psychENCODE project. Frozen pulverized tissue (100mg) was homogenized in 2mL of ice-cold lysis buffer (10mM Tris-HCl pH8.0, 10mM NaCl, 0.2% NP40, protease inhibitor). Ten million nuclei were collected and chromatin was crosslinked in 1% formaldehyde (diluted in 1X PBS) for 10 min. Crosslinked chromatin was first digested by HindIII (NEB, R0104), and digested sites were labelled by biotin-14-dCTP (ThermoFisher, 19518-018). Proximity-based ligation was performed within nuclei to prevent random collision-based ligation (Rao et al., 2014). Biotin-marked DNA was then purified and sequenced by Illumina 50 bp paired-end sequencing.

[bookmark: _7slzcjxzdw0]S6.2 Hi-C data processing
Hi-C reads were mapped and filtered as previously described (Won et al., 2016) using hiclib (https://bitbucket.org/mirnylab/hiclib). Only cis reads (which refer to intra-chromosomal interactions) were used to construct contact matrices at 40kb and 10kb resolution for compartment and loop analyses, respectively. To obtain maximum resolution for loop detection (10kb), we pooled datasets from three individuals (see below for read depths for pooled samples). To compare interaction profiles in adult and fetal brain, we combined previously generated Hi-C datasets from two fetal cortical laminae to obtain comparable read depths (Won et al., 2016; see below for read depths for pooled samples). 
Compartments were analyzed by calculating the leading principal component (PC1) values from Pearson’s correlation matrix generated from contact matrices in 40kb resolution. Regions with PC1s positively and negatively correlated with the gene density were defined as compartment A and B, respectively. TADs were called based on contact matrices in 40kb resolution using Hi-C domain callers (http://chromosome.sdsc.edu/mouse/hi-c/download.html). Briefly, the directionality index was calculated by measuring the degree of interaction bias of a given 40kb bin to its upstream (2Mb) and downstream (2Mb) regions, which was subsequently processed by a hidden Markov model. 

Table S6.1 Summary of Hi-C datasets
	Samples
	Sample information
	cis filtered reads
	total filtered reads

	HBS189
	Male 36yr
(Ancestry unknown)
	197,394,146
	251,515,059

	HBS106
	Male 64yr
(Ancestry unknown)
	170,057,582
	209,571,512

	HBS181
	Male 44yr
(Caucasian)
	243,396,052
	299,801,452

	Pooled samples Adult brain
	
	610,847,780
	760,888,023

	Pooled samples Fetal brain
	Won et al., 2016
	855,987,816
	1,834,759,860


[bookmark: _rkf5lx8mfmoj]S6.3 Detection of promoter-based interactions 
Promoter-based interactions were identified as previously described (Won et al., 2016). Briefly, we constructed background interaction profiles from randomly selected length- and GC content-matched regions to promoters (defined as 2kb upstream of transcription start sites based on Gencode v19). Using these background interaction profiles, we fit interaction frequencies into Weibull distribution at each distance for each chromosome using the fitdistrplus package in R. Significance of interaction from each promoter was calculated as the probability of observing higher interaction frequencies under the fitted Weibull distribution, and interactions with FDR<0.01 (which corresponds to P-values~1x10–4) were selected as significant promoter-based interactions. In total, we detected 149,098 promoter-based interactions. We overlapped promoter-based interactions with genomic coordinates of TADs, and found that the majority (~75%) of promoter-based interactions were located within the same TADs. 
We used a binomial test as previously described (McLean et al., 2010) to evaluate the epigenetic state enrichment of regions that interact with promoters, using a 15 state chromatin state model in adult prefrontal cortices (PFC) from Roadmap Epigenomics (Kundaje et al, 2015). To assess whether promoter-interacting regions are enriched in enhancer states, we calculated the significance of the overlaps by binomial probability of P=Pbinom(k>=s, n=n, p=p), when p = fraction of genome in enhancer states, n = the number of promoter-interacting regions, s = the number of promoter-interacting regions that overlap with enhancer states.
To assess whether epigenetic states affect their target gene expression levels, we used transcriptomic profiles of PFC from neurotypical individuals (see section S2.1). Quantile normalized expression values were log transformed and centered to the mean expression level for each sample using a scale(center=T, scale=F)+1 function in R. The centered expression values denote each gene’s relative expression level in a given individual, and were used throughout the integrative analysis. We selected genes that interact with enhancers (EnhG=Genic enhancers, Enh=Enhancers), promoters (TssA=Active transcription start sites, TssAFlnk=Active transcription start site flanking regions), bivalent enhancers (EnhBiv), and repressive states (Het=Heterochromatin, ReprPC=Polycomb repressive sites) and average centered expression values for each group were calculated and plotted.

[image: ]
Fig. S6.1 Regulatory relationships in the adult cortex  A. The majority of promoter-based interactions reside within the same topologically associating domains (TADs). B. Regions that interact with transcription start sites (TSS) are enriched with other TSS and enhancers. D. Distribution of the number of putative enhancers assigned to each promoter. E. Genes that interact with enhancers or promoters are more highly expressed than genes that interact with bivalent enhancers or repressive marks.


[bookmark: _ythec9z8jpt]S6.4 Integrative analysis
Compartment changes across brain development. Genomic regions were classified into (1) regions that undergo compartment A to B switching from fetal to adult brain, (2) regions that undergo compartment A to B switching from adult to fetal brain, (3) regions that do not switch their compartments across brain development (stable). 
Genes were then grouped according to the compartment categories they locate in, and centered expression values for each group were calculated. As our RNA-seq data mainly focus on adult brain transcriptome, we processed expression values from Kang et al. to generate centered expression values (Kang et al., 2011). Prenatal and postnatal centered expression values were plotted for each group of genes. We also overlapped chromatin states in adult PFC and fetal brain defined by chromHMM with compartment categories. We then counted the total number of each chromatin state in a given compartment category, which was subsequently normalized by the size and the number of total chromatin states in that compartment category. We compared these normalized counts for each chromatin state between fetal and adult brains using the Fisher’s exact test. 
[image: ]
Fig. S6.2 Compartment switching across brain development is associated with expression and epigenetic changes  A. Heat map of the first principal component (PC1) values for regions that undergo compartment switching between fetal brain (CP and GZ) and adult brain. B. Brain expression levels for genes located in compartments that switch during development. C. Fraction of epigenetic states for regions that undergo compartment switching across brain development. For example, B to A shift in adult to fetal brain is accompanied by an increased proportion of active promoters (TssA, TssAFlnk), transcribed regions (Tx, TxWk), and enhancers (EnhG, Enh), and a decreased proportion of repressive elements (ReprPCWk) and heterochromatin (Het) in fetal brain compared with adult brain. *P < 0.05, **P < 0.01, ***P < 0.001. P values from Fisher’s test. 

