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Abstract

Functional genomics experiments on human subjects present a privacy conundrum. On

one hand, many of the conclusions we infer from these experiments are not tied to identity

of individuals but represent universal statements about disease and developmental stages. On

the other hand, by virtue of the experimental procedures, the reads from them are tagged

with small bits of patients’ variant information, which presents privacy challenges, as far as

sharing the data. There is great desire to share the data as broadly as possible. Therefore

it is useful to measure the amount of variant information leaked in a variety of experiments

particularly in relation to the amount of sequencing. This allows to understand if there are ways

of reducing the information leakage, and setting an appropriate setpoint for sharing information

with only a small amount of leakage. To this end, we endevaour to address these problems here

by deriving information theoretic measures for the private information leaked in experiments

and developing various file format mnipulations for reducing much of the leaked variants.We

showed that high depth experiments such as Hi-C provide accurate genotyping that lead to large

privacy leaks. Counter intuitively, noisy and partial genotypes from low depth experiments

such as ChIP-Seq and single-cell RNA-Seq, while not useful genotypes, can be used as strong

quasi-identifiers for re-identification purposes through linking attacks. We showed that these

incomplete genotypes can further be used to construct an individual’s complete variant set

and inference of individual identifying phenotypes when combined with imputation. We then

provide a proof-of-concept theoretical framework, in which the amount of leaked information

can be estimated from depth and breadth of the coverage as well as the sequencing bias of

the functional genomics experiments. In order to solve the dilemma between data sharing vs.

privacy leak, we propose a file formatting system that enables sharing of large amount of data

while protecting individuals sensitive information and preserving the utility of the data. Such

file format manipulation can be used in different levels to achive different levels of privacy and

utility balance, hence provides a differential-privacy-like framework. At the highest level of

privacy, our file-format masks all the variant information leaked from reads, which can be used

to calculate signal profiles with 99% recovery of the original profiles and 100% recovery of
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the original gene expression levels.
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1 Introduction

With the decreasing cost of DNA sequencing technologies, the number and the size of the avail-

able genomic data have exponentially increased and become available to a wider group of audi-

ences such as hospitals, research institutions and individuals [1]. In turn, privacy of individuals has

become an important aspect of biomedical data science [2, 3] as availability of genetic informa-

tion gives rise to privacy concerns such that genetic predisposition to diseases may bias insurance

companies or create unlawful discrimination by employers [4].

Early genomic privacy studies focused on identification of individuals in a mixture by using

phenotype-genotype association [5, 6]. These revealed that private information of an individual

such as participation to a drug-abuse study can be revealed [5, 6]. With the increase of large-scale

genomic projects such as Personal Genome Project (PGP) [7] or recreational/direct-to-consumer

genomic databases, researchers showed that multiple datasets can be linked together to infer sensi-

tive information such as pariticipant’s surnames [8] or addresses [9]. Such cross-referencing relies

on quasi-identifiers, which are pieces of information that are not unique identifiers by themselves,

but are well correlated with unique identifiers or can be unique identifiers when combined with

other quasi-identifiers [10].

Functional genomics experiments provide a wealth of information on genomic activities re-

lated to developmental stages or diseases that are essential for personilized medicine. These are

large-scale, high-throughput assays to quantify transcription (RNA-Seq) [11], epigenetic regula-

tion (ChIP-Seq) [12] or 3D organization of genome (Hi-C) [13] in a genome-wide fashion under

different conditions (e.g. samples from patients and healthy individuals). Inferring biological in-

formation from functional genomics experiments is a several steps procedure, in which progresive

summarization of the data from raw sequencing reads to the gene quantifications, TF binding peaks

or chromatin interaction matrices is performed. Although activities of functional genome are not

4



necessarily tied to an individual’s genotype, reads from these experiments are derived from the

biosamples that are belong to individuals, hence they are tagged with individual’s variants. Pub-

lic sharing of such raw data raises privacy concerns. To be able to share high utility data while

preserving individuals’ sensitive information, it is essential to determine a ‘’set point”, after which

trade-off between the utility of the data and the privacy risk is balanced. A hurdle in determin-

ing the ‘set point” is the lack of systematic quantification of private information leakage from

functional genomics data. Figure 1 summarizes the processing steps of RNA-Seq experiments as

an example with how summarization decreases the risk of privacy while greatly decreasing the

amount of sharing and the utility of the functional genomics data. In detail, functional genomics

data analysis starts with the generation of DNA/RNA sequencing reads that are stored in special

file formats called fastq [14]. These files are large in size ranging from 5 GB up to 60 GB depend-

ing on the purpose of the experiment. They are then mapped to human reference genome and these

mapped reads are stored in compressed binary file types called SAM and/or BAM [15]. File for-

mats such as CRAM is developed to remedy the ever increasing amount of data, which provides up

to 10 fold decrease when information loss is tolerated [16]. Further summarization of the mapped

reads (such as signal profiles or gene expression quantification) still allows researchers to make

accurate biological conclusions, while providing further data reduction of a ∼20 fold. Although

overall aggregation and averaging reduces biological information, private information leakage also

decreases (Figure 1).

In particular, read alignment files (SAM / BAM / CRAM) are of great interest due to the large

amount of biological data they provide as they constitute the most important input of majority of

genome annotation pipelines. On the other hand, these files contain sequence information of the

individual that may leak sensitive data. Depending on the depth of the functional genomics ex-

periment, raw reads can be used to identify the private SNPs, small indels, and structural variants.

