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Abstract 

Long interspersed nuclear element 1 (LINE-1) is a main source of variation in humans 

and other mammals. However, LINE-1 activity is difficult to study because of its highly 

repetitive nature and the effects of pervasive transcription. We developed and validated 

a method to gauge LINE-1 activity accurately by taking into account pervasive 

transcription. We evaluated individual cell-line compartments and found that most L1 

autonomous transcription signal derives, as expected, from the cytoplasm. Our method 

also allowed us to perform comprehensive, uniform, and unbiased measurements of 

LINE-1 activity across healthy somatic cells and tumor cells. Previously, LINE-1 had been 

shown to be active in human germline and tumor cells but not in healthy somatic tissue, 

with the exception of some activity in the human brain. In contrast, we found that LINE-1 

activity was limited in the central nervous system, but present in some normal somatic 

cells and tumor cells. Interestingly, the amount of LINE-1 activity was associated with the 

amount of cell turnover and, in tumor cells, with the amount of genomic instability. Our 

results suggest a mechanism in which LINE-1 activity might give rise to insertions and Deleted: s



deletions overlapping LINE-1 target sites, potentially contributing to the mutagenic 

landscape in tumors. 

 
Main Text: 
 
Introduction 
 
Long interspersed nuclear element 1 (LINE-1) has attracted much attention in the last 

decade due to its capacity to create variations in the human genome. LINE-1 is a DNA 

sequence capable of duplicating itself and other DNA sequences by mobilizing 

messenger RNAs (mRNAs) to new genomic locations via retrotransposition (1-3); this 

process has resulted in thousands of mostly inactive and truncated copies of LINE-1 

across the human genome (4). Although LINE-1 activity has been described in both 

healthy and pathogenic tissues (3, 5, 6), quantifying its activity is remarkably difficult due 

to its repetitive nature. Until recently, LINE-1 retrotransposition was believed to occur in 

germ cells (7-9) and tumors (10-12), but not in somatic tissues. However, growing 

evidence suggests that LINE-1 is active in the human brain and in other healthy somatic 

tissue at low levels (13-16). 

 

As opposed to healthy tissues, tumor cell lines show higher levels of LINE-1 activity (11). 

LINE-1 instances are likely to be activated due to broad demethylation of LINE-1 promoter 

(17). The current literature describes many other factors contributing to the constraints of 

LINE-1 activity pre- and post-transcriptionally (18); however, little is known about its 

activation and impact in tumors (19). A major challenge is that the assessment of LINE-1 

activity requires either elaborate assays (20, 21) or multiple and complementary datasets 

(22), hindering estimation of LINE-1 activity in a large number of samples. Moreover, 



affordable methods to quantify LINE-1 activity, such as those based on RNA (15, 23, 24), 

are confounded by the highly duplicated nature of LINE-1 and pervasive transcription 

(21), which refers to the idea that the majority of the genome is transcribed, beyond just 

the boundaries of known genes (25).  

 

How much pervasive transcription influences the human transcriptome is still unclear (25-

27). Some researchers suggest that pervasive transcription is mostly derived from 

technical and biological noise and, therefore, might not be relevant in RNA sequencing 

experiments (28). Others suggest that pervasive transcription has a stochastic nature, 

and if sequenced at enough depth the majority of the genome may be transcribed. With 

either theory, pervasive transcription should not affect quantification of the transcription 

of protein coding genes, which are present either in single copy or low copy numbers in 

the genome. However, the quantification of the transcriptional activity of transposable 

elements, including LINE-1, would be greatly affected by pervasive transcription due to 

their multi-copy nature. 

 

The activation of LINE-1 can lead to the expression of its major enzyme, ORF2 protein 

(ORF2p). ORF2p is comprised of a reverse transcriptase and an endonuclease domain 

(29). The endonuclease domain of ORF2p has been shown to create double-strand 

breaks on DNA molecules (30), which are then repaired by endogenous DNA repair 

mechanisms. In addition, LINE-1 activation, and consequent activation of ORF2p, has 

been linked to poor prognosis in colorectal cancers (31). Recently, researchers have 

leveraged large-scale genome sequencing projects to search for evidence of LINE-1 
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mobilizations in cancer samples. However, little evidence supports that LINE-1 directly 

activates oncogenes or disrupts tumor suppressor genes (12, 32-35).  

 

This paper presents a new method to remove the effect of pervasive transcription on RNA 

sequencing datasets and reliably quantify LINE-1 subfamily transcriptional activity. We 

first validated the LINE-1 transcription landscape in well-established human cell lines and 

their cell compartments. We then surveyed LINE-1 activity in a variety of healthy somatic 

tissues. Although somatic retrotransposition has been mainly studied in the human brain, 

we found surprisingly little transcriptional activity in most brain regions. Instead, we found 

LINE-1 transcriptional activity in other somatic tissues and tumors, consistent with an 

overall trend of LINE-1 activity in frequently dividing cells. Moreover, we found that 

instances of the LINE-1 subfamily L1Hs are highly active in tumors. We also 

demonstrated that LINE-1 transcription drives the creation of small insertions and 

deletions (indels) in the tumoral genome, indicating a strong correlation between LINE1 

transcription and genomic instability.  

 

Results 

Recently amplified LINE-1 subfamilies, such as L1Hs, are frequently discarded from 

traditional transcript quantification assays due to the insufficient mapping specificity of 

LINE-1 instances. Before addressing the LINE-1 multi-mappability issue, we quantified 

the number of reads overlapping LINE-1 subfamilies in thousands of RNA sequencing 

experiments from human cell lines and healthy primary tissues (36, 37). Figure 1A shows 

the high correlation between the average number of reads mapping to LINE-1 subfamilies 



and the number of bases annotated as the respective LINE-1 subfamily (Spearman’s rank 

correlation rho=0.94, p < 2.2e-16). The correlation was mostly driven by ancient LINE-1 

subfamilies; specifically, reads mapped ten times more frequently to ancient LINE-1 

subfamilies, such as L1ME1 and L1M5, than recently active LINE-1 subfamilies. In fact, 

most of the LINE-1 reads appeared to derive from subfamilies that are thought to be 

inactive (genomic fossils) and not autonomously transcribed. As an explanation for this 

counterintuitive result, we hypothesized that this “genomic-transcriptomic” correlation 

might be indicative of pervasive transcription. In this model, the stochastic nature of RNA 

polymerase II transcription would drive the creation of RNA fragments proportionally to 

the number of copies of LINE-1 subfamilies in the genome.  

 

We then divided samples by their tissues of origin (Figure 1B) and noticed that some 

tissues had smaller genomic-transcriptomic correlations, hinting at another confounding 

signal creating reads overlapping LINE-1 subfamilies. We hypothesized that deviations 

from a high genomic-transcriptome correlation could be derived from autonomous 

transcription of the LINE-1 subfamilies (see Methods for details). We then developed a 

software platform, TeXP (available at https://github.com/gersteinlab/texp), that uses 

mappability signatures from pervasive and simulated LINE-1 subfamilies autonomous 

transcription to deconvolve reads overlapping LINE-1 elements (Figure 1C). TeXP counts 

the number of reads overlapping recently expanded LINE-1 subfamilies, and calculates 

the best signature fit that explains the observed read counts. Specifically, TeXP regresses 

the proportion of reads derived from each signal, ensuring sparsity (see Methods for 

details). 



