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Background and Overview
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Data:
● Integrated driver scores from PCAWG-2-5-9-14 (syn8494939)
● Focused analysis on Pancan-no-skin-melanoma-lymph cohort
● 63 genes with recurrent (q < 0.1) coding mutations 
● 6 genes with recurrent (q < 0.1) non-coding mutations (promoter 

core, UTRs, or enhancer):
○ HES1 promoter core, MTG2 5’ UTR, TERT promoter core, 

TOB1 3’ UTR, TP53TG1 enhancer, WDR74 promoter core

Motivation:
● Few identified non-coding drivers
● Pathway/network analyses helpful for analyzing rare coding 

mutations in earlier studies

Questions:
1. Can pathway/network methods identify additional coding and 

non-coding drivers? (Dig deeper into long tail?)
2. Do non-coding drivers cluster in pathways/subnetworks?
3. Do non-coding drivers cluster in same pathways/subnetworks as 

coding drivers?

https://www.synapse.org/#!Synapse:syn8494939


Analysis overview
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1. Create gene-level scores from coding and 
non-coding elements.

2. Apply pathway/network methods to coding and 
non-coding scores, separately and combined.

3. Form consensus results across methods.
4. Analyze contributions of coding and non-coding 

mutations to enriched pathways/networks.
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Create gene-level scores from coding and non-coding element scores
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Pathway/network databases typically describe protein/gene interactions, gene-level scores needed.

Define coding (C), non-coding (N), and combined coding and non-coding (C+N) scores for each gene:
1. pC = pcoding
2. pN = fisher(min(ppromoter, p5’ UTR), p3’ UTR, penhancer)
3. pC+N = fisher(pcoding, min(ppromoter, p5’ UTR), p3’ UTR, penhancer)
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Create gene-level scores for enhancers
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Pathway/network databases typically describe protein/gene interactions, gene-level scores needed.

Define gene-level enhancer scores:
1. Use enhancer scores (syn8494939).
2. Use enhancers with ≤ 5 gene targets from enhancer-gene targets (syn7188184).
3. For each gene, define penhancer as minimum score of enhancers targeting gene.

We also performed analysis without enhancer scores.

 penhancer = min(p1, p2, p3)

p1 p2 p3

https://www.synapse.org/#!Synapse:syn8494939
https://www.synapse.org/#!Synapse:syn7188184


Pathway analyses
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1. ActiveDriverPW (Jüri Reimand, OICR): Evaluates the enrichment of mutations in functionally related sets 
of genes using driver scores.

2. Hypergeometric analysis (Miguel Vazquez, CNIO): Identifies enriched pathways (hypergeometric test 
q-value q < 0.05) containing genes with driver score p-values p < 0.1.
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Network analyses
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1. CanIsoNet (Abdullah Kahraman, UZH): Identifies regions of a PPI network whose interactions are 
considered to be disrupted by alternative isoforms.

2. Hierarchical HotNet (Matthew Reyna, Princeton): Combines driver scores and network topology to 
construct hierarchy of topologically close and significantly mutated gene sets.

3. Induced subnetwork analysis (Matthew Reyna, Princeton): Finds connected subnetworks induced by 
genes with driver scores exceeding a statistically determined threshold.

4. NBDI (Lieven Verbeke, Ghent): Uses driver scores with patient mutation and expression data to find 
mutated genes that interact with differentially expressed genes.

5. SSA-ME (Sergio Pulido-Tamayo, Ghent): Prioritizes genes based on likelihood of belong to high-scoring 
subnetworks.
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Each pathway/network method applied to three datasets: C, N, C + N
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Observation: Stronger coding signal dominant signal in combined coding and non-coding 
analysis?

Can we identify genes with strong non-coding contribution in combined analysis?
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Apply pathway/network methods to coding and non-coding data
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Merged non-coding (MN) results are union of the non-coding (N) and non-coding value-added 
results.



● Consensus procedure identifies genes by a majority (≥4/7) of 
methods.

● Perform consensus across methods for each set of results:
○ Coding (C)
○ Non-coding (N)
○ Coding and non-coding (C+N)
○ Merged non-coding (MN)

● Focus on consensus coding (C) and merged non-coding 
(MN) results.

Form consensus results across methods
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Overlap of consensus pathway/network analysis results
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● Question 1: Can pathway/network methods identify additional coding and non-coding drivers? 
(Dig deeper into long tail?)

● Yes:
○ 31/87 consensus coding genes have driver scores with q > 0.1.
○ 90/93 consensus merged non-coding genes have driver scores with q > 0.1.
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Comparison with individual gene/element ranking

VHL, TP53, KRAS, SMAD4, PIK3CA, ...
TERT

TP53TG1, MTG2, TOB1, ...

