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Comprehensive resource and integrative model for functional genomics of the adult brain 
 
Abstract
Understanding how genomic variants influence brain phenotypes and disorders remains a challenge. To this end, the PsychENCODE consortium has examined the brains of over 1,866 adults with various phenotypes and diseases to generate large-scale sequencing datasets that include genotype, transcriptomic, chromatin, and single-cell information. By uniformly processing and consistently analyzing these datasets, we developed a comprehensive resource on functional genomics of the adult brain. We deconvolved the bulk tissue expression using single-cell data and found that the cell fraction changes can explain >85% tissue covariance and associate with psychiatric phenotypes. Moreover, we found that the brain differs from other tissues most notably in gene expression compared to chromatin activities. We used the chromatin and Hi-C data from reference brain samples to generate ~80,000 active enhancers in the adult prefrontal cortex, and linked them to genes and transcription factors. We also identified approximately two million expression and xx cytokine quantitative trait loci. In addition, we built a full gene regulatory network linking all possible genomic elements, and leveraged it to discover 112 additional genes associated with genome-wide association study variants with psychiatric disorders. Finally, we developed a deep-learning model embedded in the regulatory network to connect genotypes and phenotypes on multiple layers, achieving ~4.6X improvement in disease-trait prediction above an additive genetic model. This model enables the user to highlight intermediate genes and functional modules and input missing transcriptome and epigenome data.  ADD IN SCZ BPD AND AUT
 
Introduction
Disorders of the brain affect nearly one fifth of the world’s population \cite{19507169}. Decades of research has led to little progress in our fundamental understanding of the molecular causes of psychiatric disorders. This contrasts with cardiac disease, for which lifestyle and pharmacological modification of environmental risk factors has had a profound effect on disease morbidity, or cancer, which is now understood to be a direct disorder of the genome \cite{9603539, 24071849, 16461820, 19360079, Jim}. Although genome-wide association studies (GWAS) have identified many genomic variants associated with psychiatric disease risk, for the vast majority we have little understanding of the molecular mechanisms change the structure and function of the brain, thereby altering risk.a detailed understanding of the precise molecular mechanisms behind these associations remains elusive \cite{19339359, Jim}.

Alternate Version from JK
To this end, a number of studies have begun to elucidate the molecular steps on the complex path from genome to risk. A variety of genomic elements and variants have been found to be associated with brain and psychiatric disorders \cite{26404826}.  For instance, the Psychiatric Genomics Consortia (PGC) has identified 108 GWAS loci associated with schizophrenia \cite{26404826}.  Many variants associated with psychiatric disorders have been found to lie in non-coding regions \cite{26404826}, suggesting potential roles in gene regulation. Other consortia have annotated many of these non-coding elements, including expression quantitative trait loci (eQTLs) and eGenes in the Genotype-Tissue Expression (GTEx) project and enhancers associated with various cells and tissues in the Encyclopedia of DNA Elements (ENCODE) and Epigenomics Roadmap projects, providing insight into how genomic variation is transformed into transcriptional variation at the molecular level, but none of these projects have specifically tailored their efforts toward comprehensively identifying the functional elements in the brain. ####GOOD####The first comprehensive projects to focus on identifying brain-specific genomic elements (insert refs for BrainCloud and CommonMind) have provided greater insight into brain-specific functional genomics, but could be enhanced with larger sample sizes of brains from both healthy and diseased samples, assayed with a variety of molecular techniques.  Hence, the PsychENCODE Consortium (PEC) (marker paper ref) has generated and assembled a large-scale dataset on the adult human brain, including data derived through genotyping, bulk and single-cell RNA-seq, ChIP-seq, ATAC-seq, Hi-C using on high-quality brain tissue from thousands of adult individuals.  All raw and uniformly processed data at both tissue and single cell levels from the PEC have been placed into a central, publically available comprehensive resource   #####  (http://adult.psychencode.org/) #####for adult brain functional genomics, that also includes and integrates relevant re-processed data from the other related projects, including ENCODE, CommonMind, GTEx, Epigenomics Roadmap, in addition to single-cell data [refs] with nearly ~12,000 data samples in total. By leveraging this resource, we were able to identify functional genomic elements and QTLs specific to the adult brain, including novel psychiatric GWAS and gene linkages. Moreover, we combined these elements to build an integrated deep-learning model. This tool can utilize the richly structured data of the resource to identify non-linear interactions between genotype and molecular phenotypes at multiple layers, as well as predict high-level traits.
 
