PCAWG-5: Pathway and network analysis update

Ben Raphael Josh Stuart On behalf of PCAWG-5

PCAWG-2,5,9,14 Joint Call December 4, 2017

Background and Overview

Data:

- Integrated driver scores from PCAWG-2-5-9-14 (syn8494939)
- Focused analysis on Pancan-no-skin-melanoma-lymph cohort
- 63 genes with recurrent (q < 0.1) **coding** mutations
- 6 genes with recurrent (*q* < 0.1) **non-coding** mutations (promoter core, UTRs, or enhancer):
 - HES1 promoter core, MTG2 5' UTR, TERT promoter core, TOB1 3' UTR, TP53TG1 enhancer, WDR74 promoter core

Motivation:

- Few identified non-coding drivers
- Pathway/network analyses helpful for analyzing rare coding mutations in earlier studies

Questions:

- 1. Can pathway/network methods identify additional coding and non-coding drivers? (Dig deeper into long tail?)
- 2. Do non-coding drivers cluster in pathways/subnetworks?
- 3. Do non-coding drivers cluster in *same* pathways/subnetworks as coding drivers?

Analysis overview

- 1. Create **gene-level** scores from coding and non-coding elements.
- 2. Apply pathway/network methods to coding and non-coding scores, separately and combined.
- 3. Form consensus results across methods.
- 4. Analyze contributions of coding and non-coding mutations to enriched pathways/networks.

3

Create gene-level scores from coding and non-coding element scores

Pathway/network databases typically describe protein/gene interactions, gene-level scores needed.

Define coding (*C*), non-coding (*N*), and combined coding and non-coding (*C*+*N*) scores for each gene:

1. $p_{c} = p_{coding}$ 2. $p_{N} = fisher(min(p_{promoter}, p_{5' UTR}), p_{3' UTR}, p_{enhancer})$ 3. $p_{C+N} = fisher(p_{coding}, min(p_{promoter}, p_{5' UTR}), p_{3' UTR}, p_{enhancer})$

Create gene-level scores for enhancers

Pathway/network databases typically describe protein/gene interactions, gene-level scores needed.

Define gene-level enhancer scores:

- 1. Use enhancer scores (syn8494939).
- 2. Use enhancers with \leq 5 gene targets from enhancer-gene targets (<u>syn7188184</u>).
- 3. For each gene, define $p_{enhancer}$ as **minimum score** of enhancers targeting gene.

We also performed analysis without enhancer scores.

Pathway analyses

- 1. ActiveDriverPW (Jüri Reimand, OICR): Evaluates the enrichment of mutations in functionally related sets of genes using driver scores.
- 2. Hypergeometric analysis (Miguel Vazquez, CNIO): Identifies enriched pathways (hypergeometric test q-value q < 0.05) containing genes with driver score p-values p < 0.1.

Network analyses

- 1. **CanlsoNet** (Abdullah Kahraman, UZH): Identifies regions of a PPI network whose interactions are considered to be disrupted by alternative isoforms.
- 2. **Hierarchical HotNet (Matthew Reyna, Princeton):** Combines driver scores and network topology to construct hierarchy of topologically close and significantly mutated gene sets.
- 3. **Induced subnetwork analysis (Matthew Reyna, Princeton):** Finds *connected* subnetworks induced by genes with driver scores exceeding a statistically determined threshold.
- NBDI (Lieven Verbeke, Ghent): Uses driver scores with patient mutation and expression data to find 4. mutated genes that interact with differentially expressed genes.
- 5. SSA-ME (Sergio Pulido-Tamayo, Ghent): Prioritizes genes based on likelihood of belong to high-scoring subnetworks.

Codina

High

Low

Non-coding

Each pathway/network method applied to three datasets: *C*, *N*, *C* + *N*

Observation: Stronger coding signal dominant signal in combined coding and non-coding analysis?

Can we identify genes with strong non-coding contribution in combined analysis?

Non-coding "value-added" procedure

- Motivation: Want to increase signal by combining coding and non-coding scores; however coding scores dominate combined signal
- **Procedure**: Run pathway network analysis on permuted data: **fixing** coding scores and permuting non-coding scores.
- Results: Define gene as a non-coding value-added provided gene appears in method's C+N results in real data, but infrequently (p < 0.1) with permuted data.
- Procedure identifies genes with strong contribution from non-coding scores while leveraging coding scores.

Apply pathway/network methods to coding and non-coding data

Merged non-coding (MN) results are union of the non-coding (N) and non-coding value-added results.

