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Background and Overview

Data:
e Integrated driver scores from PCAWG-2-5-9-14 (syn8494939)
e Focused analysis on Pancan-no-skin-melanoma-lymph cohort
e 63 genes with recurrent (g < 0.1) coding mutations
e 6 genes with recurrent (g < 0.1) non-coding mutations (promoter
core, UTRs, or enhancer):
o HES1 promoter core, MTG2 5’ UTR, TERT promoter core,
TOB1 3’ UTR, TP53TG1 enhancer, WDR74 promoter core

Motivation:
e Few identified non-coding drivers
e Pathway/network analyses helpful for analyzing rare coding
mutations in earlier studies

Questions:
1. Can pathway/network methods identify additional coding and
non-coding drivers? (Dig deeper into long tail?)
2. Do non-coding drivers cluster in pathways/subnetworks?
3. Do non-coding drivers cluster in same pathways/subnetworks as
coding drivers?
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https://www.synapse.org/#!Synapse:syn8494939

Analysis overview

1.

S

Create gene-level scores from coding and
non-coding elements.

Apply pathway/network methods to coding and
non-coding scores, separately and combined.
Form consensus results across methods.
Analyze contributions of coding and non-coding
mutations to enriched pathways/networks.
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Create gene-level scores from coding and non-coding element scores
Pathway/network databases typically describe protein/gene interactions, gene-level scores needed.

Define coding (C), non-coding (N), and combined coding and non-coding (C+N) scores for each gene:
1. pCipcoding .

2. pN - f_lsher(mm(ppromote_r’ p5’ UTR)’ p3’ UTR’ penhancer)
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Create gene-level scores for enhancers
Pathway/network databases typically describe protein/gene interactions, gene-level scores needed.

Define gene-level enhancer scores:
1. Use enhancer scores (syn8494939).
2. Use enhancers with < 5 gene targets from enhancer-gene targets (syn7188184).
3. For each gene, define p as minimum score of enhancers targeting gene.

enhancer

We also performed analysis without enhancer scores.
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https://www.synapse.org/#!Synapse:syn8494939
https://www.synapse.org/#!Synapse:syn7188184

Pathway analyses

1.

2,

ActiveDriverPW (Juri Reimand, OICR): Evaluates the enrichment of mutations in functionally related sets
of genes using driver scores.

Hypergeometric analysis (Miguel Vazquez, CNIO): Identifies enriched pathways (hypergeometric test
g-value g < 0.05) containing genes with driver score p-values p < 0.1.
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Network analyses

1.

CanlsoNet (Abdullah Kahraman, UZH): Identifies regions of a PPl network whose interactions are
considered to be disrupted by alternative isoforms.

Hierarchical HotNet (Matthew Reyna, Princeton): Combines driver scores and network topology to
construct hierarchy of topologically close and significantly mutated gene sets.

Induced subnetwork analysis (Matthew Reyna, Princeton): Finds connected subnetworks induced by
genes with driver scores exceeding a statistically determined threshold.

NBDI (Lieven Verbeke, Ghent): Uses driver scores with patient mutation and expression data to find
mutated genes that interact with differentially expressed genes.

SSA-ME (Sergio Pulido-Tamayo, Ghent): Prioritizes genes based on likelihood of belong to high-scoring
subnetworks.
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Each pathway/network method applied to three datasets: C, N, C+ N

Gene-level data Pathway/network algorithm Results
Coding (C) >( »| Coding (C)
ActiveDriverPW
CanlsoNet
TR Hierarchical HotNet Codinarana
non-coding [—» Hvperaeometric »1 non-coding
(C+N) P (C+N)
analysis
Induced
subnetwork
Non-coding analysis ,| Non-coding
(N) g (N)
NBDI
Pathways/ > SSA-ME
network k j

Observation: Stronger coding signal dominant signal in combined coding and non-coding
analysis?
Can we identify genes with strong non-coding contribution in combined analysis?



Non-coding “value-added” procedure

.. : Permuted
Motivation: Want to increase Observed non-coding
signal by combining coding and Scores scores
non-coding scores; however —_————

coding scores dominate High non-coding score
combined signal Low non-coding score
Procedure: Run pathway High coding scores

network analysis on permuted
data: fixing coding scores and
permuting non-coding scores.

Results: Define gene as a High coding score
non-coding value-added . _ Low non-coding scores
provided gene appears in High non-coding scores

method’s C+N results in real

data, but infrequently (p < 0.1)

with permuted data. Medium coding and
Procedure identifies genes with ~ "°reeding scores
strong contribution from High coding or non-coding
non-coding scores while scores
leveraging coding scores.