A number of recent genomic studies have focused on discovering genomic variants relating to psychiatric diseases. These studies identified a variety of common and rare variants and linked genes that are associated with brain and psychiatric disorders \cite{26404826}. For instance, the Psychiatric Genomics Consortium identified 142 GWAS loci associated with schizophrenia \cite{29483656}. Many variants associated with psychiatric disorders have been found to lie in non-coding regions \cite{26404826}, suggesting potential roles in gene regulation. Other consortia have annotated many of these non-coding elements, including expression quantitative trait loci (eQTLs) and eGenes in the Genotype-Tissue Expression (GTEx) project and enhancers associated with various cells and tissues in the Encyclopedia of DNA Elements (ENCODE) and Epigenomics Roadmap projects . Although some of these elements relate to the brain, none of these groups have specifically tailored their efforts toward comprehensively identifying functional elements in the brain. Pioneering work from the CommonMind consortium \cite{27668389} has attempted to do this but only at a small scale. 	Comment by James Knowles: These were merged into the above  alternative version

####A number of new technologies enable improved measurement of various aspects of gene regulation. For example, Hi-C studies have helped scientists to identify specific chromatin structural and regulatory elements, such as active enhancers in the fetal brain \cite{ 27760116}. Single-cell sequencing techniques also offer great promise for studying the transcriptome \cite{27339989, 26060301}. However, each of the studies that have leveraged such technologies have focused on individual aspects of brain functional genomics. Therefore, these data have not yet been fully integrated at a large scale.####	Comment by James Knowles: These details could be put back into the merged paragraph above, but if we are running long, we could use the space for describing our results instead
 
We have built a central, publically available resource for adult brain functional genomics. This resource brings together all of the raw and uniformly processed data at both tissue and single-cell levels from PsychENCODE and other related projects \cite{27339989, 26060301} with nearly ~12,000 data samples in total. By leveraging this resource, we were able to identify functional genomic elements and QTLs specific to the adult brain, including novel psychiatric GWAS and gene linkages. Moreover, we combined these elements to build an integrated deep-learning model. This tool can utilize the richly structured data of the resource to identify non-linear interactions between genotype and molecular phenotypes at multiple layers, as well as predict high-level traits.
 
Resource construction
We designed a resource to provide a coherent and comprehensive structure to a large amount of data on brain functional genomics (http://adult.psychencode.org/) (adult.psychencode.org) \cite{Supplement}. Broadly, it organizes data hierarchicallypyramidally, with a large base of raw data files (much many of which haveare restricted access, such as individual genotyping and raw next-generation sequencing data of transcriptomics and epigenomics, to ensure personal privacy), a middle layer of uniformly processed and easily shareable results (such as open-chromatin "peaks" and gene-expression quantifications), and a compact cap at the top that consists of an integrative model based on imputed regulatory networks and QTLs. As shown in Figure 1, to build the base layer we included all the adult datasets from PsychENCODE (~5,500 data samples derived from 1,866 individual adult brains) and merged these with other relevant data from the ENCODE, CommonMind, GTEx, Epigenomics Roadmap, and recent brain single-cell studies (~5,000 additional brain-related samples) \cite{27339989, 26060301}. These data cover a large representation of brain phenotypes and psychiatric disorders (SCZ, BPD and AUT). Furthermore, the PsychENCODE project developed a specific "reference brain" project utilizing many assays on the same set of brain tissues, which we used to develop an anchoring annotation for the entire resource \cite{Supplement}.	Comment by James Knowles: I think we designed it to provide insight into the nature of the brain and brain diseases.	Comment by James Knowles: Not sure “pyramidally” is a word.  How about hierarchically? That said, we have a cube for the figure, which has nether a pyramidal or hierarchical structure, so a better adjective is needed.  Maybe something like a resource that organizes the multi-dimensional raw data into biological knowledge.
	Comment by James Knowles: Not sure we have a large number of “brain”phenotypes.
 
Bulk and single-cell transcriptome analysis
To identify the genomic elements that exhibit transcriptional activities specific to the adult brain, we used the ENCODE pipeline to uniformly process the RNA seq data of all available samples from PsychENCODE and GTEx. Using these data, we identified interpretable functional elements, such as non-coding regions of transcription and sets of differentially expressed and co-expressed genes. We provide these findings as part of our resource \cite{Supplement}, with the co-expressed genes summarized as a list of modules for psychiatric disorders \cite{cap1} and for brain regions after clustering them with other tissues \cite{Supplement}.	Comment by James Knowles: Do we want to enumerate these?
 
Brain tissues are composed a variety of cell types, including neuronal and non-neuronal cells. Previous studies have suggested that gene-expression changes at the tissue level can be associated with changing proportions of cell types \cite{21614001, 29439242,18849986, 27409810}. However, studies have not systematically revealed how different cell types can quantitatively contribute to tissue-expression variation. Here, we address whether expression changes over our population of 1,866 adults are driven by gene expression changes in a specific cell type or whether they result from changing proportions of various cell types.
 
We used two complementary strategies. First, we used the standard pipeline to uniformly process single-cell RNA-seq data in PsychENCODE, in conjunction with a number of other single-cell studies on the brain, in order to assemble a list of basic cell types for PsychENCODE in the brain. This list includes 16 previously identified neuronal types, five major non-neuronal types, and a number of additional cell types involved in brain development \cite{Supplement}. The results constitute a matrix (C) of expression signatures, which are mostly concordant with what has been published (Figure S5 and Discussion). Among a number of genes had expression levels that varied more substantially than they did across individuals in a population (e.g., the dopamine receptor gene DRD3, Figure 2A). This implies that small variations in cell types can readily give rise to substantial changes in bulk gene expression at the tissue level.
 