Form consensus results across methods

- Consensus procedure identifies genes by a majority (≥4/7) of methods.
- Perform consensus across methods for each set of results:
 - Coding (C)
 - Non-coding (N)
 - Coding and non-coding (C+N)
 - Merged non-coding (MN)
- Focus on consensus coding (C) and merged non-coding (MN) results.

Pathway-

based methods

ActiveDriverPW

Hypergeometric

analysis

CanlsoNet

Overlap of consensus pathway/network analysis results

Comparison with individual gene/element ranking

- **Question 1:** Can pathway/network methods identify additional coding and non-coding drivers? (Dig deeper into long tail?)
- Yes:
 - 31/87 consensus coding genes have driver scores with q > 0.1.
 - 90/93 consensus merged non-coding genes have driver scores with q > 0.1.

Driver score distributions for coding (left) and non-coding (promoter core, UTRs, and enhancer elements; right); dark bars indicate consensus genes and light bars indicate non-consensus genes.

Clustering of non-coding genes on pathways/networks

Question 2: Do non-coding mutations cluster in pathways/subnetworks?

- Yes:
 - Consensus genes form large connected components in ReactomeFI 2015 network:
 - 75 genes (P < 1e-6) for consensus coding results
 - 61 genes, (P < 1e-6) for consensus merged non-coding results
 - Consensus genes are enriched in GO and Reactome pathway databases:
 - 63 pathways with hypergeometric
 P < 1e-6 for consensus C results
 - 13 pathways with P < 1e-6 for consensus merged non-coding results

Network view of consensus results

Question 3: Do non-coding mutations cluster in same pathways/subnetworks as coding mutations?

- Yes and no.
 - Some interactions primarily between consensus coding results
 - Some interactions primarily between merged non-coding results.
 - Many interactions between consensus coding and consensus merged non-coding results.

Subnetwork of ReactomeFI 2015 network induced by consensus coding (C) and consensus merged non-coding (MN) results, **excluding** 214 interactions only between genes in coding results

Pathway view of consensus results

Question 3: Do non-coding drivers cluster in same pathways/subnetworks as coding drivers?

- Yes and no.
 - Some enriched pathways primarily due to **consensus coding** results.
 - Some enriched pathways primarily due to consensus merged non-coding results.
 - Some enriched pathways have contributions from consensus coding and merged non-coding results.

Matrix entries correspond to pathway modules (rows) and a consensus genes (columns).

A filled entry of the matrix indicates

- ≥ 1 pathway in module is enriched for consensus results and
- gene belongs to ≥ 1 of enriched pathways in module.

 Color: consensus C or consensus MN gene

- Shading: enrichment
- **Border**: more enriched in C U MN than separately

(1) Enriched.

(2) Present, not enriched.

(3) Enriched, $C \cup MN$ more significantly enriched.

(4) Present, not enriched, CUMN enriched. 16

Pathway view of consensus results: primarily coding contributions

- Apoptosis...
- Cell proliferation...
- Chromatin organization and histone modification...

Pathway view of consensus results: primarily non-coding contributions

Consensus genes

- Splicing...
- Cell date specification...
- Some development...

Pathway view of consensus results: both coding and non-coding contributions

Consensus genes

- Signaling pathways (Wnt, NOTCH, growth factor...)
- Nuclear transport...
- Transcription factors...

Do driver mutations in a patient occur on pairs of interacting genes?

Data:

- 9,947 patient-centric driver mutations in ICGC PCAWG data (see Supplemental Table 3 of bioRxiv paper in syn11050201)
- Four interaction networks: BioGRID HC, HINT+HI2014, iRefIndex14+KEGG, ReactomeFI 2015

Questions:

- 1. For **each patient**, are there **significantly more** or **significantly fewer interactions** between driver mutations than expected by chance?
- 2. For **each cohort**, are there **significantly more** or **significantly fewer interactions** between driver mutations than expected by chance?
- 3. For each pair of interacting genes, are both genes affected by driver mutations in significantly more or significantly fewer patients in a cohort than expected by chance?

Example

- 4 genes with driver mutations
- 2 interactions between genes with driver mutations

Do driver mutations in a patient occur on pairs of interacting genes?

Example:

- A Liver-HCC patient has 5 driver mutations in BioGrid HC: CCND1, CDKN2A, PTEN, RB1, and TP53.
- Subgraph of BioGrid HC induced by these genes has 4 interactions: CCND1-CDKN2A, CCND1-RB1, CDKN2A-TP53, PTEN-TP53.
- Are there more or fewer interactions in this patient's induced subgraph than expected?
- Are there more or fewer edges in this cohort's induced subgraphs than expected?
- Do any of the interactions, e.g., PTEN-TP53, occur more or less frequently in a cohort than expected?

