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Abstract  
Understanding how genomic variants relate to brain disorders remains challenging. To address 
this, the PsychENCODE consortium has generated functional genomic datasets on 1866 brains, 
including genotype, transcriptome, chromatin, and single-cell data. By uniformly processing and 
consistently analyzing these, we developed a comprehensive resource for the adult brain. In 
particular, we deconvolved the bulk tissue expression using single-cell data, finding that 
changing proportions of basic cell types explain >85% the across-population variation observed. 
Moreover, we used the chromatin and Hi-C data from reference brain samples to find ~79,000 
active enhancers in the prefrontal cortex and link them to genes and transcription factors in a 
regulatory network. We identified ~2.5M eQTLs and many additional QTLs associated with 
chromatin, splicing and cell-type changes. In addition, we leveraged our QTLs, Hi-C data and 
regulatory network to find a variety of additional genes associated with GWAS variants with 
psychiatric disorders (e.g., 304 for schizophrenia). Finally, we developed a deep-learning model 
encapsulating the regulatory network to connect genotypes and phenotypes, achieving almost 
5-fold improvement in disease-trait prediction above a conventional additive genetic model. This 
model enables highlighting key genes and functional modules and imputing missing 
transcriptome and epigenome from genotype data only. 

  
Introduction 
Disorders of the brain affect nearly one fifth of the world’s population (1). Decades of research 
has led to little progress in our fundamental understanding of the molecular causes of 
psychiatric disorders. This contrasts with cardiac disease, for which lifestyle and 
pharmacological modification of environmental risk factors has had profound effects on 
morbidity, or cancer, which is now understood to be a direct disorder of the genome (2-5). 
Although genome-wide association studies (GWAS) have identified many genomic variants 
associated with psychiatric disease risk, for the vast majority we have little understanding of the 
molecular mechanisms affecting the brain (6). 
 
To this end, a number of studies have begun to elucidate the molecular steps on the path from 
genomic alteration to risk. For instance, the Psychiatric Genomics Consortium (PGC) has 
recently identified 142 GWAS loci associated with schizophrenia (7). Many of these lie in non-
coding regions (7), suggestive of roles in gene regulation. Other consortia have annotated non-
coding regions using expression quantitative-trait loci (eQTLs) from the Genotype-Tissue 
Expression (GTEx) project and enhancers from the ENCODE and Epigenomics Roadmap 
projects. However, none of these projects have specifically tailored their efforts toward the brain. 
The initial work focusing on identifying brain-specific genomic elements has provided greater 
insight into brain-specific functional genomics (8, 9), but could be enhanced with larger sample 
sizes from both healthy and diseased samples. Moreover, many new assays for functional 
elements have been recently developed, such as Hi-C and single-cell sequencing, which have 
yet to be fully integrated with brain genomics data, at scale (10-13).  
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Hence, the PsychENCODE Consortium has generated a large-scale dataset for providing 
insights into the adult human brain and psychiatric disorders, including data derived through 
genotyping, bulk and single-cell RNA-seq, ChIP-seq, ATAC-seq, and Hi-C using brains from 
1866 individuals (14). All raw and uniformly processed data at both tissue and single-cell level 
have been placed into a central, publically available resource for brain functional genomics, that 
also integrates relevant re-processed data from other related projects, including ENCODE, 
CommonMind (CMC), GTEx, Epigenomics Roadmap, with nearly ~12,000 data samples in total. 
By leveraging this resource, we were able to identify functional elements and QTLs specific to 
the adult brain, including novel psychiatric GWAS and gene linkages. Moreover, we combined 
these elements to build an integrated deep-learning model. This tool can utilize the richly 
structured data of the resource to identify interactions between genotype and molecular 
phenotypes at multiple layers, as well as predict high-level traits.  
 

Resource construction  
We designed the resource Adult.PsychENCODE.org to provide coherent structure to a large 
amount of data on brain functional genomics (1). Broadly, it organizes data hierarchically, with a 
large base of raw data files (many of which have restricted access, such as individual 
genotyping and raw next-generation sequencing of transcriptomics and epigenomics), a middle 
layer of uniformly processed and easily shareable results (such as open-chromatin regions and 
gene-expression quantifications), and a compact cap that consists of an integrative model 
based on imputed regulatory networks and QTLs. As shown in Fig. 1, to build the base layer we 
included all the adult data from PsychENCODE (~5,500 datasets derived from 1,866 individual 
brains) and merged these with relevant data from ENCODE, CMC, GTEx, Roadmap, and recent 
single-cell studies (~5,000 additional datasets) (11, 13). These data cover a representation of 
phenotypes and psychiatric disorders including Schizophrenia (SCZ), Bipolar (BPD), Autism 
Spectrum Disorder (ASD). Furthermore, the PsychENCODE project developed a specific 
"reference brain" project on adult prefrontal cortex (PFC) utilizing many matched assays on the 
same set of brain tissues, which we used (below) to develop an anchoring annotation (15). 
 