To explore this further, we performed an unsupervised analysis for bulk tissue expression data to identify the primary components as they relate to different cell types. In particular, we decomposed the bulk gene expression matrix (B) from our resource using non-negative matrix factorization (NMF, Figure 2B, see Methods); i.e., B~=VH, and then determined whether the top components of the NMF (i.e., NMF-TCs) that capture the majority of covariance are consistent with the single-cell signatures. As shown in Figure 2B, we found that a number of NMF-TCs highly correlated with neuronal, non-neuronal, and developmental-related cell types (Figure 2C). This demonstrates that an unsupervised analysis derived from bulk data roughly matches the single-cell data, partially corroborating our basic cell types.
 
We then wanted to understand how distinct cell types contribute to variation in bulk gene expression and relate to different brain phenotypes. In particular, as shown in Figure 2B, we de-convolved the expression matrix of tissue (B) using the single-cell signatures (C) to estimate the cell fractions W, solving the equation “B~=CW” (See Methods). As validation, our estimated fractions of NEU+/- cells matched the experimentally determined fractions from the reference brain samples (Median error = 0.04, Figure S6). Moreover, we found that using the single-cell expression signatures could explain much of the population-level expression variation (i.e., across tissue samples of the same brain region taken from different individuals; 1-||B-CW||2/||B||2>85%; Methods).

Furthermore, we found cell fraction changes were associated with different phenotypes and psychiatric disorders (Figure 2E, SXXX). For example, particular excitatory and inhibitory neurons exhibit significantly different fractions between male and female samples (Ex3 and In6). The fraction of Ex3 is also significantly reduced in ASD samples (p=2.73e-11, ANOVA test), while non-neuronal cells (e.g., oligodendrocytes) are represented in greater abundance. Another interesting association was that cell fractions change with age. In particular, the fractions of neuronal types Ex3 and Ex4 significantly increase with age, but some non-neuronal types such as oligodendrocyte are found to decrease. Furthermore, these age-related cell changes are potentially associated with differentially expressed genes across age groups – e.g., the gene involved in early growth response is down-regulated in older age groups, whereas ceruloplasmin is down-regulated among middle-aged groups (Figure 2E).	Comment by James Knowles: Was this accounted for in the sex/disease analyses, above?

Enhancers in adult brain
We use chromatin modification signals to identify active enhancers in the brain. The reference brain is valuable here as it allows integration of many assays, including ATAC-seq, ChIP-seq and Hi-C. Combining the data from the reference brain with DNase and ChIP-seq of the same brain region from ENCODE and Roadmap Epigenomics, we identified a set of ~80k brain PFC enhancers, using a consistent approach with that in ENCODE (See details in the supplement)
 - i.e. the identified enhancers are enriched in H3K27ac signal and depleted in H3K4me3 signal (Figure 3A).
 
Assessing the variability of enhancers across individuals and tissues is more difficult than evaluating the variability of gene expression. As shown in figure 3A, not only the chromatin signal level associated with the enhancers goes up and down across population, the boundaries of enhancers grow and shrink and sometimes disappear altogether -- or re-appear in different places in a few individuals. These 1D signal changes would fundamentally reflect change in 3D chromatin structure. To investigate the variability within population, we first aggregated the H3K27ac peaks from the individuals in the cohort. The H3K27ac ChIP-seq data from prefrontal cortex (PFC), temporal cortex (TC) and cerebellum (CBC) of 50 individuals was uniformly processed followed by peak calling using the same pipeline (see supplement). Aggregation among the population gives in total 37,761 H3K27ac in PFC, 42,683 in TC, and 26,631 in CBC. While these numbers are smaller than the number of enhancers, they actually cover a larger fraction of the genome, including enhancer and promoter regions, as the average width of H3K27ac peaks is larger than that of enhancers. Comparing aggregate set of these three brain regions, PFC shares a more similar chromatin signature with temporal cortex (~90% overlap between H3K27ac peaks) and is largely different from that of cerebellum (34% overlap), consistent with previous report (\cite{27863250}).
 
We also examined the overlap of the reference brain enhancers with the H3K27ac peaks in each of the individuals. As expected, not every active enhancers in the reference brain are active in every individual in the cohort. In fact, on average ~55K out of 80K active enhancers in the reference brain are active in another individual (Figure 3B). As expected, only a core set of enhancers is ubiquitously active in every single person in the cohort, with a larger fraction (~68%) of the enhancers identified in the reference brain active in more than half of the population. We estimate that ~30% of one’s PFC active enhancers is individual specific and/or related to environmental factors. This can be seen from figure SX that the cumulative number of active enhancers increases dramatically for the first 20 individuals sampled, but becomes saturated at the 30th sample. We hypothesize that pooling together the identified prefrontal cortex enhancers from 20-~30 individuals is enough sufficient to cover all potential regulatory enhancers in human PFC, which we estimate to be around 120K.
 