Regulatory relationships across brain development. To compare the shared proportion of enhancer-promoter interactions in fetal vs. adult brain, we first collapsed putative enhancers (identified as promoter-based interactions) to each gene. We generated enhancer-gene links (e.g. chr10:100130000:ENSG00000230928) from fetal and adult brain and directly compared them. According to this analysis, 30.8% of enhancer-gene links detected from adult brain were also detected in fetal brain. 
Using chromatin states defined by chromHMM (Kundaje et al., 2015) in fetal brain and adult PFC, we defined regulatory regions according to their developmental state changes: (1) Both active: elements that are active in both adult and fetal brain, (2) Fetal active: elements that are active in fetal brain and become repressive in adult brain, (3) Adult active: elements that are repressive in fetal brain then become active in adult brain. Active elements were defined as TssA, TssAFlnk, EnhG, Enh, while repressive elements were defined as Het, ReprPC, ReprPCWk (weak Polycomb repressive sites), and Quies (quiescent states). These elements are referred as developmental regulatory elements. Since developmental regulatory elements contain both promoters and enhancers, we then overlapped them with the promoter coordinates used to detect promoter-based interactions (see section S6.3). In total, we identified 6 types of developmental regulatory elements: both active promoters, both active enhancers, fetal active promoters, fetal active enhancers, both active promoters, both active enhancers. 
We next assigned genes to developmental regulatory elements: elements that overlap with promoter coordinates were directly assigned to their genes based on linear genome, while the ones that do not overlap with promoter coordinates were thought as enhancers and assigned based on promoter-based interactions either from adult or fetal brain. Fetal active enhancers were assigned to their target genes based on fetal brain Hi-C, adult active enhancers were assigned based on adult brain Hi-C data, while both active enhancers were assigned based on both adult and fetal brain Hi-C data. In total, this analysis leads to 7 groups of genes that were linked to each element: both active promoters-linear assignment, fetal active promoters-linear assignment, adult active promoters-linear assignment, both active enhancers-fetal Hi-C, both active enhancers-adult Hi-C, fetal active enhancers-fetal Hi-C, adult active enhancers-adult Hi-C. Average centered expression values were calculated and plotted for each group, and gene ontology (GO) enrichment for each group was assessed using GoElite v77 (http://www.genmapp.org/go_elite/). 
We also processed single cell expression values (in log2(TPM+1) forms, see Section S2.2.2) by centering to the mean expression level for each cell using a scale(center=T, scale=F) function in R. This results in centered expression values denoting each gene’s relative expression level in a given cell, hereby referred as cell-level centered expression values. We then calculated average cell-level centered expression values for each group of genes mapped to distinct types of developmental regulatory elements. 

Relationships between the enhancer number and gene expression. To measure the relationship between enhancer numbers and gene expression level, we integrated promoter-based interactions, brain active enhancers, and expression data. As enhancers and Hi-C interactions were defined in different resolution (Hi-C was defined at 10kb bin level, while enhancers were defined at much higher resolution), we clumped enhancers within 10kb bins so that they match with the Hi-C resolution. Intersecting brain active enhancers and promoter-based interactions led to 17,719 bin-level enhancer-promoter interactions. We grouped genes based on their number of interacting enhancers and their average centred expression values were calculated and plotted for each group. We also identified 90,015 enhancer-promoter interactions when we didn’t clump enhancers into a bin-level..

Cis-regulatory relationship mediated by chromatin interactions. We overlapped eQTLs, isoQTLs, and cQTLs (hereby referred as QTLs) with Hi-C to measure the proportion of cis-regulatory relationship mediated by 3D interactions. As the type of chromatin interactions that mediate cis-regulatory relationship has not been well understood, we did not want to restrict our interaction search space into promoter-based interactions. Therefore, we first obtained chromatin interaction profiles of QTLs and then overlapped the profiles with (1) gene coordinates both at the exon and promoter levels (eQTL/isoQTL) or (2) coordinates of chromatin marks (cQTL).
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Fig. S6.3 Dynamics of chromatin landscape across brain development   A. A schematic showing how brain regulatory elements were mapped to their putative target genes based on chromatin interaction profiles. Brain regulatory elements were first grouped into three categories: regulatory elements that are active in both developmental epochs (both active), regulatory elements in fetal brain (fetal active), and regulatory elements in adult brain (adult active). Brain regulatory elements that reside within promoters were directly assigned to their target genes (promoter-based assignment), while intergenic/intronic regulatory elements were assigned based on chromatin interactions either in fetal or adult brain (Hi-C based assignment). The number of brain regulatory elements (peaks) and genes mapped to regulatory elements by promoter- and Hi-C-based assignment is described in the bottom. B. Genes assigned to fetal active elements are prenatally enriched, while genes assigned to adult active elements are postnatally enriched. C. Genes assigned to fetal active elements are relatively more enriched in neurons in the adult (Adult-Neuron) and fetal brain (Developmental-Quies and Repl), while genes assigned to adult active elements are relatively more enriched in glia (astrocytes, endothelial cells, and oligodendrocytes). D. Gene ontology enrichment for genes that are assigned to fetal and adult active regulatory elements based on chromatin interactions. Fetal active elements were assigned to genes associated with neuronal differentiation and synaptic formation, while adult active elements were assigned to genes involved in gliogenesis and synaptic maturation.