 

LINE-1 transcriptional activity in human cell lines 

We benchmarked TeXP by estimating the autonomous transcription of LINE-1 

subfamilies in an RNA sequencing experiment of well-established human cell lines (36). 

Figure 2A shows the proportion of reads mapped to LINE-1 subfamilies using a naïve 

method (left panel) and proportions of reads from each signature using TeXP (right 

panel). In the naïve method (Figure 2A; left panel), cytoplasmic and whole-cell 

polyadenylated (polyA)+ samples had an enrichment of reads mapping to L1Hs and 

L1PA2 when compared to whole-cell transcripts without a polyadenylated tail (whole-cell 

polyA-) and nuclear RNA samples. The enrichment of L1Hs reads was consistent with 

increased transcription of full-length L1Hs (Figure S1). The estimates after applying TeXP 

(Figure 2A; right panel) revealed two major signals in MCF-7 RNA sequencing 

experiments: pervasive transcription and L1Hs autonomous transcription. This analysis 

suggests that reads mapped to ancient LINE-1 subfamilies, such as L1PA3 and L1PA4, 

are mostly derived from pervasive transcription. TeXP also detected L1PA2 transcription 

but at lower intensity and frequency (Figure 2A and Figure S2). This result is consistent 

with L1Hs and L1PA2 being the only two LINE-1 subfamilies capable of mobilizing in the 

human germline and tumors (9, 38). 

  

MCF-7, a cell line derived from breast cancer, was previously described as having 

remarkably high levels of L1Hs autonomous transcription (15, 22). To investigate the 

source of this L1Hs transcription, we analyzed RNA sequencing experiments from MCF-

7. The transcriptome of MCF-7 and many other cell lines has been carefully and 



consistently sequenced through the Encyclopedia of DNA elements (ENCODE) project. 

Leveraging these ENCODE cell line datasets, we assessed L1Hs autonomous 

transcription in distinct cell compartments (36). First, we found that MCF-7 whole-cell 

polyA+ samples had extremely high levels of L1Hs transcription (180.7 RPKM), in 

agreement with the literature. Selecting whole-cell polyA- samples reduced the signal of 

L1Hs autonomous transcription by 73% (Figure 2A), suggesting that most of the signal 

was derived from mature polyA+ transcripts. Furthermore, we tested whether L1Hs 

transcripts are derived from cytoplasmic (mature) or nuclear (pre-mRNA) portions of the 

cell. We found that nuclear transcripts were enriched for pervasive transcription 

(autonomous/pervasive ratio 0.02), whereas cytoplasmic transcripts had an 

autonomous/pervasive ratio similar to transcripts derived from whole-cell polyA+ samples 

(0.45 and 0.51, respectively – Figure 2A). Together, these results suggest that most of 

the LINE-1 autonomous transcription signal is derived from mature transcripts in the 

cytoplasm and only a small fraction of signal is derived from fragmented LINE-1 

transcripts in the nucleus. Analyzing other lymphoblastic and cancer-derived cell lines 

such as GM12878, SK-MEL-5 and K-562 yielded no evidence of L1Hs autonomous 

transcription in most cell compartments or RNA fractions, despite low levels of L1Hs 

autonomous transcription in whole-cell polyA+ samples (0, 8.8 and 8.4 RPKM, 

respectively. Figure 2B and Table S1).  

 

Validation of LINE-1 autonomous transcription  

To validate the quantification of L1Hs autonomous transcription, we performed droplet 

digital PCR (ddPCR) to quantify autonomous and pervasive transcription levels on a 



reference panel of cell lines: MCF-7, K-562, HeLa, HepG2, SK-MEL-5, and GM12878.  

For these experiments, we assumed that expression on the 5’ end of the L1Hs transcript 

was mostly derived from autonomous transcription, and expression on the 3’ end was 

derived from a combination of autonomous and pervasive transcription. We initially 

designed and tested multiple assays targeting different regions of the L1Hs locus, and 

proceeded with the two best performing assays (Table S2). The first assay targeted 

ORF1, directly adjacent to the 5’UTR, representing the 5’ end of the transcript. The 

second assay targeted ORF2 about 1.5 kb upstream of the 3’ UTR, representing the 3’ 

end of the transcript. We completed the same design process for ORF2 to find the copy 

numbers of the truncated L1Hs transcripts (i.e., the transcripts missing the 5’ end of L1Hs) 

(Figure 2C, Table S3). Since autonomous transcription results in the full-length transcript 

of L1Hs, we quantified the level of pervasive transcription by subtracting expression of 

the 5’ end (ORF1) from the 3’ end (ORF2). 

 

Figure 2D shows the relative quantification of L1Hs transcripts in these four cell lines 

using the HPRT1 5’ end as a reference. The ddPCR analysis detected 12,600 copies of 

full-length transcripts/ng in MCF-7 cells. In agreement with our in-silico result, K562 and 

SK-MEL-5 had 1,512 and 1,708 copies of full-length transcript/ng, respectively. For the 

GM12878 cell line, we expected to find no autonomous expression of L1Hs; however, our 

ddPCR assays detected low levels of autonomous transcription of L1Hs (655 copies of 

full-length transcript/ng; Figure 2D, Table 2). Overall, the quantification of L1Hs 

autonomous transcription using ddPCR was highly correlated with the quantification using 

TeXP (Spearman correlation, rho=0.99, p-value=3.803e-06). This suggests that TeXP 



can remove most of the noise derived from pervasive transcription, although it is 

insensitive to samples with little LINE-1 autonomous transcription. 

 

Landscape of LINE-1 subfamily transcription in healthy primary tissue and cells 

lines 

Researchers have long thought that LINE-1 instances are completely silenced in most 

healthy somatic cells. LINE-1 is silenced by the methylation of its promoter (17), which 

should preclude the transcription of mature LINE-1 mRNAs in healthy somatic tissue. To 

test whether LINE-1 subfamilies are completely silenced in somatic tissue, we analyzed 

LINE-1 transcription in 7,429 primary tissue samples from the Genotype-Tissue 

Expression (GTEx) project (37) (Table S4). Similar to the cell lines, we found that L1Hs 

was autonomously transcribed; L1P1, L1PA2, L1AP3, and L1PA4 only had residual or 

spurious autonomous transcription in healthy tissues (Figure S5). Furthermore, we found 

that pervasive transcription was the major signal in the RNA sequencing datasets, 

accounting for 91.7%, on average, of the reads overlapping LINE-1 instances (Figure 

S12). Overall, healthy tissues had a narrower range of L1Hs autonomous transcription 

levels than cell lines, with the peak transcription level of 47 RPKM (Figure 3; L1Hs RPKM 

histogram) versus 180 RPKM in the cell lines (Table S1).  We found no or very little (<1 

RPKM) evidence of L1Hs autonomous transcription in 2,520 (34.3%) of the GTEx RNA 

sequencing experiments from primary tissues. Together, these results indicate that L1Hs 

is broadly transcribed in some healthy somatic tissues, polyadenylated, and present in 

the cytoplasm. Therefore, if post-transcriptional regulatory constraints do not completely 



shut down LINE-1 activity, we expect that LINE-1 should play a major role in creating 

diversity across intra-individual somatic cells.  