Consistent comparison of transcriptome and epigenome
A key aspect of our analysis is that we uniformly processed the transcriptomic and epigenomic data across PsychENCODE, ENCODE, GTEx and Roadmap. This allows us to compare the brain to other organs in a consistent fashion and also to compare the consistency of this over transcriptome and epigenome. We attempted several methods including PCA and tSNE for an appropriate comparison, and finally used Reference Component Analysis (RCA). PCA, though popular, tends to capture global structures, ignoring most of the local structure, but it can easily be influenced by outliers. On the other hand, t-SNE analysis preserves local structure but “shatters” global structure \cite{Supplement}. RCA, however is capable of capturing local structure while maintaining meaningful distances in global structure space. It projects the gene expression in an individual sample against a reference panel, and then essentially reduces dimensionality of the individual projections.
 
Our comparative analysis for gene expression shows that the brain tends to separate from the other tissues in the first component. Inter-tissue differences are much larger than intra-tissue ones. A different picture emerges when one looks at our comparison using chromatin data. It shows that the chromatin levels at enhancers are much less distinguishable between brain and other tissues (Figure 3E).	Comment by James Knowles: Might be a consequence of the extreme variability per individual for the enhancers.

How does gene expression stay constant in the face of enhancer variability?  Where is promoter variability in all of this?
 
Our RCA analysis focuses on inter-tissue differences in well-annotated regions (i.e. genes, promoters and enhancers). In addition to the expression differences in protein-coding genes, we also found transcriptional diversity across tissues in intergenic and noncoding regions. For protein-coding regions, it has previously been demonstrated observed that testes and lung tend to have the largest transcriptional diversity in terms of the percentage of transcribed regions of protein-coding genes (Figure 3F). However, when we shift to non-coding regions, we find that brain tissues (such as cortex and cerebellum) do, to some degree, stand out by exhibiting a greater extent of non-coding transcription than other tissues (Figure 3F).

QTL analysis
We used the PsychENCODE resource data to identify quantitative trait loci (QTLs) affecting gene expression and chromatin activity. In particular, we calculated: expression QTLs (eQTLs), chromatin QTLs (cQTLs), splicing isoform QTLs (isoQTLs) and cell fraction QTLs (fQTLs). For eQTLs, we adopted a standard approach, adhering closely to the established GTEX eQTL pipeline. We identified 2,542,908 cis eQTLs (2,097,741 eQTLs after LD pruning) and 32,944 e-genes (including non-coding ones) in DLPFC. There are 1,341,182 (25%) unique snps involved in the eQTLs from the 5,297,875 potential snps (within 1 Mb of gene TSS). This conservative estimate is a substantially larger number of eQTLs and eGenes than previous brain eQTL studies such as CommonMind and reflects a large sample size and statistical power in psychencode \cite{Supplement}. We believe think the eQTL number is close to saturation, in terms of associating almost every variant with some expression modulating characteristic. We also applied the same QTL calculation pipeline to splicing and identified 157,592 isoQTLs.	Comment by James Knowles: Did we look for trans eQTLs?	Comment by James Knowles: There is supposed to be something like a million plus enhancers in the genome and we see ~80,000 in the brain in our data set.  How many are in LD with an eQTL?  Of those that are not, how any have SNP in high LD with the right MAF that we should have detected it?  Maybe those are invariant in the enhancer itself?  Prove that we have saturated.

How many of our elements are promoters vs. enhancers?	Comment by James Knowles: How many genes that have exons have splice QTLs.  

Are we close to saturation?

For the cQTLs, the situation is more complicated. There are no established standard methods for calculating these on a large scale, though previous efforts have detected QTLs associated with various chromatin activities on non-brain context \cite{25799442, 26300125}. To properly identify them, we focused on a reference set of enhancers to define the region associated with chromatin activity and then looked at how this activity varies in these enhancers across 292 individuals(See methods). Overall, we were able to identify ~2,000 cQTLs in addition to the 6,200 cQTLs identified using individuals from the CMC cohort \cite{https://doi.org/10.1101/141986}.	Comment by James Knowles: Any enrichment of the 8,200 in the GWAS peaks of SCZ, BPD and AUT?	Comment by James Knowles: Why so few more?

Next, we were interested to see if any SNVs were associated with changes in the relative fractions of cell types across individuals; i.e., cell-fraction QTLs (fQTLs). In total, we identified the 3,720 distinct SNPs constituting 4,186 different fQTLs between different cell types. Of these the fractions of microglial and a particular type of excitatory neuron (Ex8) were associated with the most variants. Next, after factoring out these cell type differences, we also identified 260,280 SNPs significantly associated with the gene expression changes across individual tissues - these "residual trans-eQTLs" represent SNP-expression associations unexplained by variation in cell types.

To further dissect the associations between genomic elements and the QTLs, we intersected our QTL lists with each other and also with a comprehensive set of genomic annotations.  (Figure 4). For the overlap among different QTLs, we originally expected that many of the other QTLs would be a subset of the very large number of eQTLs but in fact an appreciable number of isoQTLs, fQTLs and cQTLs were actually not overlapped with any eQTLs as shown in (Figure 4C). As expected, we found that eQTLs tended to enriched on promoter regions and cQTLs were mostly enriched on enhancer regions and fQTLs tended to occur broadly in many different elements (Figure 4D).
 