However, current policies related to public sharing of the BAM files are somewhat ad-hoc. For

5



example, for the genome of HeLa cell line, the raw reads from Hi-C experiments require special

access, while reads from ChIP-Seq and RNA-Seq experiments are publicly available [17]. That is,

reads from the experiments that do not require substantial depth are sometimes considered to be

safe to share without privacy concerns owing to partial and biased sequencing, although it is not

clear if these reads are leakage free. Although private information leakage from summary level

functional genomics data are quantified previously [18, ?, ?] the lack of a systematic quantifica-

tion of private data leakage from BAM files makes it difficult for biomedical data sharing policy

makers to protect individual’s sensitive information in a consistent fashion. CRAM format pro-

vides options for the users to convert BAM files into lossy compression, in which quality scores

of the alignments are manipulated, which in turn can be used to decrease private information leak-

age [16]. However, there is still privacy leaks due to the containement of mismatch information

of the reads with respect to reference genome [16]. MRF was introduced as a conceptual format

to remedy privacy concerns, where keeping the sequence of reads is optional [21]. This does not

only reduces the size of the data, but also makes it hard to genotype the individuals from the infor-

mation in these files. However, private information leak is not entirely removed from MRF files,

as one can still infer deletions from the information in these files. Moreover, current quantification

pipelines used for gene expression analysis as well as the peak calling softwares were not designed

to take MRF file format as inputs.

On the flip side of the coin is the utility of the mapped reads (BAM files) and challenges related

to dealing with private data. Accession to private data requires use agreements that have expiration

dates and a tremendous amount of bureaucracy connected to it. Moreover, any secondary data

product becomes private and cannot be distributed. Problems associated with the distribution of

secondary data products from private biomedical data is exacerbated due to large file sizes. For

example, genome annotations that are derived from private functional genomics data require es-

tablishment of their own databases. However, since such annotations are derived from private data,
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establishment and distribution of these databases require extra levels of privacy related bureau-

cracy. Another example to the challenges associated with private data is that big consortia such as

ENCODE [22], TCGA [23] or GTEx [24] fund multiple research institutions and enable a collabo-

rative working environment through dedicated phone calls and meetings. In turn, participants have

to go through required access procedures with their institutions. Otherwise communication based

on private data is prohibeted according to data use agreements. Moreover, when multiple institu-

tions have required access to the same data, they still cannot exchange files with each other. These

challanges create a bottleneck and hinder the progress of important biomedical findings. Open data

helps the advancement of biomedical data science not only with the easy access to the data, but also

helping with the speedy assesment of tools and methods and in turn reproducibility. Funding agen-

cies and research organizations are increasingly supporting new means of data sharing and new

requirements for making data publicly available while preserving the participant’s privacy [25]. In

an attempt to consider both sides of the coin, we ask the questions of how much information is

enough information to identify individuals and how we can protect the sensitive information with

minimum loss of utility in a publicly data sharing mode. To this end, we derive novel information

theory-based measures and apply these measures to quantify the amount of leaked information in

24 functional genomic assays from ENCODE [22] at varying coverages. Based on our findings, we

develop new file formats that allow the public sharing of read alignments of functional genomics

experiments while protecting the sensitive information as well as minimizing the amount of pri-

vate data that requires special access and storage. Our file format manupilation system achieves

different levels of privacy vs. utility balance with an adjustable parameter.

In this study, we use NA12878 as a case example and her 1000 genomes genotypes as gold stan-

dard genotypes [26]. We sample reads from the sequencing data of functional genomics experi-

ments at increasing coverages and detect SNVs and indels using Genome Analysis Toolkit (GATK)

best practices recommendations [27, 28]. We propose a new metric for qantifying the amount of
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information that can be obtained from sequencing data with respect to the gold standard. We next

present a simple and practical instantiation of a linking attack with the assumption of adversaries

accesing increasing amount of the seqencing data. We show that individuals are vulnerable to

identifications even at small coverages of sequencing data. We further show that with summation

of reads from functional genomics experiments and imputation through linkeage disequilibrium,

the leaked number of variants can reach the total number of variants in an indivudal’s genome. We

then provide a theoretical framework where the amount of leaked information can be estimated

from depth and breadth of the coverage as well as the bias of the experiments. Finally, we focus

on ways to publicly share alignment data without comprimizing individual’s sensitive information.

We propose privacy enhancing file formats that hide variant information, are compressed and have

minimum amount of utility loss.

2 Results

2.1 Information Theory to quantify private information in an individual’s

genome

An individual’s genome can be represented as a set of variants. Each variant is composed of the

chromosome it belongs to, location on that chromosome, the alternative allele and its correspond-

ing genotype. Let S = {s1,s2, ..,si, ..sN} be the set of variants, then each variant can be represented

as si = {vi,gi}, where vi consists of the location and alternative allele information and gi denotes

the genotype of the variant as 1 for heterozygous variant and 2 for homozygous variant. We can

then calculate the naive self-information of S in bits as

h(S) =−
i=N

∑
i=1

log2(p(si)). (1)
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In eq. 1, N is the total number of variants in an individual’s genome, p(si) = ni/nT is the geno-

type frequency, in which ni is the number of individuals with variant si = {vi,gi} and nT is the

total number of individuals in the panel. Note that we denote h(S) as “naive” information, because

it is an estimate of the real information in a situation, which the population that the individual

belongs to is not known and the number of inidivuals are finite. Eq.1 holds only if variants are

independent of each other, which is not the case due to the correlation between variants in linkage

disequilibrium (LD). In theory, the population that the individual belongs to can easily be predicted

by using a few variants. However, from an adversary’s perspective, this will add one more layer

of calculation, i.e computational and time cost to identification attack. Eq.1 also an estimate to the

information when we consider all the individuals in the world (i.e limnt→∞ h(S)).

To be able to understand whether naive information is a good estimate, we first calculate the

information with the consideration of LD scores taken from the European population of HapMap

project [29]. LD scores are pairwise correlations between variants, which we consider as the prior

information on the existence of a variant given other variants in the same LD block exist in a

genome. Then the information with LD consideration is calculated as

hLD(S) =−
i=N

∑
i=1

(1−mLD(si,s j))h(si) (2)

LD(si,s j) is the maximum LD correlation of variant si such that mLD(si,s j)= max
i 6= j, j∈(1,..,N)

LD(si,s j),

where mLD(si,s j) 6= mLD(s j,si).