Driver score distributions for coding (left) and non-coding (promoter core, UTRs, and enhancer elements; right); dark bars 
indicate consensus genes and light bars indicate non-consensus genes.

q < 0.1
q < 0.1
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Clustering of non-coding genes on pathways/networks

Question 2: Do non-coding mutations cluster in 
pathways/subnetworks?
● Yes:

○ Consensus genes form large 
connected components in ReactomeFI 
2015 network:
■ 75 genes (P < 1e-6) for 

consensus coding results
■ 61 genes, (P < 1e-6) for 

consensus merged non-coding 
results

○ Consensus genes are enriched in GO 
and Reactome pathway databases:
■ 63 pathways with hypergeometric 

P < 1e-6 for consensus C results
■ 13 pathways with P < 1e-6 for 

consensus merged non-coding 
results

Consensus C 
results

Consensus 
MN results
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Subnetwork of ReactomeFI 2015 network induced by 
consensus coding (C) and consensus merged non-coding 
(MN) results, excluding 214 interactions only between 
genes in coding results

RNA splicing 
(#GO:0008380)

C

MN

Both C and MN

Network view of consensus results

Question 3: Do non-coding mutations cluster in 
same pathways/subnetworks as coding 
mutations?
● Yes and no.

○ Some interactions primarily between 
consensus coding results

○ Some interactions primarily between 
merged non-coding results.

○ Many interactions between consensus 
coding and consensus merged 
non-coding results.



Matrix entries correspond to pathway 
modules (rows) and a consensus 
genes (columns).

A filled entry of the matrix indicates
● ≥ 1 pathway in module is 

enriched for consensus results 
and

● gene belongs to ≥ 1 of enriched 
pathways in module.

Details:
● Color: consensus C or 

consensus MN gene
● Shading: enrichment
● Border: more enriched in C ∪ 

MN than separately
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G
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e

Pathway

C
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C∩MN

(1)(2)(3)(4)

(1) Enriched.
(2) Present, not enriched.
(3) Enriched, C∪MN more significantly enriched.
(4) Present, not enriched, C∪MN enriched.

Question 3: Do non-coding drivers cluster in same pathways/subnetworks 
as coding drivers?

● Yes and no.
○ Some enriched pathways primarily due to consensus coding 

results.
○ Some enriched pathways primarily due to consensus merged 

non-coding results.
○ Some enriched pathways have contributions from consensus 

coding and merged non-coding results.

Pathway view of consensus results



● Apoptosis…
● Cell proliferation...
● Chromatin organization and histone modification...
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Pathway view of consensus results: primarily coding contributions
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Pathway view of consensus results: primarily non-coding contributions

● Splicing...
● Cell date specification…
● Some development...
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Pathway view of consensus results: both coding and non-coding contributions

● Signaling pathways (Wnt, NOTCH, growth factor…)
● Nuclear transport…
● Transcription factors...
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Do driver mutations in a patient occur on pairs of interacting genes?

Data:
● 9,947 patient-centric driver mutations in ICGC PCAWG data (see Supplemental Table 3 of 

bioRxiv paper in syn11050201)
● Four interaction networks: BioGRID HC, HINT+HI2014, iRefIndex14+KEGG, ReactomeFI 

2015

Questions:
1. For each patient, are there significantly more or significantly fewer interactions between 

driver mutations than expected by chance?  
2. For each cohort, are there significantly more or significantly fewer interactions between 

driver mutations than expected by chance?
3. For each pair of interacting genes, are both genes affected by driver mutations in 

significantly more or significantly fewer patients in a cohort than expected by chance?

Example
● 4 genes with driver mutations
● 2 interactions between genes with driver mutations

https://www.biorxiv.org/content/early/2017/09/20/190330
https://www.synapse.org/#!Synapse:syn11050201


Example:
● A Liver-HCC patient has 5 driver mutations in BioGrid HC: CCND1, CDKN2A, PTEN, RB1, 

and TP53.  
● Subgraph of BioGrid HC induced by these genes has 4 interactions: CCND1-CDKN2A, 

CCND1-RB1, CDKN2A-TP53, PTEN-TP53. 
● Are there more or fewer interactions in this patient’s induced subgraph than expected?
● Are there more or fewer edges in this cohort’s induced subgraphs than expected?
● Do any of the interactions, e.g., PTEN-TP53, occur more or less frequently in a cohort than 

expected?
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Do driver mutations in a patient occur on pairs of interacting genes?