Transcriptome analysis: bulk and single-cell  
To identify the genomic elements exhibiting transcriptional activities specific to the brain, we 
used the ENCODE pipeline to uniformly process RNA-seq data from PsychENCODE, GTEx and 
Roadmap. Using these data, we identified a wide variety of interpretable brain functional 
elements, such as non-coding regions of transcription, and sets of differentially expressed and 
co-expressed genes - e.g., 12,080 genes were transcribed in the brains of 95% of the 
individuals surveyed and over 16,000 protein-coding and 9,000 non-coding genes were 
detected in total (15, 16). 
 
Brain tissues are composed of a variety of cell types, including neuronal and non-neuronal cells. 
Previous studies have suggested that gene-expression changes at the tissue level may be 
associated with changing proportions of basic cell types (17-21). However, studies have not 
systematically revealed how differing cell types can quantitatively contribute to population-level 
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expression variation. Here, we address this question for expression over our cohort of 1,866 
adult brains. 
  
We used two complementary strategies. First, we used the standard pipeline to uniformly 
process single-cell RNA-seq data in PsychENCODE, in conjunction with a number of other 
single-cell studies on the brain (11, 13), in order to assemble a list of brain cell types for the 
project. This includes previously identified neuronal types, major non-neuronal types, and a 
number of additional cell types involved in development (15). The results constitute a matrix, C 
of expression signatures, mostly concordant with what has been published (Fig. S2.4 and 
Conclusion). A number of genes had expression levels varying more substantially across these 
cell types than they did across individuals in a population (e.g., dopamine receptor DRD3, Fig. 
2A). This implies that the changes in bulk expression can readily result from cell fraction 
variations. 
  
To explore this further, we used a second strategy: an unsupervised analysis to identify the 
primary components of bulk expression variation as they relate to cell types. We decomposed 
the bulk gene-expression matrix, B from our resource using non-negative matrix factorization 
(NMF), B≈VH, and then determined whether the top components capturing the majority of 
covariance (NMF-TCs, columns of V) were consistent with the single-cell signatures (Fig. 2B 
and C) (15). We found that a number of NMF-TCs highly correlated with neuronal, non-
neuronal, and development-related cell types, demonstrating that an unsupervised analysis 
derived solely from bulk data roughly matches the single-cell signatures, partially corroborating 
them. 
  
We then tried to understand how variation in proportions of cell types contributes to variation in 
bulk expression. In particular, we de-convolved the expression matrix of tissue, B using the 
single-cell signatures, C to estimate the cell-fractions W, solving the equation B≈CW (15) (Fig. 
2B). As validation, our estimated fractions of NEU+/- cells matched the experimentally 
determined fractions from the reference brain samples (Median error = 0.04, Fig. S2.9). We also 
compared our results with previous deconvolution methods (15). Overall, we found that single-
cell expression signatures could explain much of the population-level variation (Fig. 2D, i.e., 
across tissue samples from different individuals 1-||B-CW||2/||B||2>85%) (15). 
 
Finally, we found that cell-fraction changes were associated with different observed phenotypes 
and disorders (Fig. 2E, S2.6 and S2.7). For example, particular excitatory and inhibitory neurons 
exhibited different fractions between male and female samples (i.e., Ex3 and In8). The fraction 
of Ex3 was also reduced in ASD (p=0.0077), where non-neuronal cells (e.g., oligodendrocytes) 
were represented in greater abundance. Another interesting association was with age. In 
particular, the fractions of neuronal types Ex3 and Ex4 significantly increased with age; by 
contrast, some non-neuronal types (e.g. oligodendrocytes) decreased (Fig. S2.8). These 
changes are potentially associated with differentially expressed genes. For example, 
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for genes involved in the early growth response (e.g., EGR1),  expression and promoter 
methylation in older groups; in contrast, ceruloplasmin (e.g., CP)  exhibits an opposite trend 
(Fig. 2F, S2.10 and 2.11) (15).  
 

Enhancers 
Using an approach consistent with ENCODE, we used chromatin modification signals to identify 
enhancers active in the brain (15). We based this on the reference brain (see above), 
supplemented by the DNase and ChIP-seq data of the same brain region from Roadmap 
Epigenomics. Overall, we annotated a reference set of 79,056 enhancers active in PFC, 
enriched in H3K27ac and depleted in H3K4me3 (Fig. 3A). 
  
Assessing the variability of enhancers across individuals and tissues is more difficult than 
performing the analogous comparison for gene expression. Not only does the chromatin signal 
change across the population, but the boundaries of enhancers grow and shrink, sometimes 
disappearing altogether (Fig. 3A). To investigate chromatin variability across the population, we 
uniformly processed the H3K27ac data from PFC, temporal cortex (TC), and cerebellum (CB) 
on a cohort of 50 individuals (15). Aggregating ChIP-seq data across the cohort resulted in a 
total of 37,761 H3K27ac "peaks" (enriched regions) in PFC, 42,683 in TC, and 26,631 in CB -- 
each of them presents in more than half of the population. Comparing aggregate sets for these 
three brain regions, the PFC was more similar to TC than CB (~90% vs 34% overlap in 
H3K27ac peaks), consistent with previous reports (22). 
  