Figure 2a shows a negligible difference between the naive information and information with

LD consideration for NA12878 genome. To understand the lack of difference better, we calculate

the self-information of each variant in an LD block with and without LD consideration. We show

that highly informative variants do not exhibit any difference due to the low LD correlations (Fig-

ure 2b). We further show that the number of variants that have difference between information
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with and without LD consideration is small compared to highly informative variants having low

LD correlations on average.

We then estimate the information when the population size is infinite [30]. We sample fractions

in the order of 10%, 20%,..., 100% individuals from the 1000 genomes phase I panel (total of

2504 individuals) and calculate the information using the sampled distribution of genotypes. We

repeat this calculation for 100 times and calculate the mean information for each sampled frac-

tion. The relationship between the inverse of the sample fraction and the information fits best to

a power function with two terms (y = axb + c, R = 0.99). The y-intercept (c) of the curve is the

extrapolation of information when the population size goes to infinity (1/∞ = 0, Figure 2c). We

again found a negligible difference between the naive information and the information when the

population size is infinite (Figure 2a). The information is also calculated by starting from a single

individual and adding individuls one by one to the population (SI Figure 1). These individuals

are simulated using the genotype frequencies in the 1000 genomes panel and the LD information

from HapMap project (see SI methods). Both the information calculation and the KL-divergence

between different size populations show that as the size of the population increases, the difference

in the information decreases and eventually becomes negligible (SI Figure 1)

In summary, calculations above show that the naive information can be an accurate approximate

to the private information content of an individal’s genome when the individual’s population is not

known and the population size is bound by the number of individuals in 1000 genomes panel due to

the relationship of information at n → ∞ ≥ naive information ≥ information with LD (Figure 2a).

That is, an adversary with no prior knowledge on the population of the sample and limited number

of individuals in a known genotype panel can accurately approximate the private information in

the sample.
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2.2 Information Theory to quantify private information leakage in func-

tional genomics data

In an effort to understand the relationship between the leaked information and the coverage as

well as for a fair comparison, k amount of reads were sampled from the 24 different functional ge-

nomic experiments and from WGS and WES data of NA12878 (see SI Table 1). Genome Analysis

Tool Kit (GATK) is used to call SNVs and indels with the parameters and filtering suggested in

GATK best practices [27, 28]. The genotypes in 1000 genomes panel for NA1278 is used as the

gold standard. We use “naive” pointwise mutual information (pmi) as a measure to quantify the

association between the gold standard and the called variants. If SG = {s∗1, ..,s
∗
i , ...,s

∗
M} is the set

of variants from the gold standard and SF(k) = {s1, ..,si, ...,sM} is the set of variants called from

the k total sequencing coverage of a functional genomics experiment, then the set A = SG⋂
SF(k)

contains the variants that are called and are in the gold standard set. If A = {a1, ..,ai, ..,aT}, then

pmi(SG;SF(k)) =−
i=T

∑
i=1

log2(p(ai)) (3)

We then add more reads to the sampled reads and repeat the calculation. This procudere is

repeated till we deplete all the reads of a functional genomics experiment. The overall process is

depicted in Figure 2e.

2.3 Private information leakage in 24 functional genomics experiment at

different coverages

The pmi values for 24 functional genomics experiments are calculated at different coverages.

These experiments involve whole genome approaches such as Hi-C, transcriptome-wide assays

such as RNA-Seq and targeted assays such as ChIP-Seq of histone modifications and transcrip-

tion factor binding. In addition, the pmi is also calculated for WGS, WES, and SNP-ChIP for
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comparison (Figure 3).

As expected Hi-C data contains almost as much information as WGS and more information

than SNP ChIP arrays. WGS data contains more information than Hi-C in the beginning of the

sampling process. As we sample nucleotides that are between around 1.1 and 10 billion bps, the

information content of Hi-C surpasses the WGS data (Figure 3a). We speculate that this is due to

better genotyping quality of the genomics regions that are in spatial proximity, as Hi-C has a bias

of sequencing more reads from those regions. As expected, we cannot infer as much information

from ChIP-Seq reads (Figure 3b). However, surprisingly many of the ChIP-Seq assays such as

the ones targeting CTCF and RNAPII contain a great amount of information at low coverages.

Furthermore, comparison between WES and different RNA-Seq experiments show that none of

the RNA-Seq experiments contain as much information as WES, which is due to the fact that

RNA-Seq captures reads only from expressed genes in a given cell (Figure 3c). The unexpected

observation is that more information can be inferred from polyA RNA-Seq data at low coverages

compared to WES and total RNA-Seq. To be able to make a fair comparison between all these

assays, we calculate the mean pointwise mutual information per bp depicted in Figure 3d. To

do so, we normalized the pmi values by the amount of coverage (k). We then averaged it by

the number of times (n) we performed sampling on that experiment (∑ pmi(SF (k);SG)/k

n
). We found

that Hi-C experiments and ChIP-Seq experiments targeting the transcription factor HDGF provide

more genotyping information per basepair compared to WGS data (Figure 3d).

2.4 Genotyping accuracy

In light of the above findings, in which genotyping can be done using low depth, biased func-

tional genomics experiments, we asses the accuracy of genotyping by calculating the false dis-

covery rate at different coverages. This also measures how much noise that each assay captures.

The false discovery rate is defined as the ratio between the information obtained from the incor-

12



rectly called variants (h(SF | SG)) and the information obtained from all the called variants (h(SF)),

namely

FDR(SF(k)) = h(SF(k) | SG)/h(SF(k)) (4)

Figure 4a shows that the false discovery rate for Hi-C data is lower compared to WGS data

at lower coverages. We attribute it to the deeper sequencing of the genomics regions in close

spatial proximity. Hence, sampling more reads from those regions at low coverages is more likely

compared to uniform sampling of reads from WGS. ChIP-Seq data has comparable false discovery

rate to WGS and Hi-C data, ChIP-Seq targeting CTCF having the lowest FDR (Figure 4b). We

further find that assays targeting transcriptome such as WES and RNA-Seq produce the noisest

genotypes among all the assays, only around 10% of the called variants being the correctly called

variants (Figure 4c).