Regulatory networks
In this section, we provided an integrative analysis at the gene regulatory level for the data and genomic elements described above. We created a putative regulatory network revealing how the genotype and regulators control target gene expression in adult brain. To this end, we first processed a Hi-C dataset for adult brain in the same reference samples used for enhancer identification, providing potential physical boundaries of interactions between enhancers and promoters (Figure 5A). \cite{27760116, Supplement}. In total, we identified 2,735 topologically associating domains (TADs) which set potential physical boundaries of enhancer-promoter interactions. This Hi-C dataset is substantially different than the fetal brain Hi-C data set highlighting the importance of the developmental stage in chromatin topology \cite{Supplement}.	Comment by James Knowles: Can we be quantitative about this?
 
As expected, we found that ~75% of enhancer-promoter interactions occur in the same TADs (Figures Sxx, 5B), suggesting that the majority of cis-regulation occurs within TADs. Also, as expected, the genes that have more potentially regulatory enhancers interacting with their promoters tended to be expressed at higher levels (Figure 5B). We next integrated the Hi-C dataset with eQTLs to assess how much of the common variation-associated gene regulation is mediated by chromatin interactions. Interestingly, 32% of eGenes show evidence of chromatin interactions, accounting for 239,837 eQTLs and 3,235 isoQTLs (Figure 5C). To our surprise, enhancer e/isoQTLs supported by Hi-C evidence showed stronger associations than exonic and promoter e/isoQTLs.	Comment by James Knowles: How about “corroborated” instead?
 
Distinguishing from HiC and eQTLs that reveal potential regulatory relationships in terms of chromatin interaction and genomic variationIn addition to these interactions, we tried to predict another type of gene regulatory relationship based on input-output gene expression from TFs to target genes. In particular, we first found TFs having binding motifs on target genes’ promoters as well as potentially interacting enhancers \cite{Supplement}, providing a reference wiring network for at large potential TF-target regulatory linkages. Second, based on these “wiring” relationships, we used elastic-network regression to find the TFs-target relationships likely control target gene expression (i.e. associated with a high coefficient for predicting the target gene expression from TF activity). We model them as simple linear relationships but regularize to minimize the number of connections (Methods). Overall, we found this model could successfully predict expression of xxx genes with the minimum mean square errors < xxx (Figure Sxx). For example, the expression of schizophrenia risk gene, DGCR2 can be predicted by its TFs expression with MSE<xx based on our model. To complete building gene regulatory network, we used the imputed TF-gene linkages to filter potential enhancer-target gene linkages, finding a robust set of enhancer-target gene linkages. 	Comment by James Knowles: Word missing here?

Finally, we generated a full regulatory network, linking all possible regulatory elements such as enhancers, TFs, and target genes (Figure Sxx). TIn total, this network has scale-free and hierarchical structures (Figure Sxx), and consists of ~150K Hi-C-based enhancer-promoter linkagesinteractions (enhancer-promoter), ~2M variant-based linkages (eQTLs-eGene) and xxx TF-target and xxx enhancer-target linkages based on input-output gene expression model.

Associating GWAS variants with genes
Next, we tried to used the regulatory network to link GWAS variants to potential target genes. First, we found significant associations between our eQTLs and GWAS associated with brain diseases. In particular, we calculated the overlap enrichments of our brain cis-eQTL SNPs and GWAS SNPs for schizophrenia, bipolar disorder and parkinson’s disease and compared this these to that forthe non-brain related disorders (CAD, asthma and type 2 diabetes).  As expected, enrichment for GWAS SNPs for brain disorders are more significant, with schizophrenia GWAS SNPs having the highest enrichment (Figure 4E).
 
To further predict the target genes of GWAS variants we exploited all possible linkages from our full gene regulatory network including Hi-C, eQTL and input-output expression relationships. For example, for the newly identified 142 schizophrenia GWAS loci \cite{27869829}, in total, we identified a set of 488 putative schizophrenia-associated genes, hereby referred as "SCZ-genes", and 99 genes at XX loci that show evidence both at the level of Hi-C and eQTLs, providing a high-confidence subset (Figure 5xx). This is a huge substantial increase from the previously annotated 22 genes across 19 loci based on CMC brain eQTLs \cite{27869829, 27668389}. The majority of SCZ genes (288 genes, ~59%) were not in linkage disequilibrium (LD, r2>0.6) with index SNPs (Figure 5E), consistent with the previous observations that regulatory relationships often do not follow linear genome organization \cite{xxx}.
 
We then looked at the characteristics of the 488 SCZ genes. As expected, these genes shared many of the characteristics of known schizophrenia-associated genes. In particular, they are enriched in genes intolerant to loss-of-function mutations \cite{27869829}, translational regulators, cholinergic receptors, calcium channels, and synaptic genes and genes known to be differentially expressed in schizophrenia (Figure Sxx). Next, we further integrated this gene list with the single-cell profiles and found, interestingly, they were enriched in a variety of different neural types.
 