Low non-coding scores

Low High
scores scores

9

Non-coding
score



Apply pathway/network methods to coding and non-coding data

Gene-level data

Pathway/network algorithm

Merged non-coding (MN) results are union of the non-coding (N)
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Form consensus results across methods

Consensus procedure identifies genes by a majority (24/7) of
methods.
Perform consensus across methods for each set of results:

o Coding (C)

o Non-coding (N)

o Coding and non-coding (C+N)

o Merged non-coding (MN)
Focus on consensus coding (C) and merged non-coding
(MN) results.
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Overlap of consensus pathway/network analysis results

Consensus coding
(C) results

Consensus coding
and non-coding
(C+N) results

56

Consensus merged
= non-coding (MN)
results

*CTNNB1, DDX3X, SF3B1,
TGFBR2, TP53
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Comparison with individual gene/element ranking

e Question 1: Can pathway/network methods identify additional coding and non-coding drivers?
(Dig deeper into long tail?)
e Yes:
o 31/87 consensus coding genes have driver scores with g > 0.1.
o 90/93 consensus merged non-coding genes have driver scores with g > 0.1.
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Clustering of non-coding genes on pathways/networks

Question 2: Do non-coding mutations cluster in
pathways/subnetworks?
e Yes:
o Consensus genes form large
connected components in ReactomekFl|
2015 network:
m /5genes (P<1e-6) for
consensus coding results
m 61 genes, (P<1e-6) for
consensus merged non-coding
results
o Consensus genes are enriched in GO
and Reactome pathway databases:
m 63 pathways with hypergeometric
P < 1e-6 for consensus C results
m 13 pathways with P < 1e-6 for
consensus merged non-coding
results
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=== Random scores (bottom 1%)
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Network view of consensus results

ok | RNA splicing
“ (#G0:0008380) O Both Cand MN

Question 3: Do non-coding mutations cluster in
same pathways/subnetworks as coding
mutations?
e Yes and no.
o Some interactions primarily between
consensus coding results
o Some interactions primarily between
merged non-coding results. .
o Many interactions between consensus N IR ‘(\g' .
coding and consensus merged e __3*,1\\‘»3\\5 AT/
non-coding results. b

--------

Subnetwork of ReactomeF| 2015 network induced by
consensus coding (C) and consensus merged non-coding
(MN) results, excluding 214 interactions only between
genes in coding results



Pathway view of consensus results

Question 3: Do non-coding drivers cluster in same pathways/subnetworks
as coding drivers?
e Yes and no.
o Some enriched pathways primarily due to consensus coding
results.
o Some enriched pathways primarily due to consensus merged
non-coding results.
o Some enriched pathways have contributions from consensus
coding and merged non-coding results.
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1
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Enriched pathway modules
(P < 1e-06)

Consensus genes

Matrix entries correspond to pathway
modules (rows) and a consensus
genes (columns).

A filled entry of the matrix indicates

e =1 pathway in module is
enriched for consensus results
and

e gene belongs to = 1 of enriched
pathways in module.

Details:

e Color: consensus C or
consensus MN gene
Shading: enrichment
Border: more enriched in C U
MN than separately

Pathway
(1)R)B)E
|

L
CNMN 1

Gene

(1) Enriched.

(2) Present, not enriched.

(3) Enriched, C UMN more significantly enriched.
(4) Present, not enriched, CUMN enriched. 16



Pathway view of consensus results: primarily coding contributions
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e Apoptosis...
e Cell proliferation...

e Chromatin organization and histone modification... 17



Pathway view of consensus results: primarily non-coding contributions
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Pathway view of consensus results: both coding and non-coding contributions
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e Signaling pathways (Wnt, NOTCH, growth factor...)
e Nuclear transport...

e Transcription factors... 19



Do driver mutations in a patient occur on pairs of interacting genes?

Data:
e 9,947 patient-centric driver mutations in ICGC PCAWG data (see Supplemental Table 3 of
bioRxiv paper in syn11050201)
e Four interaction networks: BioGRID HC, HINT+HI2014, iRefIndex14+KEGG, ReactomeFl|
2015

Questions:

1. For each patient, are there significantly more or significantly fewer interactions between
driver mutations than expected by chance?

2. For each cohort, are there significantly more or significantly fewer interactions between
driver mutations than expected by chance?

3. For each pair of interacting genes, are both genes affected by driver mutations in
significantly more or significantly fewer patients in a cohort than expected by chance?