We constructed background interaction profiles from all SNPs with the imputation score > 0.9 in the genome to fit null distribution of the expected interaction frequencies given the chromosome and distance (see section S6.3 for more details). Significance of interaction from each QTL was calculated as the probability of observing higher interaction frequencies under the fitted null distribution. Interactions with FDR<0.01 were selected as significant interactions, and the regions that significantly interact with QTLs were overlapped with genomic coordinates of promoter (defined as 2kb upstream of every TSS), exon coordinates (based on Gencode v19), and coordinates of chromatin marks used to detect cQTLs. When conducting chromatin interaction analysis for eQTL/isoQTL, we excluded QTLs that are located within promoter or exons (promoter/exonic QTLs) because there is a high probability that they are directly associated with the genes/chromatin marks in which they locate. We also excluded cQTLs within 20kb from chromatin marks as chromatin interactions within this range is undetectable.
An e-Gene/chromatin often has multiple QTLs due to the linkage disequilibrium (LD), which makes it difficult to identify causal variants. Therefore, instead of a direct comparison between eGenes/chromatin and genes/chromatin that physically interact with QTLs, we measured the fraction of eGenes/chromatin that also have Hi-C evidence. For this purpose, we grouped QTLs based on eGenes/chromatin and checked whether any of the QTLs for a given e-Gene/chromatin also physically interacts with the same e-Gene/chromatin.
According to this analysis, 31.9% of eQTLs and 12.4% of isoQTLs had Hi-C evidence, indicating that chromatin interactions may impact cis-regulatory relationships via gene regulation than isoform switching. We also found that 6.5% of cQTLs have Hi-C evidence. Although this overlap is lower than what we found from eQTLs and isoQTLs, we think this reflects the low power of cQTLs (292 samples for cQTL vs. 1,387 samples for eQTL). In details, 27.4% of eQTLs were supported by promoter-based interactions, while 30.9% were supported by exon-based interactions, suggesting that exon-level interactions also have potentials to affect gene regulation, which has not been previously studied. Given that 31.9% (< 27.4% promoter-based interactions + 30.9% exon-based interactions = 58.4%) of eQTLs are supported by either promoter or exon-level interactions, most of the exon-/promoter-based interactions are redundant, indicating a complex gene regulatory network. On the contrary, 10.9% of sQTLs were supported by promoter-based interactions, while 3.7% were supported by exon-based interactions, which are largely non-redundant (12.4% total Hi-C supported sQTL ~ 10.9% promoter-based interactions + 3.7% exon-based interactions = 14.6%). In total, 32% of the eGenes showed evidence of chromatin interactions, accounting for 239,837 eQTLs, 3,235 isoQTLs. 
We then compared the significance of associations for Hi-C supported QTLs, promoter/exonic QTLs, and non-supported QTLs (intronic/intergenic QTLs that do not have Hi-C evidence). We grouped QTLs based on these three categories and compared the significance of associations for each group. We compared the distribution of -log10(P-values) for each group using a (pairwise) Wilcoxon test. When there are more than two groups to compare, multiple testing correction was performed using FDR.
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Fig. S6.4 Chromatin interactions mediate cis- and trans-regulatory relationships  A. A proportion of QTL-associated genes (eQTLs), isoforms (isoQTLs) and chromatin marks (cQTLs) that have Hi-C evidence. B. eQTLs supported by Hi-C evidence show stronger associations not only to eQTLs without genomic annotations (non-supported), but also to exonic and promoter eQTLs. C-D. isoQTLs (C) and cQTLs (D) supported by Hi-C evidence show stronger associations than those without genomic annotations (non-supported). 
[bookmark: _8tv8e6qq8he1]S6.5 Imputed gene regulatory networks (TFs)
We integrated and imputated all possible regulatory relationships in the frontal cortex including the enhancers, transcription factors (TFs), miRNAs and target genes in this resource. The first step involved inferring the positions of the TF binding sites (TFBSs) within the key regulatory elements in our model, namely, promoters and enhancers in TADs. To do this, we started with a previously generated genome-wide map of all the TFBSs using the list of TFs and associated motif position weight matrices (PWMs) from the ENCODE consortium.
Next, we defined the promoter regions by a window of 1.25 kb (=2.5 kb in total) relative to the transcription start site (TSS), while the PEC enhancer regions of uniform length 1 kb were used. The ENCODE DNase hypersensitivity site (DHS) datasets for the frontal cortex (in .bed format) were then used to find open chromatin regions within the promoters, and the TFs with TFBSs within these open chromatin regions of the regulatory elements were linked to the corresponding elements. (The TBFSes were determined from a motif catalog, merging the motifs in XXX, YYY, ZZZ (ref AAAA, BBB,)) Since the PEC enhancers were already defined within regions of open chromatin, there was no need to further filter them out using DHS data, hence the TFs within the enhancers were directly linked to them. Finally, we tentatively link all enhancers and promoters within the same TADs determined from the Hi-C data on the reference brains (pooled data from three reference brains). The net result is a set of preliminary linkages in the form of [Enhancer TFs]=>Enhancers=>Promoters<=[Promoter TFs]. 	Comment by Mark Gerstein: where from?
There are some noteworthy points on this analysis. Firstly, when the PEC enhancers were expanded to a uniform size of 1 kb, there were some overlaps between adjacent enhancers. With regard to the TF linkages, we resolved these overlaps by assigning a TF within the overlap region only to the first enhancer encountered in the sorted enhancer list. Secondly, there are two experimental DHS files for the frontal cortex from the ENCODE consortium, resulting in two different sets of TF linkages for the promoters. The results from the two replicates were merged into a single consensus set of linkages.
In total, we included 675,061 enhancer-target-promoter in TADs and 823,946 TF-target-promoter binding linkages, providing a reference wiring network on gene regulation in brain, which consists of the regulatory factors and elements (e.g., TFs, enhancers) and target genes.
In order to identify the activated regulatory wires for a particular phenotype or disorder, we further used the computational method to determine such activated regulation. In particular, given a gene and a phenotype/disorder, we applied the Elastic net regression, linearly combining the L1 and L2 regularizations to predict its gene expression data from the expression data of the TFs that have the binding sites on the gene’s enhancers and promoter and overlap the QTLs; i.e., the QTLs break the binding sites. We then identified the activated TF-target regulatory relationships if TFs have large regression coefficients. In detail, suppose Y is an N-dimensional vector with elements being the gene’s expression levels across samples, where N is the sample number for the phenotype/disorder. X is an N by M matrix whose columns are the TFs’ expression levels, where M is the number of potential TFs. The Elastic net regression estimates the coefficients of M TFs, denoted by an M-dimensional vector, B= argmin_B ||Y-XB||^2+alpha*||B||^2+beta*||B||_1, where alpha and beta are parameters to adjust the contributions from L2 and L1 regularizations of B. The mean square error of Elastic net regression is equal to ||Y-XB||^2/N based on ⅔ training and ⅓ test data. For each gene and its TFs, we used the gene expression data across all adult samples (N=1866) in the resource to run the Elastic net regression. For example, we identified a strong regulatory relationship between four promoter TFs (NKX2-4, FOXE3, FOXI1, TFAP2B, coefficients >0.2) and three enhancer TFs (FOXA2, FOXI2, HMX2, coefficients > 1) with CHD8, a chromatin remodeler strongly associated with ASD. In total, we could predict the expression level of CHD8 with mean square error < 0.034. 
Furthermore, we compared the HiC enhancer-promoter interactions and the interactions between eGenes and associated e/isoQTLs on enhancers with TF activity to determine a highly confident, overlapped enhancer-target-promoter linkages. In summary, there were 43,181 TF-to-target and 447,919 enhancer-to-target-promoter linkages among the top 5% Elastic net regression coefficients (absolute value >0.2). from at least two of these types: (i) activity relationships (~577k enhancer-to-target-promoter linkages), (ii) physical chromatin interactions (~91k Hi-C enhancer-promoter interactions), and (iii) 36,293 QTLs (e/isoQTL-SNP on brain enhancers to eGene).
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FIg. S6.5 Mean square error distribution of Elastic net regression predicting target gene expression from TF expression  The x-axis is the mean square error range across protein-coding target genes. The y-axis is the density of target genes. An associated Data file with the error values for each gene is on the website (adult.psychencode.org)	Comment by Mark Gerstein: ex genes?
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[bookmark: _hxcnrjtlqahf]S7. Supp. content to main text section "Linking GWAS variants"
[bookmark: _vpp7hg8zcgbq]S7.1 Identification of GWAS associated genes for schizophrenia
We used 5,996 schizophrenia (SCZ)-associated autosomal putative causal (credible) SNPs reported in the original study (Pardiñas et al., 2018) and categorized them into promoter/exonic and intergenic/intronic SNPs. Promoter/exonic SNPs were directly assigned to the target genes based on the genomic coordinates, while intergenic/intronic SNPs were annotated based on chromatin interactions and enhancer-target-gene linkages supported by activity relationships from Elastic net regression. We used promoter-based interactions defined by Hi-C and enhancer-target-gene linkages to assess whether credible SNPs reside in (1) regions that physically interact with promoters of any genes (see Section S6.3) and/or (2) enhancer regions supported by activity relationships (see Section S6.5). 
Credible SNPs colocalize with 2,064 eQTLs associated with 282 eGenes, 91 of which overlap with those identified by the Hi-C driven approach. To confirm this overlap is mediated by the shared causal variants in GWAS and eQTLs, we performed a colocalization test (Giambartolomei et al., 2014), from which we identified 293 genes across 79 loci in which GWAS and eQTLs share causal variants. 
Collectively, we identified 176 genes across 83 loci from the direct assignment, 597 genes across 92 loci from the Hi-C driven approach, 388 genes across 37 loci from enhancer-target links, 293 genes across 79 loci from eQTL associations, and 29 genes across 23 loci from isoQTL associations. In total, this leads to 1,097 genes across 119 loci, which are referred as SCZ genes. We also selected risk genes that are identified by two or more metrics to obtain SCZ high-confidence (HC) genes (304 genes).
We compared SCZ risk genes defined by each metric (QTL=eQTL and isoQTL, Hi-C, and enhancer-target links) by performing an over-representation test. One key thing for an over-representation test is to define a background gene set, because each metric has different background genes. For example, 13,304 genes have enhancer-target links (hereby referred as E-T genes), 33,217 genes have QTLs, while Hi-C has the genome-wide search space. Therefore, we defined a background gene list by taking an intersect of eGenes and E-T genes. For each metric, we took an intersect of SCZ risk genes and the background gene set and used them for the Fisher’s exact test.
To assess what fraction of SCZ genes have distal regulatory relationships with putative causal SNPs, we compared SCZ genes with the genes that locate within the LD regions with the index SNPs (r2>0.6, includes genes partly overlapping with LDs). We also ran the colocalization test using the currently largest public dataset of eQTLs from the CMC (Fromer et al., 2016), assigning 137 genes to 68 loci. Notably, our newly generated eQTLs identified twice more genes than CMC eQTLs. 