2.5 Linking attack scenario

Linking attacks aim at re-identification of an individual by cross-referencing datasets (Fig-

ure 5a). For example, in an hyphotetical scenario, the attacker aims at querying an individual’s

HIV status from his/her phenotype data. This phenotype data is released with the individuals’

genotype information with an anonymized identifier for each individual. We assume that adver-

sary obtains access to this dataset either lawful or unlawful means. Now let’s assume that attacker

has access to a biosample. This could be partial or complete mapped reads from functional ge-

nomics experiments or a saliva sample taken from a used glass. The idea is to do genotyping to

the biosample and find the matching genotype in the HIV status database. However, individuals

share many common variants with each other. The number of shared variants between individuals

is large within a racial population and even larger within a family. Then the question becomes

how well an adversary has to sequence an individual’s genome to be able to do succesful linking.

Specifically, adversary is interested in investigating whether noisy and partial reads from functional
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genomics experiments can be used as quasi-identifiers and how accurate the genotyping need to be

in order to link individuals to databases.

For this, the attacker calls variants directly from the reads of anonymized functional genomic

experiments. Then he/she compares the called noisy and incomplete genotypes to the genotype

data panel and finds the entry with the highest pointwise mutual information. This reveals the

sensitive information for the linked indivudal to the attacker. We then consider a scenario that the

attacker has access partial or increasing amount of reads to find out when the data crosses the set

point and becomes private.

Based on the pmi values of each experiment at different coverages, we define a metric for linking

accuracy called gapquery. Let assume SDB
i is the set of variants that belongs to the ith individual in

the genotype panel and SF
query(k) is the set of variants that was called from the functional genomics

experiments of the query individual at k total sequencing coverage. We first calculate the pointwise

mutual information between every individual in the panel and the query as pmi(SF(k);SDB
i ). We

then ranked all the pmi values in a decreasing order such that;

pmi(SF(k);SDB
i )(1) > pmi(SF(k);SDB

j )(2) > ... > pmi(SF(k);SDB
m )(N)

In a real linking attack, the assumption is that individual with the highest pmi with the query (pmi(SF(k);SDB
i )(1))

is the query. Since our query individual (NA12878) is in the panel, we can measure the accuracy

of this prediction with gapquery. We calculate the gapquery for three possibilities: (1) First ranked

individual is NA12878, (2) first ranked individual is not NA12878, but NA12878 is in the first five

ranked individuals, and (3) none of the top 5 mathing individuals are NA12878. In the possibility

(1), the attacker makes a correct prediction. The strength of this prediction is the gapquery, which is

measured as the fold change difference between the pmi of best matching individual (coorect pre-

diction) and the second best matching individual. In the possibility (2), the attacker makes a false
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prediction, but it can be correct if auxilary information such as gender and ethnicity is used. The

strength of this prediction (gapquery) is measured as the fold change difference between the pmi of

the real individual, that is ranked somewhere between 2nd to 5th and the pmi of the best matching

individual, that is the misprediction. In the possibility (3), the attacker makes a false prediction that

the query cannot be retrieved from the panel, there gapquery becomes 0. We can formulate this as;

gapquery =
pmi(SF(k);SDB

i )(t)

pmi(SF(k);SDB
j )(2)

, if SDB
i = query and t = 1

gapquery =
pmi(SF(k);SDB

i )(t)

pmi(SF(k);SDB
j )(1)

, if SDB
i = query and t ∈ 2,3,4,5

gapquery = 0, otherwise

(5)

We then define that if gapquery is 0, then the individual cannot be identified as there are other

individuals in the panel that have the matching genotypes. If 0 < gapquery ≤ 1, then the individ-

ual might be vulnerable with auxilary data such as gender or ethnicity, because he/she is in the

top 5 macthing individuals. If 1 < gapquery ≤ 2, then the individual is vulnerable as we can iden-

tify him/her with 1 to 2 fold difference between him/her and the second best match. Lastly, if

gapquery > 2, then the individual is extremely vulnerable with more than 2 fold difference between

him/her and the second best match. Detailed flowchart of the linking attack is in Figure 5a).

We find that NA12878 is extremely vulnerable even at the lowest sampled coverages for Hi-C

and RNA-Seq data (Figure 5b). More interestingly between around 1.1 and 10 billion basepairs,

the Hi-C data exhibits higher linking accuracy than WGS data, consistent with the previous ob-

servation of pmi shown in Figure 3a. The total of coverage of ChIP-Seq data compared to Hi-C

and RNA-Seq is quite low (SI Table I). However, the linking accuracy of ChIP-Seq is as good

as Hi-C and WGS (Figure 5b), which shows extreme vulnerability of individuals with respect to

release of such small amount of data. More strikingly, attacker can link NA12878 by using the

reads of single-cell RNA-Seq data, which cover a small portion of the genome in a single cell (Fig-
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ure 5d). We then added the variants of NA12878’s parents to the 1000 genomes genotype panel

and repeated the linking attack. We found that although NA12878 is still extremely vulnrebale to

re-identification in the presence of her parents in the database, the second best matching individ-

uals are her parents (SI Figure 2). This shows that using the metric gap, an adversary can also

identify individuals related to the target individual.

2.6 Individual’s genome can be accurately approximated from publicly avail-

able data by imputation

To answer the question whether an attacker can correctly assemble an individual’s variants by

only using the reads from ChIP-Seq and RNA-Seq experiments, we impute variants by using IM-

PUTE2 [31, 32, 33] and the variants called from ChIP-Seq and RNA-Seq experiments. We then

collected all the called and imputed variants in a set. Although imputed variants do not contribute

to the information due to high correlation with the called variants (SI Methods and SI Figure 3),

total number of captured variants increases significantly (Figure 6a). By using shallow squencing

data of ChIP-Seq and RNA-Seq, we were able to call and impute variants almost as many as the

gold standard variants.