Integrative deep-learning model
The interaction between genotype and phenotype involves multiple levels; in this section, we perform another a higher level of integrative analysis by embedding our above regulatory network derived above into a larger multi-level model. For this purpose, we introduce an interpretable deep-learning framework, the Deep Structured Phenotype Network (***DSPN, Figure 6, Supplement Sec. 7). This model combines a Deep Boltzmann Machine architecture with conditional and lateral connections derived from the gene regulatory network described above (which in turn integrates QTLs and Hi-C linkages and activity correlations).  As shown (Figure 6a), traditional classification methods such as logistic regression predict phenotype directly from genotype, without inferring intermediates such as the transcriptome.  In contrast, the DSPN is constructed via a series of intermediate models adding layers of structure, including a layer for intermediate molecular phenotypes such as gene expression and chromatin state, multiple higher layers for functional modules which may be inferred as hidden nodes in the network, and a top-level layer for observed phenotypes such as psychiatric disorders.  Finally, we use special forms of connectivity (including sparsity and lateral intra-level connections) to integrate our knowledge of QTLs, regulatory network structure, and co-expression modules from earlier sections of the paper (Figure 6b).  By using a generative architecture, we ensure that the model is able to impute intermediate phenotypes when needed, as well as providing a forward predictive model for observed phenotypes.
 
Using the full model with genome and transcriptome data provided, we show that adding the extra layers of structure in the DSPN allows us to achieve substantially better prediction of disease and other observed traits than without -- ie just using a traditional genotype to phenotype model (Figure 6d). In particular, we achieve a cross-disorder average prediction of 67.4% with the extra layers vs 59.3% without (Figure 6d, DSPN vs LR-trans). Further, comparison with a simple logistic predictor from the genome alone shows that the transcriptome carries significant further trait information, which the DSPN is able to extract.  For instance, a logistic predictor is able to gain a 2.4X cross-disorder improvement when using the transcriptome versus the genome alone (+9.3% vs. +3.8% from 50% random chance), while the DSPN is able to gain a 4.6X improvement (+17.4% vs. 3.8%); this may reflect the fact that the DSPN is able to incorporate non-linear interactions between intermediate phenotypes at multiple layers (in contrast to LR). Moreover, the DSPN also allows us to perform joint inference and imputation of the intermediate phenotypes (i.e. transcriptome and epigenome) and observed traits from the genotype alone. Using imputation, we achieved 56.6% cross-disorder accuracy for disease trait prediction averaged across all 3 conditions, which is better than the performance using direct prediction with a logistic model (53.8%) or ~1.7X gain in accuracy above 50% chance (+6.6% vs. +3.8%, see Figure 6d, DSPN-Imput vs LR-gen). These results demonstrate the usefulness of even a limited amount of functional genomics information for unraveling gene-disease relationships and show that the structure learned from such data can be used to make more accurate predictions of high-level traits even when absent.
 
We transform the results above to the liability scale in order to compare with narrow-sense heritability estimates (using GCTA, see supplement and Fig. 6d). Prior studies have estimated that common SNPs explain 25.6%, 20.5% and 19% of the variance for Schizophrenia, Bipolar and Autism respectively \cite{bioRxiv_10.1101/048991}.  These may be taken as limits which an additive predictive model using the common SNPs will approach given unlimited training data, while a non-linear predictor can potentially exceed these.  Liability scores for the LR-gen and DSPN-Imput models are substantially below these levels, implying that incorporating further data will be beneficial.  The variance explained by the full DSPN model however is of a similar order to that explained by common SNPs for all three conditions (16.3%, 30% and 14.4%), suggesting that improved imputation of intermediate phenotypes may capture most of the variance due to common SNP narrow-sense heritability.  We note however that the full DSPN may also be capturing environmentally determined and trait-influenced variance (Supp Fig. A1), meaning these are upper-bounds on the genetically determined variance available through imputation in the current model.	Comment by James Knowles: Overall or genetic variance?	Comment by James Knowles: Would DSPN capture rare variation effects?  Guessing not, but potentially through the effect on transcription in the brains we studied	Comment by James Knowles: And hence epigenetic?
 
We examined the specific connections learned by the DSPN between intermediate and high-level phenotypes for potentially relevant biological interactions. We included known co-expression modules in the model and examined which of these the DSPN prioritized, as well as new sets of genes associated with the DSPN latent nodes that were uncovered at each hidden layer, using a multilevel prioritization scheme (Supplement Sec. 7.5 and Supp Fig. A2).  
Overall, we can show that the modules prioritized by the DSPN are strongly enriched for known GWAS variants (Supplement). We provide a full summary of the functional enrichment analysis for the prioritized modules associated in supplement (Supp section xx) and highlight some of the associations found using the Schizophrenia model (Figure 6c). Among the highest SCZ prioritized modules/gene-sets, we found enrichments for (i) glutamatergic-synapse pathway genes, (ii) calcium-signaling pathways and astrocyte-marker genes, and (iii) complement cascade pathway genes including C4A, C4B and CLU -- confirming and extending previous analyses \cite{26814963}. Further, we found enriched in the prioritized modules for aging the marker genes for Ex4 cell-type and the gene NRGN (in a module associated with synaptic and longevity functions), consistent with our differential expression analysis (Fig XXXX).
 