[bookmark: _62redcq4ovm]S7.2 Functional enrichment analysis
To assess whether SCZ genes and SCZ HC genes are dysregulated in neuropsychiatric disorders, we performed enrichment analysis by logistic regression on (1) differentially expressed genes (DEGs) in three types of disorders (ASD=autism spectrum disorder, SCZ=schizophrenia, BD=bipolar disorder) identified by (Gandal, M.J. et al., submitted), (2) genes affected by rare LoF variants in SCZ (TADA<0.3; Singh et al., 2016), and (3) genes located in recurrent SCZ copy number variation (CNVs) (Marshall et al., 2017). For the enrichment analysis on SCZ rare variants and CNVs, we used protein-coding genes for a background gene list and regressed exon lengths out. For the enrichment analysis on DEG, we used a union of eGenes and E-T genes detected in our study as a background gene list. 
We analyzed GO enrichment for SCZ genes and SCZ HC genes using GOElite. We used the union of detected eGenes and E-T genes as a background gene list. 
We used cell-level centered expression values to get average centered expression values for SCZ and SCZ HC genes in each cell type. Cell types were grouped into the clusters neurons, astrocytes, OPC, oligodendrocytes, microglia, endothelial cells, fetal neurons, and the neuronal subcluster (excitatory and inhibitory neurons) and measured relative expression levels in a given cluster by a scale function in R. 