We then ask the question if we can infer potentially sensitive phenotypes from these variants.

Figure 6b shows a small set of example variants associated with physical traits such as eye color,

hair color or freckles. Many of these variants are in the called set of Hi-C, ChIP-Seq and RNA-Seq

data. Number of variants associted with traits further increases with imputation as expected.

16



2.7 Toy model for estimation of amount of leaked data without variant call-

ing

Genotyping from DNA sequences is the process of comparing the DNA sequence of an individial

to that of reference human genome. To be able to do succesful genotyping, one needs substantial

depth of sequencing reads for each base pair. According to the Lander-Waterman statistics for

DNA sequencing, when random chunks of DNA is sequenced repeteadly, the depth per basepair

follows Poisson distribution with a mean that can be estimated from the read length, number of

reads and the length of the genome [34]. Since functional genomics experiments aim at finding

highly expressed genes, TF binding enrichment or 3D interactions of the genome, it is expected

that the sequencing depth per basepair does not follow the Poisson statistics. Thus, the genotyping

using reads from functional genomics experiments is biased towards the variants that are in the

functional regions of the cell types/lines of interest.

To this end, we hyphotesized that the genotyping from the sequencing based functional genomics

data depends on the average depth per base pair (d) , the total fraction of the genome that is

represented at least by one read, also called the breadth (b = ∑N
i=1 δ (di), such that δ (di) = 1 if

di > 0, 0 otherwise and N is the total number of nucleotides in the genome) and a parameter β

that estimates the sequencing bias, i.e. how much the distribution of depth per basepair deviates

from the Poisson distribution (Fig. 6c). The bias parameter β is composed of two terms: (1) the

negative bias β− and (2) the positive bias β+. Negative bias estimates if there is an increase in

the number of low depth basepairs relative to mean with respect to espected Poisson distribution

and the positive bias estimates the increase in the number of high depth basepairs (see SI for more

details).

To quantify the genotyping accuracy from the functional genomics data, we used “naive” nor-

malized pointwise mutual information (npmi). It takes into account the information from the cor-
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rectly identified genotypes (pmi(SF ;SG)), the information missed that is in the gold standard (h(SG |

SF)) and the information from the incorrectly identified genotypes, i.e FDR (h(SF | SG)) as;

npmi(SF ;SG) =
pmi(SF ;SG)

h(SF ,SG)
=

pmi(SF ;SG)

h(SG | SF)+ pmi(SF ;SG)+h(SF | SG)
(6)

To be able to get a fit for the relationship of npmi(SF ;SG) = f (dF ,bF ,βF), we used Gaussian

Process Regression (GPR) [?] to fit 40 training data points and achieved a root mean square er-

ror (RMSE) of 0.06 with the values ranging between [0,35] (Fig. 6d). 5 separate data points were

used as test set and an RMSE of 0.07 was acheieved (Fig. 6d), see SI for more details). The regres-

sion learning is performed using 10 fold cross-validation to protect against overfitting. This toy

model represents a conceptual theoretical framework limited to the small sample space available.

It shows that the amount of leaked data from functional genomics experiments can be estimated

without the need of performing time-consuming genotyping calculation.

2.8 Unique combination of common variants contribute significantly to the

information leakage and linking accuracy

We next analyze whether a linking attack can be prevented by removing rare variants from

the datasets as their contribution to the information is the highest. We first speculated that the

removal of the variants that are unique to NA12878 might be enough to fail at linking. A total

of 11,472 variants along with their genotypes are only observed in NA12878, which we refer as

‘unique variants” (Fig. 6a). After the removal of unique variants from the NA12878 variant set,

we calculated the gapNA12878 and surprisingly found that linking accuracy is affected minimally

compared to using the all of NA12878 variants (Fig. 6b). We then created another set (‘double

variants”, Fig. 6a), that includes the variants that are observed in NA12878’s genome as well as

one more individual in the 1000 genomes genotype panel (total of 16,305 genotypes). We again

found that individual is extremely vulnerable to linking attacks (gapNA12878 > 2,Fig. 6b). We then
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relaxed our cut-off further to remove the variants that are observed in NA12878’s genome as well

as at most 1.5% of the population (‘rare variants”, total of 124,093 genotypes, Fig. 6a). This also

did not affect the overall linking (gapNA12878 > 2,Fig. 6b).

These rare genotypes are observed in 64 or less individuals including NA12878. A practical

solution to the re-identification problem using functional genomics data would be masking or re-

moving such rare genotypes from the reads. However, as iteratively shown here that although rare

variants are extremely informative and sufficient enough to do re-identification through linking at-

tacks, their removal is not sufficient to fail at re-identification. That is, not only the rare genotypes

but also the unique combination of common genotypes are identifiers of genetic make-up of an

individual. To further support this calculation, we added the genotypes of the parents of NA12878

to the panel and found that we can still link NA12878 to the correct genotypes succesfully with an

extreme vulnerability (gapNA12878 > 2, SI Fig. 2).

We then analyze the contribution of small indels to the naive information and whether accurate

linking is possible when we remove all the single nucleotide mutations from the data and keep the

indels. Fig. 6c shows the information contribution of the indels. Although naive pointwise mutual

information from indels are much smaller compared to single nucleotide mutations, a high linking

accuracy can be achived by using only indels even at small coverages (Fig. 6d). This linking attack

is done using the most noisy data set we have (total RNA-Seq) to make linking more difficult.

2.9 Privacy-preserving file formats for alignments from functional genomics

experiments and relation to k-anonimity

Sharing of raw alignments from functional genomics experiments are extremely important in de-

veloping analysis methods and discovering novel mechanisms about human genome. The purpose

is to share maximum amount of information with minimum utility loss while largely maintaining
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the individual’s privacy. As a privacy metric, we aim to prevent leakage of any variants as well

as any quasi-identifier that can lead to identification of position of variants in the genome. We

introduced a user identified privacy-utility balance that can be adjusted according to the patients’

consents and institutions’ policies. By using the concept of k-anonimity [?], we applied privacy-

preserving transformation to the alignment files such that calling variants from transformed files

are largely prevented while quantifications related to functional genome is possible with minimal

error (Fig. 8a).