 

We then compared the landscape of LINE-1 subfamily transcription in Epstein-Barr virus 

(EBV) immortalized cell lines and their corresponding primary tissue to understand the 

changes induced by cell line immortalization. EBV immortalization causes drastic 

changes in the expression of cell cycle, apoptosis, and alternative splicing pathways (39-

41). Overall, we found that EBV-transformed cell lines derived from different tissues 

(lymphoblastic and fibroblastic) had distinct patterns of L1Hs autonomous transcription; 

lymphoblast (blood-derived) cell lines had no or little autonomous transcription of L1Hs 

(Figure S6) with approximately 84% of samples having an estimated RPKM equal to zero, 

whereas fibroblastic (skin-derived) cell lines consistently had higher levels of L1Hs 

autonomous transcription (median 1.5 RPKM) with 58.7% of samples having an RPKM 

higher than 1. In general, EBV-immortalized cell lines reflected their tissue of origin. While 

most (74.6%) of the whole blood samples had no transcriptional activity of L1Hs, only one 

sample from skin had an L1Hs autonomous transcription level below 1 RPKM. We further 

selected patients with both primary and EBV-transformed cell lines to assess whether the 

EBV transformation could change L1Hs autonomous transcription. We found that both 

skin cells and lymphocytes had a drastic down-regulation of L1Hs autonomous 

transcription (Figure S11). This finding suggests that EBV-transformed cell lines partially 

preserve the L1Hs transcription level from their tissue of origin, potentially explaining why 

fibroblast-derived induced pluripotent stem cells support higher levels of LINE-1 

retrotransposition (42). 



 

Human tissues show remarkable variability of L1Hs autonomous transcription. We found 

that L1Hs autonomous transcription is inversely correlated to the time it takes cells to 

divide (cell turnover rate; spearman correlation: rho=-0.7551126; p-value=0.01865). 

Tissues suggested to have low cell turnover, such as the human brain (43), are amongst 

the tissues with the lowest levels of L1Hs autonomous transcription (Figure 3). In 

particular, the human cerebellum, which has no transcription of L1Hs, is likely to have 

strong repression of L1Hs autonomous transcription. This result contradicts the literature 

that suggests that the human brain supports high levels of somatic LINE-1 

retrotransposition; however, most of these studies were based on neural precursors that 

correspond to the early development stage of the human brain (13, 44-46). Conversely, 

brain samples extracted from the striatum, putamen, and caudate, all regions associated 

with the basal ganglia, had higher levels of L1Hs autonomous transcription compared to 

other brain regions (T-test basal ganglia vs. all other brain tissues, t = -7.0943; p value = 

9.867e-12 – Figure 3); importantly, these levels were still low compared to other tissues. 

Other tissues with low cell turnover rates, such as liver, pancreas, and spleen, also 

showed very little or no autonomous transcription of L1Hs (91.2%, 82.9%, 88.9% of 

samples, respectively, had a L1Hs RPKM < 1 – Figure 3). Conversely, germinative tissues 

have been proposed to support somatic activity of L1Hs elements (47). Our results 

suggest that this trend is more general, and most tissues associated with the reproductive 

system sustain higher levels of L1Hs autonomous transcription (Figure 3). In addition, we 

found that the tissues with the highest levels of L1Hs autonomous transcription were 



enriched for high cell turnover; these included the nerve (tibia), skin (both exposed and 

not exposed to the sun), prostate, lung, and vagina (Figure 3).  

 

Previous research have suggested that LINE-1 activity could be correlated with an 

individual’s age (48-50); specifically, as individuals age LINE-1 may lose methylation 

marks in its promoter and be derepressed. Having uniformly estimated the transcription 

level of L1Hs and having access to the phenotypes of the GTEx samples, we tested 

whether the autonomous transcription of L1Hs correlates with sample age. In most 

tissues we did not observe significant correlations, most likely due to low levels of L1Hs 

autonomous transcription (Figure 3). However, we did observe significant positive 

correlations ranging from 0.17 to 0.28 with the samples’ age in lung, skeletal muscle, 

fibroblast cell lines, adipose tissue, skin, breast, and testis, (Figure 3, red triangles; Table 

S5). Intriguingly, contrary to our expectation of higher L1Hs transcriptional activity in older 

individuals, we found that prostate and whole blood samples showed an inverse 

correlation with age; prostate samples had the highest L1Hs transcriptional activity in 20-

30 years old individuals. Other tissues with relatively high autonomous transcription of 

LINE-1 showed no correlation (e.g., tibia nerve and ovary).  

 
Activity of LINE-1 elements in human cancer 
 

Finally, we investigated the impact of LINE-1 autonomous transcription in cancer 

samples. We hypothesized that tissues with higher basal transcription of LINE-1 elements 

in a healthy context would be more susceptible to L1Hs activity and consequent genomic 

instability mediated by LINE-1 reverse transcriptase. We investigated the autonomous 



transcription levels of L1Hs from over 2,500 cancer samples originating from six tumor 

types: lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), prostate 

adenocarcinoma (PRAD), brain lower grade glioma (LGG), thyroid carcinoma (THCM), 

and skin cutaneous melanoma (SKCM). These six tumor types were selected to span 

most of the LINE-1 expression range in TCGA RNA-seq experiments (Figure S13). We 

found that SKCM tissue supported autonomous L1Hs transcription at levels slightly lower 

(2.38x) than healthy tissue. By contrast, tumors derived from lung consistently had higher 

levels of L1Hs autonomous transcription in their matched tissue, reaching up to 13x 

higher expression in LUSC samples (Figure S8).  

 

We hypothesized that cancer genomes would have consistently higher genomic instability 

due to the activity of L1Hs endonuclease. Calling LINE-1 somatic insertions is an 

extremely challenging. Therefore, to test this association we assessed the frequency of 

indels in the exome as a proxy for the overall level of genomic instability. In total, we 

analyzed somatic indels from 2,504 tumors, the same tumors we quantified LINE-1 

activity. We selected lung, skin, thyroid, and prostate samples from the Cancer Genome 

Atlas to search for signatures originating from L1Hs endonuclease activity. We first 

compared the correlation between exonic indels and the autonomous transcription of 

L1Hs. While not all tissues showed a significant correlation between autonomous LINE-

1 transcription and the number of indels (Figure 4A), all samples combined had a 

significantly high correlation (0.49, p value < 2.2e-16). To further assess the association 

between these two variables, we focused on signatures created by LINE-1 endonuclease. 

Namely, we investigated the occurrence of indels close to the motif recognized by LINE-
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1 endonuclease. L1Hs endonuclease creates double-strand break points at TTT|AA loci 

(30, 51). Therefore, we investigated if double-strand breaks created by L1Hs could be 

repaired by endogenous double-strand break repair mechanisms, such as the non-

homologous end joining (NHEJ) pathway (52). The NHEJ pathway is known to be error-

prone and particularly active in the cancer context, creating small indels as well as large 

duplications, deletions, and translocations (53). We tested whether the LINE-1 

endonuclease target motif (TTT|AA) was enriched in sequences flanking indels and found 

that regardless of the tissue of origin, the motif TTT|AA was enriched in the 50 nucleotides 

(nts) flanking the indel. We further selected motifs closer to the indel coordinate (-3;+3 nt) 

and found that the effect was even more pronounced (Figure 4B). Finally, we evaluated 

the distribution of the endonuclease target motif relative to the position of the detected 

indel. We found that most TTTAA motifs were concentrated around position 0 or 1, 

meaning that they perfectly align with the break point of indels for both insertions (Figure 

4C) and deletions (Figure 4D). Together, these results suggest that LINE-1 endonuclease 

might lead to the creation of indels in somatic cells. One could propose a model in which 

autonomously active LINE-1 instances are transcribed and translated in somatic cells. 