[bookmark: _hkju7gizl2cl]S7.3 Identification of TFs associated with schizophrenia risk genes	Comment by Mark Gerstein: where is this used?
TF-target regulatory relationships (see Section S6.5) were used to detect TFs that are enriched either in (1) promoters of SCZ genes or (2) enhancers that overlap with SCZ credible SNPs. We calculated the significance of the enrichment by P=Pbinom(k>=s, n=n, p=p), when p = fraction of promoters/enhancers associated with credible SNPs, n = the number of total binding sites of a TF A (TFBSA) in promoters/enhancers, s = the number of total promoter/enhancer TFBSA associated with credible SNPs (Fig. S7.1). 
For promoter enrichment, p = the number of SCZ genes / the number of genes that have TF-target-promoter links from the elastic net; s = the number of TFBSA within promoters of SCZ risk genes. For enhancer enrichment, p = the length of enhancers that harbor SCZ credible SNPs / the length of enhancers that have TF-enhancer-target links from the elastic net; s = the number of TFBSA within enhancers that harbor SCZ credible SNPs. For promoter enrichment, we calculated an enrichment P-value for each TF, which was subsequently corrected for the number of TFs bound to gene promoters. For enhancer enrichment, an enrichment P-value for each TF was subsequently corrected for the number of TFs within enhancers that harbor SCZ credible SNPs. 

[bookmark: _5nh6gl7cti8l]S7.4 Partitioned heritability 
We assessed heritability explained by brain regulatory elements (enhancers) and variants (eQTLs) for different GWAS using partitioned LD score regression (LDSC, Finucane et al., 2015; https://github.com/bulik/ldsc/wiki/Partitioned-Heritability). We included 9 brain disorder GWAS and 3 non-brain disorder GWAS (GWAS sets and sources described below) in an attempt to test that partitioned heritability estimates of brain disorders are more strongly enriched in brain enhancers and eQTLs than in non-brain disorders. For eQTLs, we included all eQTLs in the model, since LD scores count for LD. We also used top SNPs (pruned for LD r2>0.5) to ensure that the enrichment signal doesn’t come from the spurious LD structures, where we got similar enrichment results. 

	Disorders
	Source

	ADHD
	Demontis et al. 2017

	ASD
	Grove et al. 2017

	Bipolar disorder
	Ruderfer et al. 2014

	Depression (Broad General Practice)
	Howard et al. 2017

	Schizophrenia
	Pardinas et al. 2018

	Educational attainment
	Okbay et al. 2016

	Intelligence
	Sniekers et al. 2017

	Alzheimer’s disease
	Lambert et al. 2013

	Parkinson’s disease
	Nalls et al. 2014

	Type 2 diabetes (T2D)
	Morris et al. 2012
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Fig. S7.1 Identification of schizophrenia risk genes  A. A schematic depicting how SCZ GWAS loci were assigned to putative genes. B. Gene ontology enrichment for SCZ-genes demonstrates that cholinergic receptors, synaptic genes, calcium channels, immune response-related genes, translational regulators, and RNA splicing regulators are associated with SCZ GWAS. C. Left, Colocalization analysis with eQTLs identified 2.13 fold more genes than the CMC eQTLs (Fromer et al., 2016). Right, Most SCZ genes (66.2%) are not located in the genome-wide significant loci (LD defined as r2>0.6). D. SCZ risk genes are enriched for dysregulated genes in ASD and SCZ, genes affected by recurrent copy number variations (CNV) in SCZ (SCZ CNV), and genes intolerant to loss-of-function mutations (ExAC pLI>0.9). SCZ LGD, genes that harbor likely gene disrupting (LGD) mutations in SCZ; HC, SCZ high-confidence genes; Downreg, downregulation; Upreg, upregulation. E. TFs that are significantly enriched in promoter regions of SCZ genes. F. TFs that are significantly enriched in enhancers that harbor SCZ credible SNPs. 	Comment by Mark Gerstein: reference to this fig
[bookmark: _so0jf2c5y9wj]S8. Supp. content to main text section "Deep-learning model”
[bookmark: _kcldgrmgg5x3]		[[JW placeholder -- text in separate word docx file]]
[bookmark: _s98ae4efpbc5]S8.1 Genotype - gene expression/enhancers - modules - phenotype
S8.1.1 Balanced Datasets
[bookmark: _jops0lsxs933]S8.2 Deep learning model for predicting brain genotype-phenotype
S8.2.1 Logistic Regression (LR)
S8.2.2 Conditional Restricted Boltzmann Machine (cRBM)
S8.2.3 Conditional Deep Boltzmann Machine (cDBM)
S8.2.4 Deep Structured Phenotype Network (DSPN)
[bookmark: _gkse1i7j7xdb]S8.3 Imputation using integrative modeling
S8.3.1 Deep Structured Phenotype Network for Imputation (DSPN-Imput)
[bookmark: _jgcy5e92suck]S8.4 Variance explained on liability scale and heritability
[bookmark: _3i7j70uzbflw]S8.5 DSPN enrichment analysis for prioritized modules and higher-order groupings
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Fig. S8.1 Accuracy of intermediate phenotype imputation using DSPN-Imput model  Figure compares prediction accuracy for gene expression and chromatin activity using the full DSPN-Imput model (with GRN structure included) vs prediction with a logistic model (independent prediction). Performance on training and testing partitions is shown.
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Fig. S8.2 Potential causal relationships between genome, transcriptome/epigenome, macro-environment and high-level traits  A schematic of possible decomposition of variation in the indicated variables. Large circles represent total entropy of each variable, and smaller circles (e-det, g-det, trait-det) represent multivariate mutual information shared between variables linked by arrows (directionality represents causation). The red dotted circle and arrow represent causal influence of transcriptome/epigenome on the high-level trait, only part of which need intersect the g-det circle; hence, the trait variance explained by the transcriptome/epigenome is an upper-bound on the genetically determined trait variance. Only three-way intersections involving trait interactions are shown.
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Fig. S8.3 Schematic representation of prioritization scheme for interpreting DSPN latent nodes and modules  Circles represent nodes on three layers within the DPSN, along with a ‘node of interest’ on the upper layer. The prioritization shown uses a branching factor of 2, where red and blue links indicate the largest positive and negatively weighted edge respectively connected to each node from below. + and - signs represent the positive and negative prioritized sets for the node of interest at each of the lower levels, which are assigned based on the multiplication of signs along connecting paths (conflicting pathways would result in assignment to both positive and negative sets; not shown).
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Fig. S8.4 Further DSPN traces for functional enrichment of prioritized modules in DSPN models  Examples are shown of genes belonging to prioritized modules in BPD (left) and AGE (right) related DSPN models. HOMER1 has previously been associated with BPD, and NRGN was strongly associated with age in our differential expression analysis (as well as being a SCZ associated gene).
[image: ]
Fig. S8.5 Enrichment of GWAS SNPs in DSPN prioritized modules  Figure shows enrichment of GWAS SNPs associated with SCZ and BPD in the DSPN modules prioritized in the SCZ and BPD models. SNPs are linked with prioritized modules using all eQTLs associated with genes they contain. Enrichment is tested using a 1-tailed Mann-Whitney test for an increase in the number of GWAS SNPs per gene in prioritized versus non-prioritized modules. We observe enrichments for both disease modules with their respective GWAS SNPs, and also an enrichment of BPD GWAS SNPs in the SCZ modules, consistent with an overlap in disease etiology.
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Fig. S8.6 Performance of DSPN-mod and other models with fixed early stopping.  Test accuracy is shown for all models including DSPN-mod along with corresponding liability scores in brackets averaged across 10-fold cross validation data splits (as in Fig. 6D).  Figures here are calculated using a fixed early stopping threshold, as described in the supplemental text (S8.2).