We also examined the overlap of the reference brain enhancers with H3K27ac in each of the 
individuals. As expected, not every active enhancer in the reference annotation was active in 
every individual in the cohort. In fact, on average ~70% ± 15% (~54,000) of the enhancers in the 
reference brain were active in another individual in the cohort (Fig. 3B). As expected, only a 
core set of reference enhancers was ubiquitously active in every person, with a larger fraction 
(~68%) being active in more than half of the population. To estimate the total number of 
enhancers in PFC, we calculated the cumulative number of active regions across the cohort 
(Fig. S3.2). This number increased dramatically for the first 20 individuals sampled, but 
saturated at the 30th. Thus, we hypothesize that pooling the identified PFC enhancers from 30 
individuals is sufficient to cover nearly all potential enhancers in PFC, estimated at ~120,000. 
  

Consistent comparison: transcriptome and epigenome  
As we uniformly processed the transcriptomic and epigenomic data across PsychENCODE, 
ENCODE, GTEx, and Roadmap datasets, we could compare the brain to other organs in a 
consistent fashion and also to compare across transcriptome and epigenome. We tried several 
approaches, including PCA, t-SNE, and reference component analysis (RCA) for an appropriate 
comparison. Although popular, PCA de-emphasizes local structure and can be easily influenced 
by outliers; in contrast, t-SNE preserves local relationships but “shatters” global structure (15). 
RCA is a compromise: it projects gene expression in an individual sample against a reference 
panel, and then essentially reduces the dimensionality of the projections. 
 

Formatted: No underline

Deleted:  (440) (Ready for MG)

Deleted: \cite{Supplement}.

Deleted: CBC) on a cohort of 50 individuals 
\cite{Supplement}.

Deleted: present

Deleted: \cite{27863250}.

Commented [3]: what %? 

Deleted: SX

Formatted: No underline

Deleted: &
Deleted: (270) (Ready for MG)

Deleted: \cite{Supplement}.



 

6 

Formatted: Header

Deleted: 6

For gene expression, our comparison revealed that the brain separates from the other tissues in 
the first component (Fig. 3E). Inter-tissue differences were larger than intra-tissue ones (Fig. 
S4.1-4). A different picture emerged for chromatin: comparison showed that the chromatin 
levels at all regulatory positions were, overall, less distinguishable between brain and other 
tissues (Fig. 3C) (15). At first glance, this is surprising as one expects great differences in 
epigenetics between tissues. Note, however, our analysis compares chromatin signals over all 
non-coding regulatory elements from ENCODE (including enhancers and promoters), which is 
consistent with our gene expression comparison across all protein-coding genes (Fig. 3F vs. 
3C). The total number of regulatory elements is much larger than brain-active enhancers (~1.3M 
vs. ~79K), so there are proportionately fewer brain-active regulatory elements than protein 
coding genes (6% vs. 60%).  
 
Our analysis focused on inter-tissue differences in annotated regions (i.e., genes, promoters, 
and enhancers). However, in addition to the canonical expression differences in protein-coding 
genes, we also found differences in unannotated non-coding and intergenic regions. In 
particular, testes and lung have the largest amount of transcriptional diversity overall for protein-
coding genes (i.e., the most genes transcribed, Fig. 3D); however, when we shift to unannotated 
regions, brain tissues, such as cortex and cerebellum, now have a greater extent of transcription 
than any other tissue. 
 

QTL analysis  
We used the PsychENCODE data to identify QTLs affecting gene expression and chromatin 
activity. In particular, we calculated expression, chromatin, splicing-isoform, and cell-fraction 
QTLs (eQTLs, cQTLs, isoQTLs and fQTLs, respectively). For eQTLs, we adopted a standard 
approach, adhering closely to the established GTEx pipeline. In PFC (Fig. 4C), we identified 
~2.5M cis-eQTLs (~386K independent after linkage-disequilibrium (LD) pruning) and ~33K 
eGenes (including non-coding ones) (Fig. 4A). We found ~1.3M SNPs involved in these from 
5,297,875 tested in a 1 Mb window around genes. This conservative estimate has a 
substantially larger number of eQTLs and eGenes than previous studies and reflects the large 
PsychENCODE sample size (15). The number of eGenes, in fact, is approaching the total 
number of genes that can be expressed in brain. We evaluated the replication rate of GTEx and 
CMC eQTLs on PFC in our eQTLs set using π1 statistic (23). GTEx and CMC π1 values are 0.93 
and 0.90 if we included associations with coding eGenes (0.95 and 0.84 for all eGenes). These 
results indicated high replication rates of GTEx and CMC brain PFC eQTLs in our study. We 
also applied the same QTL pipeline to splicing, identifying ~160K isoQTLs (15). 
 