Example
e 4 genes with driver mutations

e 2 interactions between genes with driver mutations 20


https://www.biorxiv.org/content/early/2017/09/20/190330
https://www.synapse.org/#!Synapse:syn11050201

Do driver mutations in a patient occur on pairs of interacting genes?

Example:

A Liver-HCC patient has 5 driver mutations in BioGrid HC: CCND1, CDKN2A, PTEN, RB1,
and TP53.

Subgraph of BioGrid HC induced by these genes has 4 interactions: CCND1-CDKNZ2A,
CCND1-RB1, CDKN2A-TP53, PTEN-TP53.

Are there more or fewer interactions in this patient’s induced subgraph than expected?
Are there more or fewer edges in this cohort’s induced subgraphs than expected?

Do any of the interactions, e.g., PTEN-TP53, occur more or less frequently in a cohort than
expected?

RB1 CCND1 CDKN2A  TP&3 PTEN
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Summary of patient-specific driver mutations on networks

Network None (not BioGRID HC HINT+HI2014
restricted to
network genes)

Number of 550 396 476
genes/loci with
driver mutations

Number of patients = 2068 2023 2052
with driver

mutations

Number of driver 9947 7977 8648
mutations

Table: Summary of patient-centric driver mutation data on 25 cohorts with = 10 samples with driver mutations

and = 2 driver mutations, on average, per sample in all networks.

iReflndex14 +

KEGG

493

2056

8800

ReactomekF|

2015

457

2044

8505

22



Statistical test

We compared the observed results against 10,000 permutations of the binary mutation matrix for
each cohort, preserving the mutation frequency of each gene within the cohort and each patient
in the cohort.

For a fixed patlent s, let X, = number of interactions between driver mutations in s. We
compute p_* = Pr(X_ 2z x) and p, = Pr(X <x.), where x_is observed value.

For a fixed cohort C, let XC = ZSGC X = number of interactions between driver mutations across
patients in C. We compute p." = Pr(XC 2 X)and p = Pr(X, < x.), where x is observed
value.

For fixed cohort C and edge e = ( v), let X = number of patients in C with driver mutations

in both v and v. We compute pc’ o = Pr(X > x .) and Pe o = Pr(XC’ o < X¢ o)

23



Table of p-values for fewer or more interactions than expected in each cohort

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A

Cohort

Biliary-AdenoCA
Bladder-TCC
Bone-Leiomyo
Bone-Osteosarc
Breast-AdenoCa
Breast-LobularCa
CNS-GBM
CNS-Medullo
CNS-Oligo
ColoRect-AdenoCA
Eso-AdenoCa
Head-SCC
Kidney-RCC
Liver-HCC
Lung-AdenoCA
Lung-SCC
Lymph-BNHL
Ovary-AdenoCA
Panc-AdenoCA
Panc-Endocrine
Prost-AdenoCA
Skin-Melanoma
Stomach-AdenoCA
Uterus-AdenoCA

B

p-value for fewer

edges than
expected in
BioGRID HC

0.5404
0.0156
0.0156
0.0000
0.1677
0.6618
0.0234
0.0273
0.8619
0.1158
0.5573
0.8905
0.8905
0.0121
0.1054
0.2367
0.3056
0.3910
0.4890
0.0039
0.0431
0.0960
0.1754
0.2223

c

p-value for fewer

edges than
expected in
HINT+HI2014

0.6994
0.0274
0.0000
0.0000
0.3344
0.9452
0.0000
0.3517
0.8906
0.1708
0.7943
0.9248
0.1489
0.0000
0.0509
0.1984
0.5104
0.3987
0.6224
0.0118
0.3848
0.5454
0.0078
0.2600

D

p-value for fewer
edges than
expected in
iRefindex14+KEGG
0.6797
0.3042
0.0430
0.0039
0.9232
0.9142
0.1988
0.3696
1.0000
0.0078
0.8151
0.0312
0.1880
0.1455
0.0800
0.0702
0.0196
0.3015
0.0000
0.0078
0.8032
0.0069
0.0436
0.8185

E

p-value for fewer
edges than
expected in
ReactomeFI 2015
0.0117
0.7841
0.0118
0.0000
0.9547
0.3370
0.0000
0.8141
0.0431
0.0118
0.0853
0.4717
0.8167
0.0384
0.0195
0.4992
1.0000
0.6680
0.3632
0.5899
0.0367
0.4097
0.6614
0.5971