Discussion
We integrated PsychENCODE datasets with other resources and developed a comprehensive resource of various functional genomic elements for the adult brain. Overall, our study has identified a large-scale set of eQTLs for adult brain, several folds more than previous studies, almost achieving saturation for protein coding genes. We suspect that larger population studies will not significantly expand on these. However, there exist other aspects of brain QTLs that can be extended in the future. For example, increasing individual sample size of chromatin data size and quality such as identifying enhancers using STARR-seq will help discover more accurate cQTLs.
 
Another area of future development is single-cell analysis. In this study, we found that a set of basic and known cells could explain large expression variations across tissues. However, there still exist the gene expression heterogeneities among these cell types (Figure Sxx), implying subdivision into potential additional types in the future. Also, current techniques suffer from low capture efficiency, and so it remains challenging to reliably quantify low-abundant transcripts/genes \cite{26949524, 25053837}, and particularly have problems for some specific cell types such as  axons and dendrites; e.g., very noisy expression measurements \cite{25053837}. Thus, we may see the novel techniques such as single-nucleus RNA sequencing techniques that emerge to address these problems. Finally, our deep-learning approach is readily extensible to modeling complex genotype-phenotype relationships involving other kinds of intermediate phenotypes, and can naturally embed new types of QTL and phenotype-phenotype interactions.

Figures 
Figure 1. Comprehensive data resource of functional genomics in adult brain. The functional genomics data generated by the PsychENCODE consortium (PEC) constitute a multidimensional exploration across tissue, developmental stage, disorder, species, assay, and sex. From this larger corpus of PEC samples, we focused on adult datasets, integrated with those from consortia such as GTEx, the Roadmap Epigenomics Consortium, ENCODE, the CMC and HBCC studies, and previously published single-cell transcriptomic data. The central data cube represents the results of this integration for the three dimensions of disorder, assay and tissue, where only the numbers of datasets used in the current analysis are depicted. Projections of the data onto each of these three parameters are shown in graph form for assay and disorder, and in schematic form for the primary brain regions of interest. Assay: The bars represent datasets across a subset of the assay types, including RNA-seq (N = 2040 PEC + 1632 uniformly processed GTEx samples), genotypes (N = 1753 PEC + 113 GTEx = 1866 individuals), scRNA-seq (N = 932 PEC + 3693 external datasets), and H3K27ac ChIP-seq (= 408 PEC + 5 uniformly processed Roadmap samples). Disorder: The number of individuals under the control category include the 113 from GTEx and 926 from PEC, while individuals from PEC provide data on the remaining disorders of schizophrenia (SCZ, N = 558), bipolar disorder (BPD, N = 217), autism spectrum disorder (ASD, N = 44), and affective disorder (AFF, N = 8), resulting in a total of 1866. Tissue: In this schematic, we focus on the datasets derived from three primary brain regions evaluated in our integrative study, viz., the prefrontal cortex (PFC, N = 3521), the temporal cortex (TC, N = 2153), and the cerebellum (CB, N = 348). 

Figure 2. Deconvolution analysis of Bulk and single cell transcriptomics reveals cell fraction changes across tissue phenotypes and disorders. (A) The genes have significantly higher expression variability across single cells than tissue samples. Left: dopamine gene, DRD3; Right: Age gene, xxx. (B) Top: the bulk tissue gene expression matrix (B, genes by individuals) can be decomposed by non-negative matrix factorization (NMF) to the product of two matrices:  NMF component matrix (V, genes by top NMF components; i.e., NMF-TCs) and component fraction matrix (H, top NMF components by individuals); i.e., B~=V*H. Bottom: the bulk tissue gene expression matrix B can be also deconvolved by the single cell gene expression matrix (C, genes by cell types) to estimate the cell fractions across individuals (the matrix, W); i.e., B~=C*W. Three major cell types are neuronal cells (blue), non-neuronal cells (red), developmental (dev) cells (green), as highlighted by columns groups in C (also row groups in W). (C) The heatmap shows the Pearson correlation coefficients of gene expression between the NMF TCs and single cell types for the biomarker genes (N=xxx). For example, NMF-15 highly correlates with Ex3 cell type (r=xxx). (D) The estimate cell fractions contribute >85% bulk tissue expression variations; i.e., 1-||B-C*W||/||B||>0.85. (E) The cell fractions change across brain phenotypes and disorders. The neuronal cell types (e.g., Ex3 and In6) have significantly higher fractions in Male than Female samples (p<xxx, and p<xxx). Also, they and Oligodendrocytes have lower fractions in ASD than others. In particular, Ex3 cell fractions increase with aging (trend analysis p<6.3e-10).