For cQTLs, the situation is more complicated: no established methods exist for calculating these 
on a large scale, although there have been a variety of previous efforts (24, 25). To identify 
cQTLs, we focused on our reference set of enhancers and then examined how H3K27ac 
chromatin activity varied in these across 292 individuals (Fig. 4B) (15). Overall, we identified 
~2,000 cQTLs in addition to the 6,200 identified using individuals from the CMC cohort (26). 
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Next, we determined if any SNPs were associated with changes in the relative fractions of cell 
types across individuals (fQTLs). In total, we identified 3720 distinct SNPs constituting 4186 
different fQTLs. Of these, the proportions of microglia and excitatory neuron Ex8 were 
associated with the most. After factoring out these cell-type differences, we identified 200,729 
SNPs significantly associated with gene expression changes across individual tissues; these 
"residual trans-eQTLs" represent variant-expression associations largely unexplained by 
changing proportions of cell types. 
 
To further dissect the associations between genomic elements and the QTLs, we intersected 
our QTL lists with each other and a set of genomic annotations (Fig. 4D). As expected, eQTLs 
tended to be enriched at promoter regions, and cQTLs, at enhancer and TF-binding regions; 
fQTLs were spread over many different elements. Also, appreciable number of eQTLs enriched 
on the promoter of a different gene than one regulated, suggesting e-promotor activity (27). For 
the overlap among different QTLs, we expected that most cQTLs, isoQTLs and fQTLs would be 
a subset of the much larger number of eQTLs; somewhat surprisingly, an appreciable number of 
these did not overlap (Fig. 4C). We also did π1 statistics to evaluating the sharing among eQTLs 
with other QTLs. We found that sharing between eQTLs and cQTLs was the highest (π1=0.89) 
while sharing between eQTLs and fQTLs was the lowest (π1=0.11). There were 119 SNPs that 
functioned as QTLs in more than 3 different capacities (e.g. as eQTLs, cQTLs and isoQTLs). 
We dubbed these multi-QTLs.  
 

Regulatory networks 
We next integrated the genomic elements described above at the regulatory-network level. We 
created a network revealing how the genotype and regulators relate to target gene expression. 
We first processed a Hi-C dataset for adult brain in the same reference samples used for 
enhancer identification, providing a physical basis for interactions between enhancers and 
promoters (Fig. 5A) (10, 15). In total, we identified 2,735 topologically associating domains 
(TADs) and ~90K enhancer-promoter interactions (Fig. S6.1). Our adult Hi-C dataset 
substantially differed from an earlier fetal-brain Hi-C dataset (e.g. only ~31% of the interactions 
were detected in the fetal dataset) (10), highlighting the importance of the developmental stage 
for chromatin (Fig. S6.2 and S6.3). 
  
As expected, ~75% of enhancer-promoter interactions occurred within the same TAD, and 
genes with more associated enhancers tended to have higher expression (Fig. 5B and S6.1). 
We next integrated the Hi-C data with the eQTLs and isoQTLs. Surprisingly, QTLs involving 
SNPs distal to the eGene but linked by Hi-C interactions showed significantly stronger 
associations than QTLs involving SNPs on the exons and promoters of the eGene (Fig. 5C and 
S6.4). 
  
In addition to Hi-C and QTLs, we tried to predict further regulatory relationships based on 
directly relating the activity of transcription factors (TFs) to target genes (Fig. 5A). In particular, 
for each potential target of a TF, we required that (i) it has a "good binding site" (matching the 
TF's motif) in open chromatin regions near a gene (either in promoters or brain-active 
enhancers) and that (ii) it has a high "coefficient" in a regularized, elastic-network regression 
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relating TF activity to target expression (15). Overall, we found the subset of interactions 
meeting these criteria could predict the expression of 8,930 genes with mean square error 
(MSE< 0.05) (Fig. S6.5). For example, we could predict the expression of the ASD risk gene 
CHD8 with MSE<0.034 (15). Moreover, the subset of these interactions involving TFs binding to 
enhancers, necessarily instantiated a third set of putative enhancer-to-gene links. 
 
Collectively, we generated a full regulatory network, linking enhancers, TFs, and target genes. It 
contained ~43k proximal linkages (TF-to-target gene via promoters), and ~37k distal linkages 
(enhancer-target-gene) that are supported by at least two of the three evidence sources (Hi-C, 
QTLs, or activity relationships) (15). 
 