After the LINE-1 machinery is imported to the nucleus, the endonuclease domain targets 

TTT|AA motifs on nuclear DNA and creates double-strand breaks. Instead of initiating the 

reverse transcription of the LINE-1 mRNA, the ORF2p could aborts the insertion and 

dissociates from the DNA molecule. Endogenous mechanisms detect and repair double-

strand breaks using error-prone NHEJ creating small indels close to the target site (Figure 

S14). However, further investigation is necessary to completely associate the activity of 

LINE-1 and the creation of indels. 
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Conclusion 

Previous to this study, LINE-1 was thought to be active in germline and tumor cells but 

not normal somatic cells, with the exception of hints of activity in brain cells (19). Here we 

developed the first method that takes pervasive transcription in to account and performed 

a comprehensive and unbiased analysis of LINE-1 transcriptional activity across different 

cell types and somatic tissues. Surprisingly, we found that LINE-1 was active in normal 

cells, especially epithelial cells, but not much in brain cells. This result is in agreement 

with LINE-1 activity being correlated with cell proliferation rate. We also found high activity 

of LINE-1 in tumor cells, which appeared to be associated with genome instability, in 

particular being associated to the creation of indels in tumors.  
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Figures 



 

Figure 1. As pervasive transcription is a major factor leading to reads mapping to L1 

instances, TeXP functions as an approach to decouple pervasive transcription from 

autonomous transcription. (A) The number of reads mapped to LINE-1 subfamilies is 

proportional to the number of bases annotated as the subfamily for most RNA sequencing 

experiments. (B) Healthy human tissues show varied distributions of the genomic-

transcriptomic correlation. (C) Pipeline chart describes the TeXP approach. 



 

 
 
 
 



Figure 2. Quantification and validation of L1Hs autonomous transcription in human cell 

lines. (A) The proportion of reads emanating from pervasive transcription and L1P1, 

L1PA2, L1PA3, L1PA4, and L1Hs subfamilies in MCF-7 RNA sequencing experiments 

are shown from the different cell compartments and transcript fractions prior to (left) and 

after (right) TeXP processing. (B) The absolute number of reads emanating from 

pervasive transcription and LINE-1 subfamilies are shown across the distinct cell and 

transcript fractions of the human-derived cell lines GM12878, K-562, and MCF7. (C-D) 

The quantification of autonomous and pervasive transcripts of L1Hs in the cell lines is 

shown using ddPCR. (C) The ratio of L1Hs 5’ and 3’ transcripts shows the enrichment of 

the 3’ end of L1Hs for all cell lines. (D) The absolute quantification of autonomous and 

pervasive transcripts reveals higher expression of pervasive compared to autonomous 

transcripts in all cell lines except MCF-7. All data were run in duplicate. All errors bars are 

mean ± SEM. These data represent two independent experiments. 

 



Figure 3. L1Hs autonomous transcription levels in human healthy primary tissues. The 

left panel describes the correlation between L1Hs autonomous transcription and the 

subject’s age (triangles) and BMI (circles). Significant correlations are colored. The right 

panel describes the panorama of L1Hs autonomous transcription in different tissues. 

Each point is an RNA sequencing experiment, separated by tissue of origin. 



 

Figure 4. L1 Endonuclease contributes to genomic instability and creation of indels. (A) 

The correlation between L1Hs autonomous expression and the number of indels in tumor 

samples is shown. (B) An overrepresentation of the TTT|AA motif close to (-3|+3nt) indels 

(dark) is shown compared to null (light). (C-D) An overrepresentation of the TTT|AA in the 

indel break point on small insertions (C) and small deletions (D) is shown. 
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Figure 5. Model for LINE-1 favoring genome instability. 

Formatted: Font:(Default) Arial



SUPPLEMENT 

Materials and Methods  

Tumor and Normal exon sequencing, INDEL and RNA sequencing data. 

Exonic data and INDEL calling were obtained from the Genomic Data Center data portal 

(https://gdc-portal.nci.nih.gov). RNA-seq raw files were downloaded from the legacy 

archive (https://gdc-portal.nci.nih.gov/legacy-archive). 

 

GTEx raw RNA sequencing data. 

Raw RNA sequencing datasets from healthy tissues were obtained from Database of 

Genotypes and Phenotypes (DB-Gap - https://dbgap.ncbi.nlm.nih.gov) accession number 

phs000424.v6.p1.  

 

ENCODE raw RNA sequencing data. 

Raw RNA sequencing data from cell lines were obtained from the ENCODE data portal 

(https://www.encodeproject.org/search). We selected RNA-seq experiments from 

immortalized cell lines with multiple cellular fractions and transcripts selection 

experiments. Accessions and cell lines are available in TableS1.  

 

TeXP model. 

TeXP models the number of reads overlapping L1 elements as the composition of signals 

deriving from pervasive transcription and full-length L1 autonomous transcripts from 

distinct L1 subfamilies.  



Our model proposes the number of reads overlapping L1Hs instances as described by 

the Equation 1: 

𝑂"#$% = 𝑇 ∗ 𝐺"#$% ∗ 𝜖+,-./%0., + 𝑇 ∗ 𝑀"#$%,"#$% ∗ 𝜀"#$% + 𝑇 ∗ 𝑀"#$%,"#567 ∗ 𝜀"#567 + ⋯+ 𝑇

∗ 𝑀"#$%,9 ∗ 𝜀9 

Where 𝑂"#$% is the observed number of reads mapping to L1Hs, T is the total number of 

reads mapped to L1 instances, 𝐺"#$% defines the proportion of L1 bases in the genome 

annotated as L1Hs, 𝜖+,-./%0.,  is the percentage of reads emanating from pervasive 

transcription, M is the mappability fingerprint (defined bellow) that describes what is the 

proportion of reads emanating from the signal 𝑗	 ∈ 	 {𝐿1𝐻𝑠, 𝐿1𝑃1, 𝐿1𝑃𝐴2, 𝐿1𝑃𝐴3, 𝐿1𝑃𝐴4} 

that maps to L1 subfamily 𝑖	 ∈ 	 {𝐿1𝐻𝑠, 𝐿1𝑃1, 𝐿1𝑃𝐴2, 𝐿1𝑃𝐴3, 𝐿1𝑃𝐴4}  and 𝜀  is the 

percentage of reads emanating from the L1 Subfamily 𝑗 . This model can be further 

generalized as the Equation 2: 

𝑂0 = 𝑇(𝐺0𝜖+,-./%0., + 𝑀0,9𝜀9) 

The number of reads mapped to each subfamily 𝑂0 is measured by analyzing paired-end 

or single-end RNA sequencing experiments independently. TeXP extracts basic 

information from fastq raw files such as read length and quality encoding. Fastq files are 

filtered to remove homopolymer reads and low quality reads using in-house scripts and 

FASTX suite (http://hannonlab.cshl.edu/fastx_toolkit/). Reads are mapped to the 

reference genome (hg38) using bowtie2 (parameters: --sensitive-local -N1 --no-unal). 