Figure 3. Comparative analysis for transcriptomics and epigenomics between brain and other tissues. (A) Chromatin features of the reference brain are used to identify active enhancers. Enhancers are located in open chromatin region (high ATAC-seq signal), with strong H3K27ac signal and lack H3K4me3 signal. Enhancer activity varies among individuals, as indicated by the varying H3K27ac peak signal in the cohort. Each row corresponds to an individual, with shallow to dark blue indicating low to high signal peak value. (B) The number of brain active enhancers achieves a saturation to more than 70K with 20 samples. (C) The coefficients (PC1 vs. PC2) of RCA analysis for gene expression data of PsychENCODE samples (dark green), Other external brain samples (light green) including GTEx and Other tissue samples (magenta). (D) The center (cross) and ranges of different tissue clusters (dashed ellipse) on RCA scatterplot of (C). (E) The tissue clusters of RCA coefficients (PC1 vs. PC2) for chromatin data of active brain enhancers. The brain cluster (green ellipse) includes the PsychENCODE samples and other tissue clusters (magenta ellipses) consist of Epigeomics Roadmap samples. (F) The transcriptional diversity on coding (circle) and non-coding (triangle) regions among the tissue samples (inter-sample on x-axis) vs. on cumulative tissue samples (y-axis) for select major tissue types including Cerebellum (lightblue), Cortex (xxx), Lung (xxx), Ovary (xxx), Skin (xx) and Testes (xx).

Figure 4. Summary of QTLs of human adult brain DLPFC. (A) Example of H3K27ac signal of individual brains in a representative genomic region showing largely congruent identification of regions of open chromatin. Region in dashed frame represents a chromatin QTL, the signal magnitudes of individuals with G/G or G/T genotype are lower than the ones with T/T genotype. (B) Numbers of genes with at least one eQTL (eGenes) vs. sample size in different studies. Numbers of eGenes increase as the sample size increases. The eGene of PsychENCODE is close to saturation. (C) Overlap of eQTL, sQTL, fQTL and cQTL snps. 80% of eQTLs were overlapped with other QTLs. The percentage of overlapped snps of eQTL with other QTLs was the highest among all QTLs. 31% of fQTL snps overlapped with other QTLs which was the lowest among all QTLs.  36% of sQTL and cQTL snps  overlap with other QTL snps. fQTL overlap more with sQTL(17%) than eQTL(9%) (p<1e-15, odds ratio:2.07). (D) Enrichment of genomic regions annotations of QTLs. (E) Enrichment of GWAS snps on cis-eQTL snps. Enrichment for GWAS SNPs of brain disorders on cis-eQTLs SNPs are more significant than the ones of non-brain disorder GWAS SNPs. Schizophrenia GWAS SNPs have the highest enrichment on cis-eQTLs SNPs among those three brain disorders.

Figure 5. Data integration and modeling predicts gene regulatory network, revealing additional GWAS genes for psychiatric disorders. (A) The full Hi-C data for adult brain found a variety of TADs (contact heatmap) which provide the genomic regions for potential enhancer-promoter interactions. The example highlights the gene XXX where its promoter, enhancers, Hi-C, eQTL, and TADs all point to the same regulatory relationship. (B) The number of genes (left y-axis) and the normalized gene expression levels (right y-axis) vs. the number of enhancers that interact with the gene promoters. (C) eQTLs and sQTLs that are supported by Hi-C evidence show more significant P-values than those that are not. (D) A full gene regulatory network of TFs (green), eQTLs (red), enhancers (blue) and target genes (xxx).  The TF-target relationships are predicted using their gene expression data across individual tissues and Elastic net regression. (E) Schematic showing how to identify putative target genes of schizophrenia GWAS loci using Hi-C and eQTL. Hi-C identified genes and eQTL identified genes are highly overlapping. The SCZ genes show higher gene expression levels on neuronal cell types than others. (F) Evidence shows that GWAS SNPs overlap eQTLs and Hi-C point to the same gene; e.g., TSNARE1.

Figure 6. Deep-learning model predicts genotype-phenotype and reveals intermediate molecular mechanisms. (A) The schematic outlines the model structures for Logistic Regression (LR), conditional Restricted Boltzmann Machine (cRBM), conditional Deep Boltzmann Machine (cDBM) and Deep Structured Phenotype Network (DSPN) models. Nodes are partitioned into four possible layers (L0-L3) and colored according to their status as (i) conditioning nodes visible during training and testing (light blue); visible nodes during training  and possibly testing (dark blue); hidden nodes (grey).  (B) shows the DSPN structure in further detail, with the biological interpretation of layers L0, L1 and L3 highlighted.  The GRN structure learned previously is embedded in layers L0 and L1, with different types of regulatory linkages and functional elements shown.  (C) shows examples of associations found: model traces are shown for three co-expression modules and associated higher-order modules prioritized by the DSPN Schizophrenia model, along with functional annotations enriched at each level.  Genes, enhancers and SNPs associated with each module are shown.  (D) summarizes the performance of different models, comparing performance as layers of structure are added to the model; for different predictors (genotype/transcriptome); and with or without imputation (colors highlight relevant models for each comparison).  Performance accuracy on a balanced sample is shown first, with variance explained on the liability scale shown in brackets.
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