Summary of patient-specific driver mutations on networks

Network	None (not restricted to network genes)	BioGRID HC	HINT+HI2014	iRefIndex14 + KEGG	ReactomeFI 2015
Number of genes/loci with driver mutations	550	396	476	493	457
Number of patients with driver mutations	2068	2023	2052	2056	2044
Number of driver mutations	9947	7977	8648	8800	8505

Table: Summary of patient-centric driver mutation data on **25 cohorts** with \ge 10 samples with driver mutations and \ge 2 driver mutations, on average, per sample in all networks.

Statistical test

We compared the observed results against 10,000 permutations of the binary mutation matrix for each cohort, **preserving** the **mutation frequency** of **each gene** within the cohort and **each patient** in the cohort.

- For a fixed patient *s*, let X_s = number of interactions between driver mutations in *s*. We compute $p_s^+ = \Pr(X_s \ge x_s)$ and $p_s^- = \Pr(X_s \le x_s)$, where x_s is observed value.
- For a fixed cohort *C*, let $X_c = \sum_{s \in C} X_s$ = number of interactions between driver mutations across patients in *C*. We compute $p_c^+ = \Pr(X_c \ge x_c)$ and $p_c^- = \Pr(X_c \le x_c)$, where x_c is observed value.
- For fixed cohort C and edge e = (u, v), let X_{C, e} = number of patients in C with driver mutations in both u and v. We compute p_{C, e}⁺ = Pr(X_{C, e} ≥ x_e) and p_{C, e}⁻ = Pr(X_{C, e} ≤ x_{C, e}).

Table of *p*-values for fewer or more interactions than expected in each cohort

	А	В	С	D	E	F	G	Н	I
1	Cohort	p-value for fewer edges than expected in BioGRID HC	p-value for fewer edges than expected in HINT+HI2014	p-value for fewer edges than expected in iRefIndex14+KEGG	p-value for fewer edges than expected in ReactomeFI 2015	p-value for more edges than expected in BioGRID HC	p-value for more edges than expected in HINT+HI2014	p-value for more edges than expected in iRefIndex14+KEGG	p-value for more edges than expected in ReactomeFl 2015
2	Biliary-AdenoCA	0.5404	0.6994	0.6797	0.0117	0.6121	0.4985	0.4257	0.9883
3	Bladder-TCC	0.0156	0.0274	0.3042	0.7841	0.9883	0.9883	0.7504	0.2588
4	Bone-Leiomyo	0.0156	0.0000	0.0430	0.0118	0.9883	1.0000	0.9843	1.0000
5	Bone-Osteosarc	0.0000	0.0000	0.0039	0.0000	1.0000	1.0000	1.0000	1.0000
6	Breast-AdenoCa	0.1677	0.3344	0.9232	0.9547	0.8766	0.7395	0.0899	0.0490
7	Breast-LobularCa	0.6618	0.9452	0.9142	0.3370	0.5885	0.1760	0.1484	0.8075
8	CNS-GBM	0.0234	0.0000	0.1988	0.0000	0.9844	1.0000	0.8360	1.0000
9	CNS-Medullo	0.0273	0.3517	0.3696	0.8141	0.9961	0.8112	0.7516	0.2873
10	CNS-Oligo	0.8619	0.8906	1.0000	0.0431	0.3141	0.2978	0.0039	1.0000
11	ColoRect-AdenoCA	0.1158	0.1708	0.0078	0.0118	0.9148	0.8842	0.9922	0.9961
12	Eso-AdenoCa	0.5573	0.7943	0.8151	0.0853	0.5442	0.2795	0.2374	0.9264
13	Head-SCC	0.8905	0.9248	0.0312	0.4717	0.1705	0.1493	0.9922	0.6148
14	Kidney-RCC	0.8905	0.1489	0.1880	0.8167	0.2500	0.9315	0.8956	0.3359
15	Liver-HCC	0.0121	0.0000	0.1455	0.0384	0.9879	1.0000	0.8651	0.9620
16	Lung-AdenoCA	0.1054	0.0509	0.0800	0.0195	0.9298	0.9726	0.9396	0.9883
17	Lung-SCC	0.2367	0.1984	0.0702	0.4992	0.8416	0.8681	0.9454	0.5687
18	Lymph-BNHL	0.3056	0.5104	0.0196	1.0000	0.7491	0.5568	0.9804	0.0000
19	Ovary-AdenoCA	0.3910	0.3987	0.3015	0.6680	0.7028	0.6839	0.7389	0.4068
20	Panc-AdenoCA	0.4890	0.6224	0.0000	0.3632	0.5962	0.4429	1.0000	0.6726
21	Panc-Endocrine	0.0039	0.0118	0.0078	0.5899	0.9961	1.0000	1.0000	0.5901
22	Prost-AdenoCA	0.0431	0.3848	0.8032	0.0367	0.9726	0.7210	0.2617	0.9828
23	Skin-Melanoma	0.0960	0.5454	0.0069	0.4097	0.9388	0.5905	1.0000	0.6552
24	Stomach-AdenoCA	0.1754	0.0078	0.0436	0.6614	0.8733	1.0000	0.9731	0.3801
25	Uterus-AdenoCA	0.2223	0.2600	0.8185	0.5971	0.8455	0.7976	0.2245	0.4380