Multiple mapping reads are assigned to one of the best alignments. Reads overlapping 

LINE-1 elements from Repeat Masker annotation of hg38 are extracted and counted per 

subfamily. The total number of reads T is defined as 𝑇 = 𝑂00 .  

 



Pervasive transcription and mappability fingerprints of L1 subfamily transcripts.  

Pervasive transcription is defined as the transcription of regions well beyond the 

boundaries of known genes (1). We rationalized that the signal emanating from pervasive 

transcription would correlate to the number of bases annotated as each subfamily in the 

reference genome (hg38). We used Repeat Masker to count the number of instances and 

number of bases in hg38 annotated as the subfamily 𝑖 ∈

	{𝐿1𝐻𝑠, 𝐿1𝑃𝐴2, 𝐿1𝑃𝐴3, 𝐿1𝑃𝐴4, 𝐿1𝑃1} . We define 𝑃0  as the proportion of LINE-1 bases 

annotated as the subfamily 𝑖 in the Equation 3: 

𝑃0 =
𝐵0
𝐵99
, 𝑗 ∈ 	 {𝐿1𝐻𝑠, 𝐿1𝑃𝐴2, 𝐿1𝑃𝐴3, 𝐿1𝑃𝐴4, 𝐿1𝑃1} 

On the other had mappability fingerprints, which represents how reads deriving from 

LINE-1 transcripts would be mapped to the genome, are created by aligning simulated 

reads deriving from putative L1 transcripts from each L1 subfamily. For each L1 

subfamily, we extract the sequences of instances based on RepeatMasker annotation 

and the reference genome (hg38). Read from putative transcripts are generated using 

wgsim (https://github.com/lh3/wgsim - parameters: -1 [RNA-seq mean read length] –N 

100000 -d0 –r0.1 -e 0). One hundred simulations are performed and reads are aligned to 

the human reference genome (hg38) using the same parameters described in the model 

session. The three-dimensional count matrix 𝐶 is defined as the number of reads mapped 

to the subfamily 𝑖 ∈ 	 𝐿1𝐻𝑠, 𝐿1𝑃𝐴2, 𝐿1𝑃𝐴3, 𝐿1𝑃𝐴4, 𝐿1𝑃1  emanating from the set of full-

length transcripts 𝑗	 ∈ 	 𝐿1𝐻𝑠, 𝐿1𝑃𝐴2, 𝐿1𝑃𝐴3, 𝐿1𝑃𝐴4, 𝐿1𝑃1  in the simulation 𝑘. The matrix 

M is defined as the median percentage of counts across all simulations as in Equation 

4: 



𝑀0.9 = 𝑚𝑒𝑑𝑖𝑎𝑛T	∈	{#,7,..,#UU}
𝐶0,9,T

𝐶0,V,TV	∈	 "#$%,"#567,"#56W,"#56X,"#5#
	 

We tested whether different aligners yield different mappability fingerprints. BWA, STAR, 

and bowtie2 yielded similar results (Figure S9). As L1 transcripts are not spliced, we 

decided to integrate bowtie2 as the main TeXP aligner. We further tested the effect of 

read length on L1Hs subfamily mappability fingerprints (Figure S10). To counter the 

effects of distinct read lengths TeXP constructs L1 mappability fingerprints libraries based 

on fastq read length.  

We simulated reads emanating from their respective L1 subfamily transcripts and aligned 

these reads to the human reference genome creating a mappability fingerprint for each 

L1 subfamily (Figure S1). When we analyzed the L1 subfamily mappability fingerprints 

we observed that younger L1 subfamilies tend to have more reads mapped to other L1 

subfamilies. For example, we find that only approximately 25% of reads from L1Hs (the 

most recent – and supposedly active L1) maps back to loci annotated as L1Hs. While 

older subfamilies such as L1PA4, have a higher proportion of reads mapping back to its 

instances (~70% - Figure S1).  

 

The hidden variables 𝜺 and 𝝐 

The known variables 𝑂0, T, the vector 𝑃0,	the mappability fingerprint matrix 𝑀0.9 are used 

to estimate the signal proportion 𝜺 and 𝝐 in Equation 2 by solving a linear regression. We 

used lasso regression (L1 regression) to maintain sparsity. We used the R package 

penalized ((2) - parameters: unpenalized=~0, lambda2=0, positive=TRUE, 

standardize=TRUE, plot=FALSE, minsteps=10000, maxiter=1000).  

 



TeXP  

TeXP was developed as a combination of bash, R and python scripts. The source code 

is available at https://github.com/fabiocpn/TeXP. A docker image is also available for 

users at dockerhub under fnavarro/texp. 

 

TeXP consistency  

To test whether the TeXP LINE-1 subfamily quantification is consistent across distinct 

RNA sequencing experiments we used GTEx RNA sequencing of the K-562 

transcriptome. GTEx resequenced K562 RNA sequencing libraries for 102 sequencing 

batches. K-562 samples showed remarkable consistency across different GTEx batches, 

with median RPKM at 12.14 (1.47 RPKM standard deviation – Figure S6). 

 

Cell turnover rate 

Mutation load and cell turn-over rate were extracted from the compilation of somatic 

mutation rate in Tomasetti et al (3). 

 

L1 endonuclease motif enrichment analysis 

The exonic indels were extracted from GDC. For small insertions, we extracted 50 

nucleotides flanking the small insertion coordinate. For small deletions, we extracted 50 

nucleotides flanking the small deletion and the deleted sequence. We counted the 

number L1-endonuclease recognition motif (TTTAA) close of indels. We used three 

different flanking regions threshold: 50nt (as extracted), 10nt and 3nt. All strategies 

yielded similar results and only the 5nt analysis is shown here. Using Agilent capture was 



used to define the exonic regions. The same number of indels for each cancer type was 

simulated across the exonic (as defined above) and we estimated the expected number 

INDELs close to the indel breakpoint by counting the number of simulated indels close to 

the TTTAA motif. The statistical significance of the enrichment of TTTAA motif was 

calculated using the chi-squared test. 

 

Passive versus Autonomous transcription of L1Hs transcripts. 

More ancient elements such as DNA transposons and LINE-2 have been shown to be 

primarily transcribed passively, hitchhiking the transcription of nearby autonomously 

transcribed regions (4). Therefore, we tested whether our estimation of L1Hs transcription 

level correlated with genes containing or adjacent to L1Hs instances. We found no 

significant difference between the correlation distribution of a random set of genes and 

genes with L1Hs in exons or introns or within 3kb upstream or 3kb downstream of L1Hs. 

This finding indicates that our estimation of L1Hs autonomous transcription is not 

significantly influenced by non-autonomous L1Hs transcription adjacent or contained by 

protein-coding genes’ loci.  

 

Cell Culture and Culture Conditions 

All the cell lines used in this study were obtained from the American Type Culture 

Collection (ATCC) (Manassas, VA, USA). MCF-7 cells were cultured in Dulbecco’s 

Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12; Gibco). HeLa, SK-MEL-5, 

and HepG2 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Gibco). 