Linking GWAS variants to genes 
We used our above regulatory network to connect non-coding GWAS loci to potential genes. 
We exploited all three possible evidence sources including Hi-C, QTLs, and activity 
relationships. For the newly identified 142 schizophrenia GWAS loci (28), we identified a set of 
1,097 putative schizophrenia-associated genes, covering 119 loci (hereby referred as "SCZ-
genes," Fig. 5E). 304 of these constituted a high-confidence set supported by more than two 
evidence sources (i.e., QTL and Hi-C, Fig. 5D-F, Fig. S7.1A); e.g., SCZ-gene, CACNA1C is 
regulated by multiple neuronal TFs via enhancers (Fig. 5E). The SCZ-genes represent a 
substantial increase from the previously reported 22 genes across 19 loci based on a smaller 
QTL set (8, 28). The majority of SCZ-genes were not in linkage disequilibrium with index SNPs 
(734 genes [~66%] with r2<0.6, Fig. S7.1C), consistent with previous observations that 
regulatory relationships often do not follow linear genome organization (10).  
  
We then looked at the characteristics of the SCZ-genes. As expected, they shared many 
characteristics with known schizophrenia-associated genes. In particular, they were enriched for 
genes intolerant to loss-of-function mutations (28), translational regulators, cholinergic 
receptors, calcium channels, synaptic genes, and genes that are known to be differentially 
expressed in schizophrenia (Fig. S7.1B,D). Next, we integrated SCZ-genes with single-cell 
profiles and found that they are highly expressed in neurons with the highest expression in 
excitatory neurons (Fig. 5G).  
 
Finally, in a more general context, we found aggregate associations between our eQTLs and 
many brain-disease GWAS variants, not just schizophrenia. In particular, compared to non-brain 
related disorders, we found more significant heritability enrichments in cis-eQTL SNPs and 
GWAS SNPs for many brain disorders, with Schizophrenia having the strongest enrichment 
(Fig. 4E). We find a similar, and, in fact, stronger enrichment for our brain-active enhancers (Fig. 
4E). 
  

Integrative deep-learning model 
The full interaction between genotype and phenotype involves many levels, beyond those 
encapsulated in the regulatory network. We addressed this by embedding our regulatory 
network into a larger multilevel model. For this purpose, we developed an interpretable deep-
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learning framework, a Deep Structured Phenotype Network (DSPN) (15). This model combines 
a Deep Boltzmann Machine architecture with conditional and lateral connections derived from 
gene regulatory networks. As shown in Fig. 6A, traditional classification methods such as 
logistic regression predict phenotype directly from genotype, without inferring intermediates 
such as the transcriptome. In contrast, the DSPN (Fig. 6B) is constructed via a series of 
intermediate models that add layers of structure; these include intermediate molecular 
phenotypes (i.e., gene expression and chromatin state) and defined groupings of these (cell-
type marker genes and co-expression modules), multiple higher layers for inferred groupings 
(hidden nodes), and a top layer for observed phenotypes (psychiatric disorders and other traits). 
Finally, we used special connectivity aspects, including sparsity and lateral, intra-level 
relationships, to integrate our knowledge of QTLs, regulatory networks, and co-expression 
modules from sections above. By using a generative architecture, we ensure that the model is 
able to impute intermediate phenotypes, as well as provide forward predictions from genotypes 
to observed phenotypes.  
 
Using the full model with the genome and transcriptome data provided, we demonstrated that 
the extra layers of structure in the DSPN allowed us to achieve substantially better prediction of 
diseases and traits than traditional genotype-to-phenotype models; the transcriptome carries 
additional information, which the DSPN is able to extract (Fig. 6D). For instance, a logistic 
predictor was able to gain a 2.4X improvement when using the transcriptome vs. the genome 
alone (+9.3% for transcriptome vs. +3.8% for the genome, above 50% random baseline). In 
comparison, the DSPN was able to gain a larger 4.6X improvement (+17.4% vs. +3.8%), which 
may reflect its ability to incorporate non-linear interactions between intermediate phenotypes. 
Moreover, the DSPN also allows us to perform joint inference and imputation of intermediate 
phenotypes (i.e., transcriptome and epigenome, Fig. S8.1) and observed traits from just 
genotype alone, achieving a ~2.7X improvement over a logistic predictor in this context (Fig. 
6D). These results demonstrate the usefulness of even a limited amount of functional genomic 
information for unraveling gene-disease relationships and show that the structure learned from 
such data can be used to make more accurate predictions of observed traits even when absent. 
  