Summary of cohort results

For **each cohort**, are there **significantly more** or **significantly fewer interactions** between driver mutations than expected by chance?

- 9 cohorts have significantly fewer interactions than expected (*p* < 0.05) in multiple networks:
 - Bladder-TCC, Bone-Leiomyo, Bone-Osteosarc, CNS-CBM, ColoRect-AdenoCA, Liver-HCC, Panc-Endocrine, Prost-AdenoCA, Stomach-AdenoCA
- 3 cohorts have significantly more interactions than expected (*p* < 0.05) in one network:
 - Breast-AdenoCa, CNS-Oligo, Lymph-BNHL
 - Networks (iRefIndex14+KEGG and ReactomeFI 2015) are two denser.

Summary of patient results

For **each patient**, are there **significantly more or fewer interactions** between driver mutations than expected by chance?

- **3 patients** have significantly **fewer interactions** than expected (p < 0.01) in one network.
 - Lung-SCC patient (p < 0.0001 for fewer interactions):
 - Driver mutations in: CDKN2A, COL11A1, EGFR, FANCF, FAT1, FBXW7, IKZF2, KMT2D, NFE2L2, RHOA, SOX2, WWOX, ZFP36L1.
 - Induced subgraph of ReactomeFI 2015 has 0 interactions, vs. 5.98 interactions expected from null distribution.
- **19 patients** have significantly **more interactions** than expected (*p* < 0.01) in at least one network, where 3 of these patients have more interactions than expected in multiple networks.
 - Liver-HCC patient (p < 0.0001 for more interactions)
 - Driver mutations in CCND1, CDKN2A, PTEN, RB1, and TP53.
 - Subgraph of BioGrid HC has 4 interactions: CCND1-CDKN2A, CCND1-RB1, CDKN2A-TP53, PTEN-TP53 vs. 0.48 interactions expected from null distribution;.

Summary of interaction results

For each pair of interacting genes, do both genes contain driver mutations in significantly more or significantly fewer patients in a cohort than expected by chance?

- 16 interactions in BioGRID HC co-occur in significantly **fewer patients** within a cohort than expected by chance (*p* < 0.05):
 - ATM-TP53, ATRX-DAXX, AXIN1-CTNNB1, BCL2-TP53, BRCA2-TP53, CDK4-CDKN2A, CDK4-CDKN2B, CDK4-RB1, CDKN2A-MDM2, CDKN2A-TP53, CREBBP-MYC, ERG-SPOP, KDM6A-KMT2D, MAP3K1-TP53, MDM2-TP53, PTEN-TP53
- 19 interactions in BioGRID HC co-occur in significantly more patients within a cohort than expected by chance (p < 0.05):
 - AKT1-CTNNB1, AXIN1-MAP3K1, BRCA1-MYC, CCDC6-FBXW7, CCND1-CDK6, CCND1-CDKN2A, CCND2-RB1, CDKN2A-TP53, CUL1-FBXW7, ERBB2-PLCG1, ERBB4-GRB2, GPS2-NCOR1, MDM2-TERT, MYC-SMARCA4, NFKBIZ-STAT3, PTEN-TP53, RAF1-RB1, RB1-RBBP8, SMARCA4-TP53

Acknowledgements

David Haan (UCSC) Jose MG Izarzugaza (DTU) Abdullah Kahraman (UZH) Kathleen Marchal (U. Ghent) Sergio Pulido-Tamayo (U. Ghent) Jüri Reimand (OICR) Matthew Reyna (Princeton) Cenk Sahinalp (U. Indiana, SFU) Raunak Shrestha (UBC) Miguel Vazquez (CNIO) Lieven Verbeke (U. Ghent)

Members of PCAWG-5 Members of PCAWG-2-5-9-14