K562 and GM12878 cells were cultured in RPMI 1640 (Gibco). All cell culture media were 



supplemented with 10% fetal bovine serum (FBS) (Atlanta Biologics) and 1% 

penicillin/streptomycin (Fisher Scientific). All cells were cultured and expanded using the 

standard methods.  

 

RNA Extraction and cDNA Synthesis 

RNA was extracted using the RNeasy PLUS Mini Kit and the QIAshredders (Qiagen) 

following the manufacturer’s protocol. All samples were treated with DNase I (New 

England BioLabs Inc.) to remove any remaining genomic DNA. RNA concentration was 

determined by Qubit 2.0 Fluorometer (Invitrogen). RNA quality was determined by 

Nanodrop (Thermo Scientific) and 2100 BioAnalyzer with the Agilent RNA 6000 Nano kit 

(Agilent Technologies). Approximately 5 μg of RNA was used for synthesis of the cDNA 

using the iScript Advanced cDNA Synthesis Kit (Bio-Rad). The final cDNA product was 

quantified and a working solution of 10 ng/μL was prepared for the subsequent studies.  

 

Droplet Digital PCR (ddPCR) 

Droplet Digital PCR (ddPCR) System (Bio-Rad Laboratories) was utilized to quantify the 

L1Hs transcript expression in the cell lines described above. Since L1Hs is a highly 

repetitive and heterogeneous target, we had initially designed and tested a panel of 

primers and probes that targeted the 5’ untranslated region (5’UTR), the open reading 

frame 1 (ORF1), the open reading frame 2 (ORF2), and the 3’ untranslated region (3’UTR) 

of the L1Hs locus, respectively. After a pilot screening study, we selected the two assays 

covering ORF1 and ORF2, which not only exhibited overall better performance, but also 

could help us to distinguish autonomous and pervasive L1Hs transcriptions. We also 



designed two reference assays on the housekeeping gene HPRT1, which targeted the 5’ 

and 3’ ends of the transcript, respectively (Table S2). All the ddPCR primers and probes 

were designed based on the human genome reference hg19 (GRCh37) and synthesized 

by IDT (Integrated DNA Technologies, Inc. Coralville, Iowa, USA).  

The ddPCR reactions were performed according to the protocol provided by the 

manufacturer. Briefly, 10ng DNA template was mixed with the PCR Mastermix, primers, 

and probes to a final volume of 20 μL, followed by mixing with 60 μL of droplet generation 

oil to generate the droplet by the Bio-Rad QX200 Droplet Generator. After the droplets 

were generated, they were transferred into a 96-well PCR plate and then heat-sealed with 

a foil seal. PCR amplification was performed using a C1000 Touch thermal cycler and 

once completed, the 96-well PCR plate was loaded on the QX200 Droplet Reader. All 

ddPCR assays performed in this study included two normal human controls (NA12878 

and NA10851) and two mouse controls (NSG and XFED/X3T3) as well as a no-template 

control (NTC, no DNA template). All samples and controls were run in duplicates. Data 

was analyzed utilizing the QuantaSoft™ analysis software provided by the manufacturer 

(Bio-Rad). Data were presented in copies of transcript/μL format which was 

mathematically normalized to copies of transcript/ng to allow for comparison between cell 

lines. 

  

Reference house-keeping gene (HPRT1) 

We designed two assays targeting the 5’ and 3’ ends of the HPRT1 transcript, 

respectively, and used as the reference controls in this study (Table S3). The reference 

gene expression level was found to be constant within each cell line, but varied between 



cell lines. In addition, while 4 of the 6 cell lines had similar 5’ and 3’ end expression, K562 

and GM12878 both had increased 3’ end expression. This could be from different 

isoforms being expressed with different frequencies3. For the 5’ end expression of HPRT, 

SK-MEL-5, GM12878, and HepG2 were all around 600 copies of transcript/ng. The 

remaining were all around 1200 copies of transcript/ng. When looking at the 3’ end 

expression, we found that SK-MEL-5 and HepG2 were around 750 copies of transcript/ng, 

while MCF-7, GM12878, and HeLa were around 1350 copies of transcript/ng, and K562 

was close to 1800 copies of transcript/ng. The slight difference between the 5’ end and 

the 3’ end expression levels in the same cell line could be explained by a potential 3’ end 

bias in the cDNA synthesis. However, all the reference assays were consistent between 

experiments and did not affect the target expression.  

 

Tables 

 
Table S1. ENCODE RNA-seq experiments and L1Hs RPKM estimations. 