We transformed our results to a liability scale in order to compare with narrow-sense heritability 
estimates (Fig. 6D) (15). Prior studies have estimated that common SNPs explain 25.6%, 
20.5%, and 19% of the genetic variance for SCZ, BPD and ASD, respectively (26). These may 
be taken as upper bounds for additive predictive models using common variants, given 
unlimited data; by contrast, non-linear predictors can potentially exceed these limits. Our best 
liability scores based on the genotype at QTL associated variants are substantially below these 
bounds, implying that additional data will be beneficial. In contrast, the variance explained by 
the full DSPN model was similar order that explained by common SNPs for all three conditions 
(16.3%, 30%, and 14.4%); improved imputation may thus capture most of the variance due to 
common-SNP, narrow-sense heritability, although this is limited by the proportion of total 
variance in the imputed variables which is genetically determined (Fig. S8.2), as well as the 
sufficiency of the intermediate phenotypes used. 
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A key aspect of the DSPN is its interpretability. In particular, we examined the specific 
connections learned by the DSPN between intermediate and high-level phenotypes. We 
included known co-expression modules in the model and examined which of these the DSPN 
prioritized, as well as new sets of genes associated with DSPN latent nodes that were 
uncovered at each hidden layer (Fig. S8.3) (15).  We provide a full summary of the enrichment 
analysis for the prioritized modules and highlight some of the associations found using the 
schizophrenia model (Fig. 6C and S8.4). Overall, we show the modules prioritized by the DSPN 
were enriched for known SCZ and BPD GWAS variants (Fig. S8.5). In particular, among the 
highest schizophrenia-prioritized modules and higher-order groupings, we found enrichments for 
(i) glutamatergic-synapse pathway genes, (ii) calcium-signaling pathways and astrocyte-marker 
genes, and (iii) complement cascade pathway genes including C4A, C4B, and CLU -- 
confirming and extending previous analyses (29). Furthermore, for groupings prioritized for 
aging, we found enrichment in Ex4 cell-type genes and the specific gene NRGN (in a module 
associated with synaptic and longevity functions), both consistent with differential expression 
analysis (Fig. S2.8).  
 

Conclusion 
Here, we uniformly integrated PsychENCODE datasets with other datasets, developing a 
comprehensive resource for functional genomics of the adult brain. Overall, our study identified 
a set of eQTLs several fold greater than previous studies, achieving close to saturation for 
protein-coding genes. Our data are consistent with the stage and tissue specific nature of gene 
regulation, indicating that it will be valuable to profile different regions and developmental stages 
at similar scale. It also indicates that increasing individual sample size and quality of chromatin 
data, such as identifying enhancers via STARR-seq, will help with cQTLs. More fundamentally, 
one-dimensional fluctuations in chromatin signal reflect changes in three-dimensional changes 
in architecture and new metrics beyond cQTLs may need to be developed to measure 
chromatin variation better. In addition, some other epigenetic marks might exhibit 
distinguishable patterns in the brain, e.g. the methylation landscape. Likewise, inter-tissue 
expression comparisons might be boosted by including microRNAs. 
 
Another area for future development is single-cell analysis. In this study, we found that varying 
proportions of basic cell types (with different expression signatures) could explain a large 
fraction of expression variation across the human population. This assumes that expression 
signatures, at least for biomarker genes, are fairly constant over same cell types. Larger-scale 
single cell studies will allow us to examine this assumption in greater detail, perhaps quantifying 
and bounding environment-associated transcriptional variability. In addition, current single-cell 
techniques suffer from low capture efficiency; thus, it remains challenging to reliably quantify 
low-abundance transcripts (12, 30). This is particularly the case for specific cell sub-structures 
such as axons and dendrites (12).  
 
Further, we envision how our DSPN deep-learning approach can be readily extendable to 
modeling genotype-phenotype relationships involving other kinds of intermediate phenotypes 
(e.g., from brain imaging); we can naturally embed new types of QTLs and phenotype-
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phenotype interactions. Comparison of the variance explained in terms of liability when 
particular intermediate phenotypes are imputed versus known provides natural bounds on the 
variance in observed traits mediated by these phenotypes. Finally, although our focus has been 
on common SNPs, DSPN may be capturing the effects of rare variants through their influence 
on intermediate phenotypes; the interpretable structure of the model may help identify such 
variants by their association with prioritized phenotypes and higher-order groupings. 
 
In summary, our integrative analyses here and with respect to the disease and developmental 
transcriptome (16, 31) demonstrate that functional annotation of gene regulatory elements is 
useful for unraveling the molecular mechanisms in the brain. 
 
 

Figures 
Figure 1. Comprehensive data resource of functional genomics in adult brain. The 
functional genomics data generated by the PsychENCODE consortium (PEC) constitute a 
multidimensional exploration across tissue, developmental stage, disorder, species, assay, and 
sex. From this larger corpus of PEC samples, we focused on adult datasets, integrated with 
those from consortia such as GTEx, the Roadmap Epigenomics Consortium, ENCODE, CMC 
and Human Brain Collection Core studies, and previously published single-cell transcriptomic 
data. The central data cube represents the results of this integration for the three dimensions of 
disorder, assay, and tissue, where only the numbers of datasets used in the current analysis are 
depicted. Projections of the data onto each of these three parameters are shown in graph form 
for assay and disorder, and in schematic form for the primary brain regions of interest. Assay: 
The bars represent datasets across a subset of the assay types, including RNA-seq (N = 2040 
PEC + 1632 uniformly processed GTEx samples), genotypes (N = 1362 PEC + 25 GTEx = 1387 
individuals matched to RNA-seq samples for eQTL analysis), scRNA-seq (N = 932 PEC + 3693 
external datasets), and H3K27ac ChIP-seq (= 408 PEC + 5 uniformly processed Roadmap 
samples). Disorder: The number of individuals under the control category include the 113 from 
GTEx and 926 from PEC, while individuals from PEC provide data on the remaining disorders of 
schizophrenia (SCZ, N = 558), bipolar disorder (BPD, N = 217), ASD (N = 44), and affective 
disorder (AFF, N = 8), resulting in a total of 1,866. Tissue: In this schematic, we focus on the 
datasets derived from three primary brain regions evaluated in our integrative study: the 
prefrontal cortex (PFC, N = 3521), the temporal cortex (TC, N = 2153), and the cerebellum (CB, 
N = 348).  
 