RB1 CCND1 TP53CDKN2A PTEN



Summary of patient-specific driver mutations on networks
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Network None (not 
restricted to 
network genes)

BioGRID HC HINT+HI2014 iRefIndex14 + 
KEGG

ReactomeFI 
2015

Number of 
genes/loci with 
driver mutations 

550 396 476 493 457

Number of patients 
with driver 
mutations

2068 2023 2052 2056 2044

Number of driver 
mutations

9947 7977 8648 8800 8505

Table: Summary of patient-centric driver mutation data on 25 cohorts with ≥ 10 samples with driver mutations 
and ≥ 2 driver mutations, on average, per sample in all networks.



Statistical test
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We compared the observed results against 10,000 permutations of the binary mutation matrix for 
each cohort, preserving the mutation frequency of each gene within the cohort and each patient 
in the cohort.

● For a fixed patient s, let Xs = number of interactions between driver mutations in s.  We 
compute ps

+ = Pr(Xs ≥ xs) and ps
- = Pr(Xs ≤ xs), where xs is observed value.

● For a fixed cohort C, let XC = ∑s∊C Xs = number of interactions between driver mutations across 
patients in C.   We compute pC

+ = Pr(XC ≥ xC) and pC
- = Pr(XC ≤ xC),  where xC is observed 

value.  

● For fixed cohort C and edge e = (u, v), let XC, e = number of patients in C with driver mutations 
in both u and v.  We compute pC, e

+ = Pr(XC, e ≥ xe) and pC, e
- = Pr(XC, e ≤ xC, e).



Table of p-values for fewer or more interactions than expected in each cohort
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Summary of cohort results
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For each cohort, are there significantly more or signifcantly fewer interactions between driver 
mutations than expected by chance?  

● 9 cohorts have significantly fewer interactions than expected (p < 0.05) in multiple 
networks:
○ Bladder-TCC, Bone-Leiomyo, Bone-Osteosarc, CNS-CBM, ColoRect-AdenoCA, 

Liver-HCC, Panc-Endocrine, Prost-AdenoCA, Stomach-AdenoCA

● 3 cohorts have significantly more interactions than expected (p < 0.05) in one network:
○ Breast-AdenoCa, CNS-Oligo, Lymph-BNHL
○ Networks (iRefIndex14+KEGG and ReactomeFI 2015) are two denser.



Summary of patient results
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For each patient, are there significantly more or fewer interactions between driver mutations 
than expected by chance?

● 3 patients have significantly fewer interactions than expected (p < 0.01) in one network.
○ Lung-SCC patient (p < 0.0001 for fewer interactions):

■ Driver mutations in: CDKN2A, COL11A1, EGFR, FANCF, FAT1, FBXW7, IKZF2, 
KMT2D, NFE2L2, RHOA, SOX2, WWOX, ZFP36L1.  

■ Induced subgraph of ReactomeFI 2015 has 0 interactions, vs. 5.98 interactions 
expected from null distribution.

● 19 patients have significantly more interactions than expected (p < 0.01) in at least one 
network, where 3 of these patients have more interactions than expected in multiple networks.
○ Liver-HCC patient (p < 0.0001 for more interactions)

■ Driver mutations in CCND1, CDKN2A, PTEN, RB1, and TP53.  
■ Subgraph of BioGrid HC has 4 interactions: CCND1-CDKN2A, CCND1-RB1, 

CDKN2A-TP53, PTEN-TP53 vs. 0.48 interactions expected from null distribution;.



Summary of interaction results
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For each pair of interacting genes, do both genes contain driver mutations in significantly more 
or significantly fewer patients in a cohort than expected by chance?

● 16 interactions in BioGRID HC co-occur in significantly fewer patients within a cohort than 
expected by chance (p < 0.05):
○ ATM-TP53, ATRX-DAXX, AXIN1-CTNNB1, BCL2-TP53, BRCA2-TP53, CDK4-CDKN2A, 

CDK4-CDKN2B, CDK4-RB1, CDKN2A-MDM2, CDKN2A-TP53, CREBBP-MYC, 
ERG-SPOP, KDM6A-KMT2D, MAP3K1-TP53, MDM2-TP53, PTEN-TP53

● 19 interactions in BioGRID HC co-occur in significantly more patients within a cohort than 
expected by chance (p < 0.05):
○ AKT1-CTNNB1, AXIN1-MAP3K1, BRCA1-MYC, CCDC6-FBXW7, CCND1-CDK6, 

CCND1-CDKN2A, CCND2-RB1, CDKN2A-TP53, CUL1-FBXW7, ERBB2-PLCG1, 
ERBB4-GRB2, GPS2-NCOR1, MDM2-TERT, MYC-SMARCA4, NFKBIZ-STAT3, 
PTEN-TP53, RAF1-RB1, RB1-RBBP8, SMARCA4-TP53
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