ENCODE ID Cell-line Fraction 
rRNA 
treatment Transcript selection 

L1Hs 
RPKM 

ENCSR000AED GM12878 whole_cell rRNA-depleted Poly-A+ 0.00 

ENCSR000AEC GM12878 whole_cell 
rRNA-
depleted Total 

0.00 

ENCSR000CQE GM12878 cytoplasmic rRNA-depleted 
DSN_normalized_Poly-
A- 

0.00 

ENCSR000COR GM12878 cytoplasmic rRNA-depleted Poly-A+ 0.00 

ENCSR000CQF GM12878 nuclear rRNA-depleted 
DSN_normalized_Poly-
A- 

0.00 

ENCSR000CPO GM12878 nuclear rRNA-depleted Poly-A+ 0.00 

ENCSR000CVT GM12878 nucleolar rRNA-depleted Total 0.00 

ENCSR000COS GM12878 whole_cell rRNA-depleted 
DSN_normalized_Poly-
A- 

0.00 

ENCSR000COQ GM12878 whole_cell rRNA-depleted Poly-A+ 0.00 

ENCSR000CQT HeLa-S3 cytoplasmic rRNA-depleted 
DSN_normalized_Poly-
A- 

0.00 

ENCSR000CPP HeLa-S3 cytoplasmic rRNA-depleted Poly-A+ 4.09 



ENCSR000CQI HeLa-S3 nuclear rRNA-depleted 
DSN_normalized_Poly-
A- 

0.00 

ENCSR000CPQ HeLa-S3 nuclear rRNA-depleted Poly-A+ 0.07 

ENCSR000CQJ HeLa-S3 whole_cell rRNA-depleted 
DSN_normalized_Poly-
A- 

0.00 

ENCSR000CPR HeLa-S3 whole_cell rRNA-depleted Poly-A+ 0.00 

ENCSR000CQU HepG2 cytoplasmic rRNA-depleted 
DSN_normalized_Poly-
A- 

0.04 

ENCSR000CPF HepG2 cytoplasmic rRNA-depleted Poly-A+ 1.70 

ENCSR000CQK HepG2 nuclear rRNA-depleted 
DSN_normalized_Poly-
A- 

0.00 

ENCSR000CPC HepG2 nuclear rRNA-depleted Poly-A+ 0.00 

ENCSR000CPD HepG2 whole_cell rRNA-depleted 
DSN_normalized_Poly-
A- 

0.00 

ENCSR000CPE HepG2 whole_cell rRNA-depleted Poly-A+ 0.00 

ENCSR166QLP HT1080 cytoplasmic rRNA-depleted Poly-A+ 0.00 

ENCSR535VTR HT1080 whole_cell rRNA-depleted Total 0.68 

ENCSR067UNX HT1080 nuclear rRNA-depleted Poly-A+ 0.00 

ENCSR000AEM K562 whole_cell rRNA-depleted Poly-A+ 10.48 

ENCSR000AEL K562 whole_cell 
rRNA-
depleted Total 

8.40 

ENCSR000CPY K562 chromatin rRNA-depleted Total 2.78 

ENCSR000CQL K562 cytoplasmic rRNA-depleted 
DSN_normalized_Poly-
A- 

0.66 

ENCSR000COK K562 cytoplasmic rRNA-depleted Poly-A+ 7.12 

ENCSR000CQM K562 nuclear rRNA-depleted 
DSN_normalized_Poly-
A- 

13.64 

ENCSR000CPS K562 nuclear rRNA-depleted Poly-A+ 1.16 

ENCSR000CPZ K562 nucleolar rRNA-depleted Total 0.00 

ENCSR000CQA K562 nucleoplasm rRNA-depleted Total 0.00 

ENCSR000CPG K562 whole_cell rRNA-depleted 
DSN_normalized_Poly-
A- 

0.00 

ENCSR000CPH K562 whole_cell rRNA-depleted Poly-A+ 2.29 

ENCSR000CTU MCF-7 cytoplasmic rRNA-depleted Poly-A+ 33.22 

ENCSR000CTO MCF-7 nuclear rRNA-depleted Poly-A+ 6.21 

ENCSR000CQB MCF-7 whole_cell rRNA-depleted 
DSN_normalized_Poly-
A- 

48.56 

ENCSR000CPT MCF-7 whole_cell rRNA-depleted Poly-A+ 180.78 

ENCSR586SEE 
NCI-
H460 cytoplasmic rRNA-depleted Poly-A+ 

14.83 

ENCSR164OCT 
NCI-
H460 whole_cell rRNA-depleted Total 

11.52 

ENCSR625QJI 
NCI-
H460 nuclear rRNA-depleted Poly-A+ 

1.12 



ENCSR291DJH 
SK-MEL-
5 cytoplasmic rRNA-depleted Poly-A+ 

17.63 

ENCSR669KQU 
SK-MEL-
5 whole_cell 

rRNA-
depleted Total 

8.78 

ENCSR201WVA 
SK-MEL-
5 nuclear rRNA-depleted Poly-A+ 

6.71 

ENCSR569JKX SK-N-DZ cytoplasmic rRNA-depleted Poly-A+ 1.16 

ENCSR136WGP SK-N-DZ whole_cell rRNA-depleted Total 1.88 

ENCSR255NYQ SK-N-DZ nuclear rRNA-depleted Poly-A+ 0.61 

ENCSR000CTR SK-N-SH cytoplasmic rRNA-depleted Poly-A+ 0.69 

ENCSR000CTS SK-N-SH nuclear rRNA-depleted Poly-A+ 0.04 

ENCSR000CQP SK-N-SH whole_cell rRNA-depleted 
DSN_normalized_Poly-
A- 

0.00 

ENCSR000CPN SK-N-SH whole_cell rRNA-depleted Poly-A+ 5.61 

ENCSR000CTT SK-N-SH whole_cell rRNA-depleted Poly-A+ 0.00 
 
Table S2. Primer and probe sequences for L1H target regions and HPRT1 
reference regions  
 Assay Name Sequence (5’ → 3’) 

FA
M

 L
ab

el
ed

 

L1H ORF1 
FWD 

ACAAAGCTGGATGGAGAATG 

L1H ORF1 
REV 

GTTTGAATGTCCTCCCGTAG 

L1H ORF1 
Probe 

ACGAGCTGAGAGAAGAAGGCT 

L1H ORF2 
FWD 

AAATACCATTTGACCCAGCC 

L1H ORF2 
REV 

ATACGTGTGCATGTGTCTTT 

L1H ORF2 
Probe 

TCCCATTACTGGGTATATACCCA 

H
EX

 L
ab

el
ed

 

HPRT1 5’ 
End FWD 

ACCAGGTTATGACCTTGATTT 

HPRT1 5’ 
End REV 

TCCATGAGGAATAAACACCC 

HPRT1 5’ 
End Probe 

TGCATACCTAATCATTATGCTGAGGA 

HPRT1 3’ 
End FWD 

CCAGACAAGTTTGTTGTAGGA 

HPRT1 3’ 
End REV 

CCAGTTTCACTAATGACACAAA 

HPRT1 3’ 
End Probe 

CCCTTGACTATAATGAATACTTCAGGG 

 



 
Table S3. Quantification of L1H transcripts. Comparison of the expression of copies 
of full-length transcript/ng of L1H autonomous transcript (ORF1) and L1H pervasive 
transcript (ORF2) when run with both references. 

  Reference MFC-7 K562 SK-MEL-
5 GM12878 HeLa HepG2 

ORF1- 
Autonomous 
Transcription 
(copies of full-length 

transcript/ng) 

HPRT1 
5' End 12600 1512 1708 655 696 964 

HPRT1 
3' End 14050 1604 1810 735 709 1028 

ORF2- 
Pervasive 

Transcription 
(copies of truncated 

transcript/ng) 

HPRT1 
5' End 4460 2838 3562 2855 4004 3916 

HPRT1 
3' End 3370 3136 3720 2975 4381 4482 

 

 
Table S4. Number of samples per tissue tissue type. Bladder, Kidney Cortex and minor 
salivary gland were eliminated from further analysis. 

234 Adipose_-_Visceral_(Omentum) 
146 Adrenal_Gland 
123 Artery_-_Coronary 

11 Bladder 
81 Brain_-_Amygdala 
99 Brain_-_Anterior_cingulate_cortex_(BA24) 

133 Brain_-_Caudate_(basal_ganglia) 
115 Brain_-_Cerebellar_Hemisphere 
145 Brain_-_Cerebellum 
132 Brain_-_Cortex 
117 Brain_-_Frontal_Cortex_(BA9) 
102 Brain_-_Hippocampus 
103 Brain_-_Hypothalamus 

123 
Brain_-
_Nucleus_accumbens_(basal_ganglia) 

103 Brain_-_Putamen_(basal_ganglia) 
76 Brain_-_Spinal_cord_(cervical_c-1) 
71 Brain_-_Substantia_nigra 

200 Breast_-_Mammary_Tissue 
132 Cells_-_EBV-transformed_lymphocytes 

78 Cells_-_Leukemia_cell_line_(CML) 
300 Cells_-_Transformed_fibroblasts 
142 Colon_-_Sigmoid 



178 Colon_-_Transverse 
151 Esophagus_-_Gastroesophageal_Junction 
192 Heart_-_Atrial_Appendage 

36 Kidney_-_Cortex 
136 Liver 
280 Lung 

69 Minor_Salivary_Gland 
468 Muscle_-_Skeletal 
335 Nerve_-_Tibial 
108 Ovary 
193 Pancreas 
124 Pituitary 
119 Prostate 
271 Skin_-_Not_Sun_Exposed_(Suprapubic) 
395 Skin_-_Sun_Exposed_(Lower_leg) 
104 Small_Intestine_-_Terminal_Ileum 
118 Spleen 
205 Stomach 
199 Testis 
355 Thyroid 