A release of data posesses the k-anonymity property if the information for each person contained

in the release cannot be distinguished from at least k−1 individuals whose information also appear

in the release. Although this concept was developed for the release of datasets with individuals,

we can think of a raw alignment file (BAM) as a dataset, where information for each read is

contained. Let’s assume a BAM file is a dataset D, where each entry is a read. The desire is

to release dataset D in a form (say D∗) such that it does not leak variants from the reads, but in

the mean time any calculation f based on D and D∗ retrieves almost the same result. There are

two general methods to achieve k-anonimity for some value of k: suppression and generalization.

If every column in D is an attribute (such as read length, cigar, sequence, quality value), then

replacing an attribute to an asteriks(*) is suppression, changing an attribute with a more general

value is generalization. For example, in our file format transformation, we replace sequence and

sequence quality attributes with asteriks (suppression), and transform the cigar of the read from

partially mapped to fully mapped (generalization) to achive, for example,3-anonimity with respect

to attributes sequence, sequence quality and cigar (see SI Methods for details). Now let’s say the

privacy-preserving transformation is done through a function PQ,r such that PQ,r(D) = D∗. Q is the

operation such as ‘’removal of small indels”, ‘’removal of mismatches”, ‘’removal of large indels”

or ‘’removal of all variants”. r is the amount of reads to be manupilated given the operation Q. A

calculation f can be signal depth profile calculation, TF binding peak detection or gene expression
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quantification (Fig. 8a). Then, we can reconstuct the eq. 7 for each unit i as

f (D)

f (D∗)
= eεi , (7)

where a unit can be a single basepair, an exon or a gene depending on the function f . In turn, εi

can be calculated as the log fold change between the results derived from two datasets. This is

also a quantity commonly used to compute differential gene expression [37] or ChIP-Seq binding

enrichment over controls [?], and can be used as analogous in this context, where log-fold change

is the differential signal depth or expression when the manupilated data is used as an input.

Note that | εi | is a measure of utility of the new dataset D∗. We then calculated the distribution

of | εi | values over every unit and found the mean | ε | per unit as the overall utiliy metric. The

level of privacy is controlled by the function PQ,r, where Q determines the type of entries and r

determines the number of entries of given the operation Q that are manipulated. For example, if Q

is the removal of indels and r is the reads that contain indels with MAF < 0.5, then only reads that

have indels with MAF < 0.5 will be manipulated in the transformed D∗. In that case, adversaries

cannot call indels using D∗.

The privatized file format pBAM from data D∗ is constructed as following. The reads from

the BAM files are categorized as perfectly mapped reads and reads with mismatches, insertions,

deletions, soft- and hard-clipping. PQ,r replaces the sequence of all of the reads with asteriks and

manipulates the cigars, alignment scores and the MD tags of the reads that are defined in Q and r.

The details of how new file format deals with reads are reported in SI Methods with a figure (SI

Fig. 4). pBAM files can also be created from BAM files that are obtained by mapping sequences

to the transcriptome coordinates, which is essential for gene quantification. Our transformation

function PQ,r is general and can be applied to any alignment file types such as SAM, CRAM and

MRF to create privatized new file format. These files will be concordant to use with tools such as
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samtools, cramtools and mrftools.

We calculated the signal depths of each basepairs in the genome using NA12878 RNA-Seq BAM

file using STAR [?]. We then converted the BAM file into pBAMs with different qs and calculated

the signal depth of each basepair. Fig. 8b shows the number of basepairs with εi > 0 with respect

to number of basepairs with no change between BAM and pBAM. We did the same calculation by

averaging signal over exons as well (Fig. 8b). Furthermore, we created pBAM files for the BAM

files that are mapped on reference transcriptome and compared the gene quantification with the

gene expression levels calculated from original BAM files. We used RSEM for gene quantification

and STAR for transcriptome alignment [?, ?]. We found no difference between the gene expression

levels calculated using original BAM files and pBAM files (see Fig 8b and SI Methods for how we

treated transcriptome alignments). Overall, when we remove all the variant leak from BAM files,

we found 0.18% difference at the basepair resolution, 0.27% difference at the exon resolution, and

0% difference at the gene level. When we remove leak associated with the mismatches, we do

not see any difference as when the cigars with mismathes are manipulated, the correct mapping

locations can be recovered without leakage (see SI Methods). We when remove leak associated

with indels, we found 0.0016% difference at the basepair resolution and 0.0011% at the exon

resolution and 0% difference at the gene level. When we remove leak associated with split reads,

we found 0.17% difference at the basepair resolution and 0.26% at the exon resolution and 0%

difference at the gene level.

The pBAM file format contains necessary information to be used in functional genomics pipelines

such as gene expression quantification and transcription factor binding peak calling. The differ-

ence between the results of ENCODE Chip-Seq TF binding peak calling pipeline (MACS2 [?]) is

even more negligible when BAM and pBAM are used as input (SI Fig. 4). We then create a .diff

file format that contains the original information that was manipulated in the pBAM file. With
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the motivation of keeping size of private file formats relatively small, we report only differences

between BAM and pBAM in the .diff file by avoiding the printing any sequence information of the

reads that can be found in the reference human genome (see SI Methods). diff files are private files

that require special permission for access. A user is able to retrieve the original BAM file when

they have access to the .diff file by using our collection of scripts called ptools that can convert

pBAM + .diff + reference genome into the original BAM file (Fig 8c).