[bookmark: _6nm1h2pycdbe]S9. Resource website
[bookmark: _r79lrjnko6k]http://adult.psychencode.org/
The website contains much supplementary information related to the project, including the raw and processed data files them. For convenience, we reproduce below some sections of the site related to the descriptions of the data files.
[bookmark: _i3dftweo9qkg]S9.1 Bulk RNA-seq and genotype data (The text in this section up to Study 8 was directly adapted from the Psychencode/Synapse Website).
[bookmark: _1xitijsetahg]S9.1.1 PsychENCODE and other brain consortia
We processed gene expression read count data (as quantified by FPKM and measured by RNAseq) from 9 studies: UCLA-ASD, Yale-ASD, BrainGVEX, the The Lieber Institute for Brain Development (LIBD), GTEx, the CommonMind Consortium (CMC), the CMC’s NIMH Human Brain Collection Core (CMC HBCC) and Bipseq a Bipolar cohorts and from Yale. The detailed descriptions of PsychENCODE related 8 studies were listed below and may also be found on supplemental Table S2.1, as well as in the PsychENCODE Knowledge Portal (https://www.synapse.org/#!Synapse:syn4921369/wiki/390659 ). 

Study 1 (Freeze 1) - BrainGVEX
RNAseq data was generated from 427 postmortem prefrontal cortex from subjects with schizophrenia (n=95), bipolar disorder (n=73), and non-psychiatric controls (n=259), as part of the BrainGVEX study (Synapse accession doi:10.7303/syn4590909) within the PsychEncode Consortium (https://www.synapse.org/pec) (72). BrainGVEX study includes RNA samples collected as part of the “Array Collection”, “Consortium Collection”, “New Collection” and ”Extra Collection” from the Stanley Medical Research Institute (SMRI). Array collection and Consortium collection were from superior frontal gyrus (BA9) whereas those labelled EXTRA or NEW were from the middle frontal gyrus (BA46). Another 184 controls were obtained as fresh-frozen brain tissue from the Banner Sun Health Research Institute (BSHRI). All BSHRI samples were from frontal cortex. RNA were extracted from BSHRI samples by first homogenizing 20-50 mg of tissue in QIAzol (Qiagen) using the Lysin Matrix D and FastPrep®-24 system (MPBiomedicals). Total RNA were then isolated using the miRNeasy Kit (Qiagen) according to manufacturer’s instructions. RNA integrity was assessed with Agilent Technologies RNA 600 nano kit. Samples with RNA Integrity Number (RIN) lower than 5.5 were excluded from the study. RNA sequencing libraries were prepared using TruSeq Stranded Total RNA sample prep kit with RiboZero Gold HMR (Illumina). Libraries were multiplexed (3 per lane) for paired-end 100 bp sequencing on Illumina HiSeq2000 with read depth >70 million reads on average.

DNA genotyping were done using two different platforms. 144 samples (SMRI Consortium and Array Collections) were genotyped using the Affymetrix GeneChip Mapping 5.0K Array. Genotypes were called with the BRLMM-p algorithm (Affymetrix) with all arrays simultaneously (Zhang et al., 2010). The rest of samples (SMRI New and Extra Collection, and BSHRI Collection) were genotyped with the Human PsychChip, which is a custom version of the Illumina Infinium CoreExome-24 v1.1 BeadChip (#WG-331-1111) supplemented with content derived from GWASs and DNA sequencing studies of multiple psychiatric disorders by the Psychiatric Genomics Consortium (PGC). Genotypes were called using Illumina’s GenomeStudio software, Birdseed and Zcall, as described (Code found at: https://github.com/Nealelab/ricopili/blob/master/rp_bin/mergecall_10) (Pedersen et al., 2018).

GenomeStudio and Birdseed were used separately to initially call variants in 288 individuals. Accepted variants had a call frequency greater than 97% and a Hardy-Weinberg Equilibrium (HWE) p-value > 1 x 10-6. 24 of the 288 individuals were immediately excluded because they were missing calls for >5% of genotyped SNPs, when either caller was used. Birdseed and GenomeStudio variant calls were then merged by consensus. If both programs returned a different result for a single variant, the final call for that variant was set to “missing.” When a call was made with only one of the two programs, that successful call was deemed the consensus.

The resulting merged consensus data was filtered again according to the same call frequency, sample missingness, MAF and HWE criteria described above. Finally, valid rare variant calls were refined using Zcall. Meaning, genotype calls for variants with MAF < 0.01 in the merged and filtered dataset were replaced with zCall results when, in zCall, their HWE p-values > 1 x 10-6, missingness rates were below 3% and MAF < 0.05. Note that zCall only refines GenomeStudio calls, so zCall results are independent of Birdseed calls. Ultimately 577,643 variants were called, 242,272 being rare. 

Study 2 (Freeze 1) - BrainSpan
RNAseq: RNA was extracted using RNeasy Plus Mini Kit (Qiagen) for mRNA. Either approximately 30 mg of pulverized tissue (12 PCW – 40 Y specimens) or entire amount of dissected brain piece (8 – 9 PCW, smaller than 30 mg) was processed. Tissue was pulverized with liquid nitrogen in a chilled mortar and pestle and transferred to a chilled safe-lock microcentrifuge tube (Eppendorf). Per tissue mass, equal mass of chilled stainless steel beads (Next Advance, cat# SSB14B) along with two volumes of lysis buffer were added. Tissue was homogenized for 1 min in Bullet Blender (Next Advance # SSB14B) at speed 6 and incubated at 37°C for 5 min. Lysis buffer up to 0.6 ml was again added, tissue homogenized for 1 min and incubated at 37°C for 1 min. Extraction was further carried out according to manufacturer’s protocol. Genomic DNA was removed by a proprietary column provided in RNeasy Plus Mini Kit (Qiagen) or by DNase treatment using TURBO DNA-free Kit (Ambion/ Life technologies). 260:A280 ratio and RNA Integrity Number (RIN) were determined for each sample with NanoDrop (Thermo Scientific) and Agilent 2100 Bioanalyzer system, respectively.