90 Uterus 
88 Vagina 

449 Whole_Blood 
 
Table S5. L1 autonomous transcription level and age correlation coefficient and significance for 
each GTEx tissue. 
Tissue correlation FDR 
Lung 0.2818789 7.22E-05 
Muscle_-_Skeletal 0.1788474 2.20E-03 
Cells_-_Transformed_fibroblasts 0.2089546 3.60E-03 
Prostate -0.3238307 3.60E-03 
Adipose_-_Visceral_(Omentum) 0.2277305 3.93E-03 
Skin_-_Not_Sun_Exposed_(Suprapubic) 0.1753624 2.77E-02 
Whole_Blood -0.1302921 3.58E-02 
Breast_-_Mammary_Tissue 0.1858914 4.11E-02 
Testis 0.1886884 4.11E-02 
Skin_-_Sun_Exposed_(Lower_leg) 0.1147755 9.91E-02 
Esophagus_-
_Gastroesophageal_Junction 0.1791177 1.11E-01 
Brain_-_Cerebellar_Hemisphere 0.1997148 1.19E-01 



Brain_-_Frontal_Cortex_(BA9) 0.1880845 1.33E-01 
Pituitary 0.182976 1.33E-01 
Brain_-_Cortex 0.1588801 2.02E-01 
Brain_-_Substantia_nigra 0.2120247 2.09E-01 
Brain_-_Hippocampus 0.1600052 2.69E-01 
Kidney_-_Cortex 0.2710293 2.69E-01 
Heart_-_Atrial_Appendage 0.1102971 2.88E-01 
Minor_Salivary_Gland -0.1837433 2.88E-01 
Uterus 0.139628 3.97E-01 
Adrenal_Gland 0.102378 4.36E-01 
Nerve_-_Tibial 0.06607081 4.36E-01 
Brain_-
_Anterior_cingulate_cortex_(BA24) 0.1186109 4.44E-01 
Cells_-_EBV-transformed_lymphocytes 0.09962761 4.50E-01 
Brain_-
_Nucleus_accumbens_(basal_ganglia) 0.08814543 5.62E-01 
Brain_-_Caudate_(basal_ganglia) 0.07846093 6.02E-01 
Brain_-_Putamen_(basal_ganglia) 0.08561444 6.13E-01 
Ovary 0.07199146 6.96E-01 
Stomach 0.05014164 6.97E-01 
Bladder -0.2305936 7.03E-01 
Brain_-_Cerebellum -0.05408436 7.13E-01 
Liver 0.04890585 7.19E-01 
Small_Intestine_-_Terminal_Ileum 0.05828941 7.19E-01 
Thyroid 0.03256656 7.19E-01 
Spleen -0.03437764 8.70E-01 
Pancreas 0.02279996 8.95E-01 
Colon_-_Sigmoid 0.02209352 9.19E-01 
Brain_-_Amygdala 0.02406885 9.36E-01 
Brain_-_Hypothalamus -0.01603804 9.36E-01 
Brain_-_Spinal_cord_(cervical_c-1) -0.02072991 9.36E-01 
Artery_-_Coronary -0.008006473 9.74E-01 
Colon_-_Transverse 0.001340182 9.86E-01 
Vagina 0.003462678 9.86E-01 

 
 
 
 
 
 
 



 
Figures 

 

 
Figure S1. L1 Subfamily mappability fingerprint. Simulated transcripts from putative 
L1Hs, L1P1, L1PA2, L1PA3 and L1PA4 were aligned to the reference genome using 
the same parameters as the TeXP pipeline. The proportion of reads mapped to each 
subfamily was calculated. L1hg38 Ref displays the proportion of bases annotated as 
each of these subfamilies and indicates the expected signal from pervasive 
transcription. 
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Figure S2. L1 Subfamily RPKM in ENCODE RNA-seq samples. Most samples have 
zero RPKM (more dense bar at the bottom). L1Hs has more samples with higher RPKM 
than any other subfamily followed by L1PA2 the second most recent L1 Subfamily. 
 

 
Figure S3. MCF7 L1 Subfamilies absolute read count. Every four bars are 
experiments respectively from whole cell polyA-; whole cell polyA+; cytoplasm polyA+ 
and nuclear polyA+.  

 
Figure S4. MCF7 L1 Subfamilies absolute read deconvolution. Every four bars are 
experiments respectively from whole cell polyA-; whole cell polyA+; cytoplasm polyA+ 
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and nuclear polyA+. Gray and Dark blue bars refer to pervasive transcription and L1Hs 
autonomous transcription signal respectively. 
 
 

 
Figure S5. L1 Subfamily RPKM in GTex samples. Most samples have zero RPKM 
(more dense bar at the bottom). L1Hs has more samples with higher RPKM than any 
other subfamily followed by L1PA2 the second most recent L1 Subfamily. 
 
 



 
Figure S6. Estimation of L1Hs autonomous transcription in GTEx cell lines. Most 
of EBV transformed cell lines have no autonomous transcription of L1Hs (bottom box). 
Transformed fibroblasts, derived from skin, have intermediate autonomous transcription 
of L1Hs (at lower levels than Skin samples). And K-562, derived from Leukemia tumor, 
has consistently high autonomous transcription of L1Hs across distinct batches. 
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Figure S7. Pervasive transcription index per GTEx tissue. Pervasive transcription 
index was estimated for each GTEx sample and ordered by pervasive transcription 
median. 
 



 
Figure S8. L1Hs autonomous transcription in healthy and tumoral samples.  
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Figure S9. L1Hs transcript simulated as RNA sequencing reads. Different aligners 
were used to assess the construction of mappability fingerprints in the human reference 
genom. One hundred independent simulations of L1Hs transcript reads were 
independently mapped to the reference genome using bowtie2 (red), bwa (green) and 
star (blue). The box plot represents the distribution of the number of reads mapped to 
each L1 subfamily in the reference genome. 
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Figure S10. Read length effect on mappability of L1 subfamilies. Simulating L1Hs 
reads with different length yield distinct proportions of reads mapped to each subfamily. 
As expected, the longer the read, the higher the proportion of reads correctly mapped 
originating subfamily. 
 
 

A.                                                                B. 

  
Figure S11. EBV transformation silences L1Hs autonomous transcription. When 
comparing primary tissue and EBV transformed cell-lines from the same individuals we 
noticed a consistent decrease in the autonomous transcription of (A) Skin samples and 

●

●

●

●

●● ● ●●●

●●

●

●●●●

●

●●
●
●

0

5000

10000

15000

20000

L1
H

S

L1
P1

L1
PA

2

L1
PA

3

L1
PA

4

L1 Subfamily

R
ea

d 
co

un
t Read

Length
50
75
100



EBV-Transformed fibroblasts (t = 22.5743, df = 153.878, p-value < 2.2e-16) and (B) 
Whole-blood and EBV-Transformed lymphocytes (t = 4.8937, df = 182.036, p-value = 
2.171e-06).   
 

 
Figure S12. Percentage of pervasive transcription on processed GTex samples. 
Most signal mapping to LINE-1 samples is derived from pervasive transcription.  
 
 

0

500

1000

1500

2000

0.00 0.25 0.50 0.75 1.00
Percentage of Pervasive Transcription

co
un

t



 
Figure S13. Autonomous transcription quantification of L1HS in 10 samples from all 
primary tissues available on TCGA. 
 

 

Figure 14. Model for LINE-1 favoring genome instability.  
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