2.9.1 Implementation

Conversion of BAM files to pBAM and pBAM+diff files back to BAM files are implemented as

a series of scripts in bash scripting language and python. Diff files are encoded in compressed

format to save space. For convenience, pBAM files are saved as BAM files with manupilated

content and saved with p.bam extension. That is, any pipeline that uses BAM as an input can take

p.bam as an input as well. Running times and assiciated file sizes for alignemnts from RNA-Seq

experiments and ChIP-Seq experiments is documented in Table x [[MEG to fill the table]]. Our

file format manipulation is adopted by ENCODE Consortium Data Coordination Center. Codes for

the calculation of information leakage, scripts for file manupilation as well as examples of BAM,

pBAM and diff files can be found at privaseq3.gersteinlab.org.

Table 1: pTools performance

Experiment BAM size q ε pBAM size .diff size BAM to pBAM pBAM+diff+hg to BAM

runtime runtime

RNA-Seq genome

RNA-Seq transcriptome

ChIP-Seq CTCF

ChIP-Seq H3Kme4
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3 Discussion

Functional genomics experiments provide large amount of biological data. These are large-scale,

high-throughput assays based on sequencing. Although they aim at answering questions related

to genomic activities such as gene expression, TF binding or 3D organization of genome, public

sharing of sequencing data from these experiments can lead to recovery of genotype information

and in turn raise privacy concerns. However, the systematic quantification of private information

content of the functional genomics BAM files and open access to such data without comprimising

individuals’ identity have not been well studied. Current policies regarding to public sharing of

functional genomics BAM files are ad-hoc. The experiments that require high depth of sequencing

such as Hi-C and sometimes RNA-Seq are considered to be private, while relatively low depth

BAM files such as those from ChIP-Seq are often shared publicly. In this study, we derived infor-

mation theory based measures to systematically quantify the sensitive information leakage in the

BAM files of functional genomics experiments in low and high depth experiments.

Instantiation of linking attacks by genotyping of partial or complete functional genomics data

showed that even at low coverages of low depth experiments such as ChIP-Seq, linking individuals

to the databases can be done without error. When we compare the linking accuracy to the false

discovery rate, we found that it is easier to link individuals to the databases than genotyping them

accurately using functional genomics experiments. The implication is that noisy quasi-identifers,

i.e bad quality SNP calling, can be used to link the data to the high quality genotypes. For example,

according to our calculations, reads from singel-cell RNA-Seq data carry the most amount of noise.

This is likely due to the bias towards expressed genes in such small amount of cells, mapping issues

of splice sites, false positives from RNA editing sites and amplification bias. However, the noisy

genotypes called from small amount of cells, even when the number of reads are only a million, are

quasy-identifiers that result in very high linking accuracy. This is worrisome in terms of biomedical

data sharing as the number of individuals in genotype databases is increasing exponentially with
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the decrasing cost of sequencing. Furthermore, rich information about an individual’s identity and

his/her sensitive phenotypes can also be inferred by combining the reads from low depth functional

genomics experiments and through genotype imputation.

In this study, we also discuss the concept of ‘’set point” in determining the data production

steps, where sensitive information leakage and utility of the data are balanced (Fig. 1). Setting

a ‘’set point” is possible by systematic genotyping and quantification of information. Although

it is obvious that any DNA read contains variants, it is not trivial to understand the amount and

the quality of sequencing to do accurate genotyping. Moreoever, we showed that genotyping

accuracy of a functional genomics sample and the ability to link individuals to the databases using

the same sample are not necessarily correlated. It is easier to link individuals to the databases

and infer their complete variant sets than genotyping a sample with accuracy and minimal false

discovery. For example, complete set of variants from HeLa’s genome may not be obtained by

genotyping HeLa BAM files from functional genomic experiments. However, using only a small

number of reads from the same BAM files accurate linking attacks are plausable. That is, noisy and

incomplete genotyping from partial sequencing experiments can serve as strong quasi-identifiers,

which is not straightforward to predict at first. Nevertheless, policies governing public sharing

of HeLa genome vs. HeLa functional genomics reads is ad-hoc and contradictory. Therefore,

it is essential to quantify the information in samples and set the ‘’set point” accurately. On the

other hand, functional genomics experiments advanced our undertsanding of health and disease by

revealing function of the genome under different conditions. The quantification, analysis and the

interpretation of functional genomics data are still an evolving field, hence extensive public sharing

of functional genomics data accelerate collaborative research and reproducibility by removing the

complexities associated with data accession procedures.
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The increasing incentive to share data for the advancement of biomedical research and the cor-

related increrasing privacy concerns have led researchers to look for more complex solutions to

overcome the bottleneck between data-sharing and privacy preserving means. Solutions such as

differential privacy has been proposed [?, ?, ?]. It has shown that retriving summary information

from private statistical databases without revealing some amount of individuals’ information is

impossible [?]. Furthermore, entire database can be inferred by using a small number of queries.

Differential privacy ensures a high level of privacy such that adversary retrieves similar result with

and without the addition of the individual’s data to the database by adding perturbations or noise

to the queries [?]. We further studied if the concept of differential privacy can be utilized to create

leakage-free raw functional genomics data (see SI Methods). Although such concept is useful for

sharing summary statistics of functional genomics data from multiple individuals, it is conceptually

hard to apply to the raw mapped read sharing from functional genomics experiments taken from

a single individual. While further research will be fruitful on how to extract useful information

from genomics data that are noised and perturbed, we envision there will be more applications of

privacy concepts such as differential privacy in genomics data sharing such as releasing population

based genotype-phenotype data [36, ?] .

To enable public sharing of raw alignments from functional genomics experiment, we designed a

privacy-preserving transformation and created privacy-preserving binary allignment files (pBAM).