Figure 2. Deconvolution analysis of bulk and single-cell transcriptomics reveals cell 
fraction changes across tissue phenotypes and disorders. (A) Genes had significantly 
higher expression variability across single cells than tissue samples. Left: dopamine gene, 
DRD3. (B) Top: the bulk tissue gene expression matrix (B, genes by individuals) can be 

decomposed by NMF to the product of two matrices: NMF component matrix (V, genes by top 

NMF components; i.e., NMF-TCs) and component fraction matrix (H, top NMF components by 
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individuals); i.e., B≈VH. Bottom: the bulk tissue gene expression matrix B can be also 

deconvolved by the single-cell gene expression matrix (C, genes by cell types) to estimate the 

cell fractions across individuals (the matrix, W); i.e., B≈CW. Three major cell types were 

neuronal cells (blue), non-neuronal cells (red), and developmental (dev) cells (green), as 

highlighted by columns groups in C (also row groups in W). (C) The heatmap shows the 
Pearson correlation coefficients of gene expression between the NMF-TCs and single cell types 
for the biomarker genes (N=457). For example, NMF-7 highly correlated with the Ex3 cell type 
(r=0.66). (D) The estimate cell fractions contributed to >85% bulk tissue expression variations; 
i.e., 1-||B-CW||2/||B||2>0.85. (E) The cell fractions changed across genders (control samples) 
and brain disorders. The neuronal cell types (e.g. In8) had significantly higher fractions in 
female than male samples (p=1.2e-4). Disorder types that showing significant changes 
compared to control samples after accounting for age distributions are labeled (**). For 
example, Ex3 neuronal cells and oligodendrocytes had lower fractions in ASD than other cell 
types. (F) The cell fractions, gene expression (EGR1) and methylation level (EGR1) changed 
across ages. The excitatory neuronal cell type Ex3 had a significant increase increase with age 
(trend analysis p<6.3e-10). 
 
Figure 3. Comparative analysis for transcriptomics and epigenomics between brain and 
other tissues. (A) Chromatin features of the reference brain (purple) were used to identify 
active enhancers, located in the open chromatin region (ATAC-seq peaks), with strong 
H3K27ac/H3K4me1 signal and lack  H3K4me3 signal. Enhancer activity varied among 
individuals, as indicated by the varying H3K27ac peaks at the enhancer region in the 
population. Each row corresponds to an individual in the cohort (green), with the gradient 
showing the normalized signal value for each peak (B) The overlap of individual H3K27ac peaks 
with the reference brain enhancers in the population is shown as the Venn diagram. The 
histogram shows the overlapping percentage of H3K27ac peaks across individuals. (C) The 
tissue clusters of RCA coefficients (PC1 vs. PC2) for chromatin data of any potential regulatory 
elements are shown. Clusters of PsychENCODE samples (dark green ellipse), Roadmap 
Epigenomics brain samples (light green ellipse), and other non-brain tissues (magenta ellipses) 
are plotted. The reference brain is shown as the purple dot (same in E and F). (D) The 
transcriptional diversity on coding (circle) and non-coding (triangle) regions among the tissue 
samples (inter-sample on x-axis) is shown compared to the diversity on cumulative tissue 
samples (y-axis) for select major tissue types including cerebellum, cortex, lung, skin, and 
testes, using PolyA RNA-seq data. (E) The coefficients (PC1 vs. PC2) of RCA analysis for gene 
expression data of PsychENCODE samples are shown in dark green. The brain samples from 
GTEx are shown in light green, and other tissue samples are shown in magenta. (F) The center 
(cross) and ranges of different tissue clusters (dashed ellipse) are shown on an RCA scatterplot 
of (E). 
 