The mRNA-sequencing (mRNA-seq) Sample preparation Kit (Illumina) was used to prepare cDNA libraries per manufacturer instructions with some modifications. Briefly, polyA RNA was purified from 1 to 5 µg of total RNA using Oligo (dT) beads. Quaint-IT RiboGreen RNA Assay Kit (Invitrogen) was used to quantitate purified mRNA with the NanoDrop 3300. Following mRNA quantitation, 2.5 µl spike-in master mixes, containing five different types of RNA molecules at varying amounts (2.5 × 10-7 to 2.5 × 10-14 mol), were added per 100 ng of mRNA. Spike-in RNAs were synthesized by the External RNA Control Consortium (ERCC) by in vitro transcription of de novo DNA sequences or DNA derived from B. subtilis or the deep-sea vent microbe M. jannaschii and were a generous gift of Dr. Mark Salit at The National Institute of Standards and Technology (NIST). Each sample was tagged by adding two spike-in RNAs unique to the region from which the sample was taken. Besides, three common spike-in RNAs with gradient concentrations were added to each sample, aiming at the assessment of sequencing quality. Spike-in sequences are available at http://archive.gersteinlab.org/proj/brainseq/spike_in/spike_in.fa. The mixture of mRNA and spike-in RNAs was subjected to fragmentation, reverse transcription, end repair, 3’ end adenylation, and adapter ligation to generate libraries of short cDNA molecules, followed by PCR amplification. The PCR enriched product was assessed for its size distribution and concentration using Bioanalyzer DNA 1000 Kit.

Genotype data was not used in this study due to the small adult sample size.



Study 3 (Freeze 1) - CommonMind
Full details of the CommonMind study have been published (19). Data is available through the Sage Bionetworks Synapse system (https://www.synapse.org/cmc; doi:10.7303/syn2759792). Samples were acquired through brain banks at three institutions:The Mount Sinai NIH Brain Bank and Tissue Repository, University of Pennsylvania Brain Bank of Psychiatric illnesses and Alzheimer’s Disease Core Center, and the University of Pittsburgh NIH NeuroBioBank Brain and Tissue Repository. Details about brain banks, inclusion/exclusion criteria, and sample collection and processing are described here: https://www.synapse.org/#!Synapse:syn2759792/wiki/71104

RNAseq: RNAseq data from 613 total human postmortem dorsolateral prefrontal cortex (DLPFC) brain samples were obtained from 603 subjects with schizophrenia (n=263), bipolar disorder (n=47), affective disorder (8), and neurotypical controls (n=285), where 10 neurotypical controls were sequenced as biological replicates). Total RNA was extracted from 50 mg of homogenized DLPFC brain tissue using RNeasy kit. Samples with RIN < 5.5 (n=51) were excluded. The remaining samples had a mean RIN of 7.7. RNAseq library preparation was performed using ribosomal RNA depletion, with the Ribozero Magnetic Gold Kit. Samples were barcoded, multiplexed (n=10/lane), and sequenced across two lanes as 100 bp paired end sequencing on the Illumina HiSeq 2500 with an average of 85 million reads. Data is provided for those samples that passed all of the following QC filters: samples were required to have had a minimum of 50 million total reads and less than 5% rRNA alignment.

Genotyping: DNA was isolated from approximately 10 mg dry homogenized tissue coming from the same dissected samples as the RNA isolation using the Qiagen DNeasy Blood and Tissue Kit according to manufacturer’s protocol. Genotyping was performed using the Illumina Infinium HumanOmniExpressExome platform (Catalog #: WG-351-2301). All data were checked for discordance between nominal and genetically-inferred sex using Plink software to calculate the mean homozygosity rate across X-chromosome markers and to evaluate the presence or absence of Y-chromosome markers. In addition, pairwise comparison of samples across all genotypes was done to identify potentially duplicate samples (genotypes > 99% concordant) or related individuals using Plink.

Study 4 (Freeze 1) - Yale-ASD
RNAseq: Total RNA was extracted using mirVana kit (Ambion) with some modifications to the manufacturer’s protocol. Approximately 60 mg of tissue was pulverized with liquid nitrogen in a prechilled mortar and pestle and transferred to a chilled safe-lock microcentrifuge tube (Eppendorf). Per tissue mass, equal mass of chilled stainless steel beads (Next Advance, catalog # SSB14B) along with one volume of lysis/binding buffer were added. Tissue was homogenized for 1 min in Bullet Blender (Next Advance) and incubated at 37°C for 1 min. Another nine volumes of the lysis/binding buffer were added, homogenized for 1 min, and incubated at 37°C for 2 min. One-tenth volume of miRNA Homogenate Additive was added and extraction was carried out according to the manufacturer’s protocol. RNA was treated with DNase using TURBO DNA-free Kit (Ambion/ Life Technologies) and RNA integrity was measured using Agilent 2200 TapeStation System. Barcoded libraries for RNA-seq were prepared with 5ng of RNA using TruSeq Stranded Total RNA with Ribo-Zero Gold kit (Illumina) per manufacturer’s protocol. Paired-end sequencing (100bp x 2) was performed on HiSeq 2000 sequencers (Illumina) at Yale Center for Genome Analysis.

Genotype data is not available yet for this study.





Study 5 (Freeze 1) - UCLA-ASD
Full details of the UCLA-ASD study have been published (Parikshak, et al., 2016).

RNAseq data for replication was generated from 251 postmortem cortex brain samples from subjects with ASD and non-psychiatric controls, across frontal cortex (BA9/46), temporal cortex (BA41/42/22), and cerebellum.