We developed a framework, where researchers can tune the level of privacy and utility balance

they want to achieve based on the policies and consents of the donors. pBAMs enable researchers

to share the mapped reads, which are largest data product of functional genomics experiments. To

easen the challenges associated with moving and storing of large special access files, we created

light-weight .diff file format that consists of the differences between pBAM and BAM files in

a compact format. This allows us not to repeat the sequence information in the human reference

genome files in .diff files and reduces the size of the private files significantly. Presented framework
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can be used for quantification of sensitive information from the raw reads of functional genomics

experiments and conversion of raw files to privacy-preserving file formats. We address the most

obvious leakage and provide solutions for quick quantification and safe data sharing. However, it is

useful to review all the sources of information leakage from functional genomics experiments. For

example, the next source of leakage is from the signal profiles in RNA-Seq, which was addressed

elsewhere [20]. There is also leakage from gene expression quantifications, which was shown to

be connected with variants through the eQTLS [19]. Quantification of the leakage in all levels of

data processing steps of an RNA-Seq experiment is tabulated in Table 2 and in SI Fig. x. We also

anticipate more leakages to be discovered as new functional genomics experiments are developed.

Combined with the increasing attention to genomic privacy, we expect future studies will lead to

novel privacy-preserving solutions in an open data sharing mode.

Table 2: Quantification of leakage in different sources

Leaking source Leaking variants Average leakage Maximum leakage Total leakage

per variants (bits) per variant (bits) (bits)

Raw reads Exonic&

Intronic variants

RNA-Seq Exonic 0.196±0.311 5.525±0.311

Signal profile deletions

Gene expression eQTLs 0.825±0.250 2.772±1.335
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Figure 1: Schematic of data types from functional genomics experiments. (a) The flow for

RNA-Seq data processing from mapped reads to the gene quantifications. (b) Different layers of

produced data from RNA-Seq pipeline. Red line denotes the set point, where privacy and utility
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Figure 2: Comparison of naive information measure with information with LD consideration

and sample size correction. (a) Difference between the naive information, information with LD

consideration and extrapolated information when population size is infinite. (b) The maximum LD

score for each variant are averaged over per information and plotted against information. Highly

informative variants do not exhibit difference when information is calclated sing naive approach

vs. with LD consideration. (c) Naive information vs. information with LD consideration per

each variant in an LD block. Only low information variants show slight difference between two

approaches. (d) Naive information vs. inverse fraction of the data sampled from the 1000 genomes

population. y-intercept is extrapolated from the fitted curve and denotes the information when the

population size is infinite. Error bars are calculated using 100× bootstrapping. (e) The process

of sampling reads from functional genomics experiments for the calculation of pointwisw mutual

information between 1000 genomes gold standard variants for NA12878 in different coverages.
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Figure 3: The pointwise mutual information calculated for 24 different functional genomics

assays and WGS, WES and SNP ChIP data using NA12878 1000 genomes variants as gold

standard. (a) The pmi values for WGS and three different primary Hi-C experiments plotted at

different coverages. The information contents of the gold standard (1kG in blue) and SNP ChIP

(in pink) are added for comparison. (b) The pmi values for 20 different ChIP-Seq experiments

targeting histone modifications and transcription factor binding plotted at different coverages.

(c) The pmi values for WES, total RNA-Seq, polyA RNA-Seq and single-cell RNA-SEq from two

different cells plotted at different coverages. (d) The pmi values per basepair plotted using the

mean of all the ratios between the pmi and the corresponding coverage.
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Figure 4: False discovery rate of functional genomics experiments at different coverages (a)

FDR comparison for Hi-C and WGS data at different sampled coverages. (b) FDR comparison for

different ChIP-Seq experiments at different coverages. (c) FDR comparison for WES and different

RNA-Seq experiments.
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Figure 5: Illustration of a linking attack and the accuracy of linking. (a) The publicly available

ananoymized reads from functional genomics experiments contains a set of variants and HIV sta-

tus for the sample that the functional genomics experiment was performed at increasing coverages.

The panel of genotypes contains the variants and associated genotypes for m individuals. The at-

tacker links the inferred variants and genotypes to the panel of genotypes by using the best matched

pointwise mutual information. The linking potentially reveals the HIV status for the linked indi-

vidual. (b) Comparison of gap for NA12878 at different coverages for Hi-C and Total/PolyA

RNA-Seq reads. WGS and SNP-ChIP are also added for comparison. (c) Comparison of gap for

NA12878 at different coverages for 20 different ChIP-Seq experiments. (d) Comparison of gap

for NA12878 at different coverages for single-cell RNA-Seq experiments.
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Figure 6: Individual’s genome can be approximated and sensitive phenotypes can be inferred

from publicly available data by imputation and a theoretical framework for prediction of

amount of leaked data (a) Number SNVs called from WGS data and all of the ChIP-Seq and

RNA-Seq data together with and without imputation. (b) Variants associated with physical traits

and if they present in the called variants from different functional genomics experiments before

and after imputation. (c) Features of the theoretical framework - write more. (d) Accuracy of fitted

model on training set- write more (e) Accuracy of fitted model on test set - write more
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Figure 7: Removal of rare variants and linking (a) Information of the variant before and after

addition of NA12878 to the population. We iteratively removed variants from the set as (I) only the

variants that is only NA12878 specific, (II) the variants that have an information of 11 or higher

bits after removal of NA12878 from the population, (III) the variants that have an information of

6 or higher bits after removal of NA12878 (b) Linking accuracy for every iteration of removal of

NA12878 variants from the set. (c) Information of all the variants that are called from Total RNA-

Seq reads vs. the information of the indels that are called from Total RNA-Seq reads. (d) Linking

accuracy when we consider all the variants that are called from Total RNA-Seq rads vs. the linking

accuracy when we consider only indels called from Total RNA-Seq reads.
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Figure 8: Privacy-preserving file formats for mapped reads (a) The generation of public pSAM

and private .diff files. (b) Schematic of how to go between pBAM and BAM formats by utilizing

the human reference (c) Comparison of nmber of reads for each basepair in the original SAM

file and the distorted pSAM file. Noise is mostly introduced to basepairs with low depth. (d)

Comparison of nmber of reads for each exon in the original SAM file and the distorted pSAM file.

Noise is mostly introduced to exons with low expression.
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