Figure 4. Summary of QTLs of human adult brain PFC. (A) Numbers of genes with at least 
one eQTL (eGenes) are shown compared to sample size in different studies. The number of 
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eGenes increased as the sample size increased. The eGenes of PsychENCODE is close to 
saturation. The estimated replication π1 values of GTEx and CMC eQTLs in PsychENCODE are 
0.93 and 0.90 respectively.  B) Example of H3K27ac signal of individual brains in a 
representative genomic region showing largely congruent identification of regions of open 
chromatin. Region in the dashed frame represents a chromatin QTL; the signal magnitudes of 
individuals with a G/G or G/T genotype were lower than the ones with a T/T genotype. (C) 
Numbers of QTLs, eGenes, enhancers, celltypes and QTL SNPs are shown in the left table. 
Overlap of eQTL, isoQTL, fQTL, and cQTL SNPs and overlap of eQTL and isoQTL eGenes are 
shown. Overlap numbers are shown in heatmaps while overlap percentage are shown in pie 
charts. Sharing of the QTLs vs. eQTLs are shown using π1 values in the orange bar plot 
indicating the highest sharing is between cQTLs vs. eQTLs. An example on the right side shows 
the sharing SNPs in orange of eQTLs and cQTLs for gene MTOR.  (D) Enrichment of genomic 
regions annotations of QTLs is shown. (E) Brain disorder GWAS show stronger heritability 
enrichment in brain regulatory variants (eQTLs) and elements (enhancers) than non-brain 
disorder GWAS. 
 
Figure 5. Data integration and modeling predicts gene regulatory network, revealing 
additional GWAS genes for psychiatric disorders. (A) The full Hi-C data from adult brain 
reveal the folding principle of the genome, ranging from contact maps (top), TADs, and 
promoter-based interactions. We leveraged gene regulatory linkages involving TADs, TFs, 
enhancers, and target genes to a full gene regulatory network consisting of ~150,000 Hi-C 
interactions, ~2 million eQTL-eGene linkages, ~211k TF-to-target and ~577k enhancer-to-
target-promoter linkages based on activity relationships. (B) We compared the number of genes 
(left y-axis, dotted line) and the normalized gene expression levels (right y-axis, boxes) with the 
number of enhancers that interact with the gene promoters. (C) QTLs that were supported by 
Hi-C evidence showed more significant P-values than those that were not. (D) The number of 
schizophrenia GWAS loci and their putative target genes (SCZ-genes) annotated by each 
assignment strategy. SCZ-genes with more than 2 evidence sources were defined as SCZ high-
confidence (high conf.) genes. An overlap between SCZ-genes defined by QTL associations 
(QTL), chromatin interactions (Hi-C), and activity relationships (Activity) is depicted in the 
bottom. (E) A gene regulatory network of TFs (cyan), enhancers (purple), and 304 highly 
confident SCZ high-confidence genes (blue) as targets, based on TF activity linkages. A 
subnetwork including multiple neuronal TFs targeting SCZ gene CACNA1C via enhancers is 
highlighted on the left. (F) Evidence depicting that GWAS SNPs that overlap with CHRNA2 
eQTLs also have chromatin interactions and activity correlations with the same gene. (G) SCZ-
genes show higher expression levels in neuronal cell types (excitatory neurons) than others.  
 
Figure 6. Deep-learning model predicts genotype-phenotype and reveals intermediate 
molecular mechanisms. (A) The schematic outlines the model structures for Logistic 
Regression (LR), conditional Restricted Boltzmann Machine (cRBM), conditional Deep 
Boltzmann Machine (cDBM), and DSPN models. Nodes are partitioned into four possible layers 
(L0-L3) and colored according to their status as (i) conditioning nodes visible during training and 
testing (light blue); (ii) nodes visible during training and visible or imputed during testing (dark 
blue); or (iii) hidden nodes (grey). (B) The DSPN structure is shown in further detail, with the 
biological interpretation of layers L0, L1, and L3 highlighted. The gene regulatory network 
structure learned previously is embedded in layers L0 and L1, with different types of regulatory 
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linkages and functional elements shown. (C) Shown are examples of associations found: model 
traces are shown for three co-expression modules and associated higher-order groupings 
prioritized by the DSPN schizophrenia model, along with functional annotations enriched at 
each level. Genes, enhancers, and SNPs associated with each module are shown. (D) The 
performance of different models is summarized, comparing performance across models of 
different complexity; using different predictors (genotype/transcriptome); and with or without 
imputation (colors highlight relevant models for each comparison). Performance accuracy on a 
balanced sample is shown first, with variance explained on the liability scale shown in brackets.  
LR-gen and LR-trans are logistic models using the genotype and transcriptome as predictors 
respectively; DSPN-Imput and DSPN-full are the DSPN model with imputed intermediate 
phenotypes (genotype predictors only) and fully observed intermediate phenotypes 
(transcriptome predictors) respectively.  Differential performance of models is shown in terms of 
improvement above chance, for instance comparing LR-gen and DSPN-Imput accuracy 
improves from 53.8% to 60.2%, which can be expressed as a 2.7X improvement above chance 
(+10.2% vs. +3.8%, blue).  Corresponding improvements in liability variance scores are shown 
in brackets. Disorders are abbreviated as in the main text, GEN=Gender, ETH=Ethnicity, 
AOD=Age of death. 
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