Brain samples were obtained from the Harvard Brain Bank as part of the Autism Tissue Project (ATP). An ASD diagnosis was confirmed by the Autism Diagnostic Interview-Revised (ADIR) in 48 of the subjects. In the remaining two subjects, diagnosis was supported by clinical history. Frozen brain regions were dissected on dry ice in a dehydrated dissection chamber to reduce degradation effects from sample thawing or humidity. Approximately 50-100mg of tissue across the cortical region of interest was isolated from each sample using the miRNeasy kit with no modifications (Qiagen). For each RNA sample, RNA quality was quantified using the RNA Integrity Number (RIN) on an Agilent Bioanalyzer. Strand-specific, rRNA-depleted RNAseq libraries were prepared using TruSeq Stranded Total RNA sample prep kit with RiboZero Gold (Illumnia) kits. Libraries were randomly pooled to multiplex 24 samples per lane using Illumina TruSeq barcodes. Each lane was sequenced five times on an Illumina HiSeq 2500 instrument using high output mode with standard chemistry and protocols for 50 bp paired-end reads to achieve a target depth of 70 million reads. 

Genotyping was performed using Illumina Omni 2.5 arrays.

Study 6 (Freeze 2) - BipSeq
RNAseq: same as below Study 8
Genotyping: same as below Study 8

Study 7 (Freeze 2) - CMC_HBCC
Brain specimens for the CMC_HBCC study were obtained from the the NIMH Human Brain Collection Core (HBCC) (https://www.nimh.nih.gov/labs-at-nimh/research-areas/research-support-services/hbcc/human-brain-collection-core-hbcc.shtml) under protocols approved by the CNS IRB (NCT00001260), with the permission of the next-of-kin through the Offices of the Chief Medical Examiners in the District of Columbia, Northern Virginia and Central Virginia. All specimens were characterized neuropathologically, clinically and toxicologically. A clinical diagnosis was obtained through family interviews and review of medical records by two psychiatrists based on DSMIV criteria. Non-psychiatric controls were defined as having no history of a psychiatric condition or substance use disorder. 

RNAseq: Samples were dissected at the NIMH Human Brain Collection Core and shipped to Ichan School of Medicine - Mt Sinai (ISMMS) for sample preparation and RNA-sequencing. Samples for the study were dissected from either the left or right hemisphere of fresh frozen coronal slabs cut at autopsy from the dorsolateral prefrontal cortex. Total RNA from 468 HBCC samples was isolated from approximately 100 mg homogenized tissue from each sample by TRIzol/chloroform extraction and purification with the Qiagen RNeasy kit (Cat#74106) according to manufacturer’s protocol. Samples were processed in randomized batches of 12. The order of extraction was assigned randomly with respect to diagnosis and all other sample characteristics. The mean total RNA yield was 24.2 ug. The RNA Integrity Number (RIN) was determined by fractionating RNA samples on the 4200 Agilent TapeStation System. 69 samples with RIN <5.5 were excluded from the study. An additional 12 samples were removed post sequencing due to evidence of sample swap or contamination, resulting in a final dataset of 387 samples with a mean RIN of 7.5 and a mean ratio of 260/280 of 2.0. (Bipolar Disorder n=70, Schizophrenia n=97, neurotypical controls n=220) RNA sequencing raw and quantified expression data is provided for 387 samples consisting of data from 387 unique individuals. Data was generated, QCed, processed and quantified as follows: All samples submitted to the New York Genome Center for RNAseq were prepared for sequencing in randomized batches of 94. The sequencing libraries were prepared using the KAPA Stranded RNAseq Kit with RiboErase (KAPA Biosystems). rRNA was depleted from 1ug of RNA using the KAPA RiboErase protocol that is integrated into the KAPA Stranded RNAseq Kit. The insert size and DNA concentration of the sequencing library was determined on Fragment Analyzer Automated CE System (Advanced Analytical) and Quant-iT PicoGreen (ThermoFisher) respectively. A pool of 10 barcoded libraries were layered on a random selection of two of the eight lanes of the Illumina flow cell at appropriate concentration and bridge amplified to ~ 250 million raw clusters. One-hundred base pair paired end reads were obtained on a HiSeq 2500. 

Genotyping: Genotyping was done on the Illumina_1M, Illumina_h650, and Illumina_Omni5 platform. 

Study 8 (Freeze 2) - LIBD_szControl + BipSeq
RNAseq: Post-mortem tissue homogenates of dorsolateral prefrontal cortex grey matter (DLPFC) approximating BA46/9 in postnatal samples and the corresponding region of PFC in fetal samples were obtained from all subjects. Total RNA was extracted from ~100 mg of tissue using the RNeasy kit (Qiagen) according to the manufacturer’s protocol. The poly-A containing RNA molecules were purified from 1 µg DNAse treated total RNA and sequencing libraries were constructed using the Illumina TruSeq© RNA Sample Preparation v2 kit. Sequencing indices/barcodes were inserted into Illumina adapters allowing samples to be multiplexed in across lanes in each flow cell. These products were then purified and enriched with PCR to create the final cDNA library for high throughput sequencing using an Illumina HiSeq 2000 with paired end 2x100bp reads. More details are available in: https://www.biorxiv.org/content/early/2017/11/22/124321 
 
Genotyping: SNP genotyping with HumanHap650Y_V3, Human 1M-Duo_V3, and Omni5 BeadChips (Illumina, San Diego, CA) was carried out according to the manufacturer’s instructions with DNA extracted from cerebellar tissue. Genotype data were processed and normalized with the crlmm R/Bioconductor package separately by platform.

There is an overlap in the donors and samples used for CMC_HBCC and LIBD_scControl and BipSeq came from, because they originate from the same brain bank (the NIMH human brain collection core). There is therefore a set of biological replicates from the same brain region where the samples have been processed separately. The same individual ID has been used on all 3 studies. The CMC data also has a set of 10 biological replicates (all controls). The individual IDs are the same (starting with CMC_..). We included all samples (including replicates) and accounted for them using random effect mixed model.

An initial quality control step was taken in which all datasets were first pre-processed to remove outliers using a hierarchical clustering based global outlier detection. Samples from UCLA were sub-divided into three different brain regions (vermis, Brodmann area 9, and Brodmann area 41).

The gene expression data from these 9 centers were merged into one gene expression matrix, and subsequently normalized using the protocol detailed by GTEx (GTEx Consortium, 2017).
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