E

p-value for more

edges than
expected in
BioGRID HC

0.6121
0.9883
0.9883
1.0000
0.8766
0.5885
0.9844
0.9961
0.3141
0.9148
0.5442
0.1705
0.2500
0.9879
0.9298
0.8416
0.7491
0.7028
0.5962
0.9961
0.9726
0.9388
0.8733
0.8455

G

p-value for more

edges than
expected in
HINT+HI2014

0.4985
0.9883
1.0000
1.0000
0.7395
0.1760
1.0000
0.8112
0.2978
0.8842
0.2795
0.1493
0.9315
1.0000
0.9726
0.8681
0.5568
0.6839
0.4429
1.0000
0.7210
0.5905
1.0000
0.7976

H

p-value for more
edges than
expected in
iReflndex14+KEGG
0.4257
0.7504
0.9843
1.0000
0.0899
0.1484
0.8360
0.7516
0.0039
0.9922
0.2374
0.9922
0.8956
0.8651
0.9396
0.9454
0.9804
0.7389
1.0000
1.0000
0.2617
1.0000
0.9731
0.2245

p-value for more
edges than
expected in
ReactomeFI 2015
0.9883
0.2588
1.0000
1.0000
0.0490
0.8075
1.0000
0.2873
1.0000
0.9961
0.9264
0.6148
0.3359
0.9620
0.9883
0.5687
0.0000
0.4068
0.6726
0.5901
0.9828
0.6552
0.3801
0.4380



Summary of cohort results

For each cohort, are there significantly more or signifcantly fewer interactions between driver
mutations than expected by chance?

e 9 cohorts have significantly fewer interactions than expected (p < 0.05) in multiple
networks:
o Bladder-TCC, Bone-Leiomyo, Bone-Osteosarc, CNS-CBM, ColoRect-AdenoCA,
Liver-HCC, Panc-Endocrine, Prost-AdenoCA, Stomach-AdenoCA

e 3 cohorts have significantly more interactions than expected (p < 0.05) in one network:

o Breast-AdenoCa, CNS-Oligo, Lymph-BNHL
o Networks (iReflndex14+KEGG and ReactomeF| 2015) are two denser.
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Summary of patient results

For each patient, are there significantly more or fewer interactions between driver mutations
than expected by chance?

e 3 patients have significantly fewer interactions than expected (p < 0.01) in one network.
o Lung-SCC patient (p < 0.0001 for fewer interactions):
m Driver mutations in: CDKN2A, COL11A1, EGFR, FANCF, FAT1, FBXW?7, IKZF2,
KMT2D, NFE2L2, RHOA, SOX2, WWOX, ZFP36L1.
m Induced subgraph of ReactomeF| 2015 has 0 interactions, vs. 5.98 interactions
expected from null distribution.

e 19 patients have significantly more interactions than expected (p < 0.01) in at least one
network, where 3 of these patients have more interactions than expected in multiple networks.
o Liver-HCC patient (p < 0.0001 for more interactions)
m Driver mutations in CCND1, CDKN2A, PTEN, RB1, and TP53.
m Subgraph of BioGrid HC has 4 interactions: CCND1-CDKN2A, CCND1-RB1,
CDKN2A-TP53, PTEN-TP53 vs. 0.48 interactions expected from null distribution;.
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Summary of interaction results

For each pair of interacting genes, do both genes contain driver mutations in significantly more
or significantly fewer patients in a cohort than expected by chance?

e 16 interactions in BioGRID HC co-occur in significantly fewer patients within a cohort than
expected by chance (p < 0.05):
o ATM-TP33, ATRX-DAXX, AXIN1-CTNNB1, BCL2-TP53, BRCA2-TP53, CDK4-CDKN2A,
CDK4-CDKN2B, CDK4-RB1, CDKN2A-MDMZ2, CDKN2A-TP53, CREBBP-MYC,
ERG-SPOP, KDM6A-KMT2D, MAP3K1-TP53, MDM2-TP53, PTEN-TP53

e 19 interactions in BioGRID HC co-occur in significantly more patients within a cohort than
expected by chance (p < 0.05):

o AKT1-CTNNB1, AXIN1-MAP3K1, BRCA1-MYC, CCDC6-FBXW7, CCND1-CDKB,
CCND1-CDKN2A, CCND2-RB1, CDKN2A-TP53, CUL1-FBXW7, ERBB2-PLCG1,
ERBB4-GRB2, GPS2-NCOR1, MDM2-TERT, MYC-SMARCA4, NFKBIZ-STATS3,
PTEN-TP53, RAF1-RB1, RB1-RBBP8, SMARCA4-TP53
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